Formalization of UML Communication Diagrams using π-Calculus

Aissam Belghiat1,2
1Département d’informatique, Université 20 Août 1955-Skikda, Algérie
belghiatissam@gmail.com
2MISC Laboratory, Department of Computer Science, University of Constantine2, Algeria
a_chaoui2001@yahoo.com

Abstract—UML is a general-purpose modeling language for object oriented systems. UML suffers from lack of semantics design due to its semi-formal structure. Formal methods have been used largely in order to deal with this problem. This paper presents a formalization of UML communication diagrams (collaboration diagrams in UML 1.x) semantics using π-calculus computation model. The formalization provides a formal theoretical basis as well as formal analysis and checking for UML communication diagrams. We illustrate our approach by an example in order to explain the general purpose usability of our approach for a wide audience. It also illustrates a practical usage which proved the effectiveness of the translation.

Keywords—UML, communication diagram, π-calculus, formal method, formalization, MDA.

I. INTRODUCTION

UML (Unified Modeling Language) is a semi-formal language to visualize, specify, build and document all the artifacts and aspects of software systems [1]. UML provides interaction diagrams to represent the communications with and within the software. There are two common variant of interaction diagrams; the sequence diagram and the communication diagram. Whereas the sequence diagram shows temporal representation of the interactions between the objects and the chronology of the exchanged messages between the objects and with the actors, the communication diagram displays a spatial representation of the objects and their interactions.

The formalization of UML diagrams using formal methods has been adopted largely in order to deal with its problem of imprecise semantics. In this paper, we propose to use the π-calculus computation model to compensate the lack of semantics in UML communication diagrams by defining a theoretical formal basis for them. In order to do that, we examine the graphical syntax of such diagrams which is precisely specified and also the semantics that is imprecisely defined. Then we tried to develop an incremental semantic correspondence between UML communication diagrams and the π-calculus using the abilities of this later in capturing the way in which the objects interact.

Little research effort has been devoted at tackling the formalization of UML communication diagrams; due the fact that large numbers of designers claim that the other UML interaction diagram (i.e. the sequence diagram) is more appropriate in the modeling task. Unfortunately, this is not true because the UML specification [1] tells us that each type of the proposed diagrams provides slightly different abilities and capabilities that make it more appropriate and adapted for certain situations. Furthermore, communication diagrams are more suitable [7][18] and often used to provide a glance-view of a collection of collaborating objects, in particular within a real-time environment, offer an alternate view of interaction with sequence diagrams, add functionality to classes by exploring the behavior results from the interaction of its objects, model the implementation logic of a complex operation; in particular when it interacts with several other objects, and to describe the roles taken by objects in a system, and the different relationships involved in those roles.

The main contribution of this paper is the formalization of the execution semantics of UML communication diagrams using the π-calculus computation model and consequently strengthening these diagrams by providing for them a formal semantic foundation. Other outcome is to advance state-of-the-art of the formalization of all UML diagrams by means of process algebras. Furthermore, our work can be seen as a refinement and extension of the study in [15] in which the authors proceed to capture the dynamic behavior of programs using collaboration diagrams. Using our contribution, which maps a communication diagram to the correspond π-calculus specification and by the means of some π-calculus tools like MWB [2][3], we can proceed to model checking and equivalence checking of programs which have the dynamic behavior modeled as collaboration diagrams.

The rest of the paper is structured as follows. In Section 2, we present related works. In Section 3, we present basic notions about UML communication diagrams and the π-calculus. In Section 4, we propose a formalization of communication diagrams using the π-calculus. In Section 5, we illustrate our approach through an example. Section 6 concludes the work by remarks and future works.
II. RELATED WORK

There is a large body of work attempting to formalize the semantics of UML diagrams, but to the best of our knowledge, a few works have addressed directly the formalization of communication diagrams. Lano et al. [5] have formalized collaboration diagrams using Structured Temporal Theories in an effort to describe semantics for a subset of UML diagrams. Overgaard, in [17], developed a sequence-based formalization of collaboration diagrams in terms of roles and interactions. In [6] a Colored Petri Nets-based approach is proposed to represent collaboration diagrams. In [7] an integrated approach graph transformation rules and graph processes is used to formalize collaboration diagrams. In [8] the authors use Object Petri Net Models to formalize UML statechart and collaboration diagrams for analysis purposes. In [9] the authors propose an approach for integrating UML statechart and collaboration diagrams by their formalization using Hierarchical Predicate Transition Nets (HPtTNs). In [10] a graph transformation based approach is developed for the automatic generation of Coloured Petri Net Models from UML statechart and collaboration diagrams. Merah et al. [16] translate UML2 communication diagrams to Buchi automata using the ATL transformation language. In [11] the authors transform the communication diagrams of Fuzzy UML [12] (which is a modeling language that combines the UML with Fuzzy logic) to Fuzzy Petri nets.

With regard to previous studies, we notice the following concerns:

- The works in [20], [6], [8], [9], and [10] have not addressed directly the formalization of communication diagrams, but as part of theirs contributions to attain other objectives.
- The informal definition of the semantic mapping in all previous work, especially in [7], [16]. Which make them insufficient to fully define the translation.
- The authors in [16] propose a non-persistent mapping which neglects the most essential features those that reflect the behavioral-semantics of communication diagrams such as asynchronous communication, conditional messages, concurrent messages and concurrent loops. Thus, the approach proposed by [16] is very limited and does not fully conform to the semantics of UML.
- The authors in [7] provide a formalization which covers three aspects of models which can be expressed in collaboration diagrams: structure, interaction and a novel state transformation proposed-aspect. However, the examination of the proposed-approach indicates that it is oriented to the former and later aspects, and the interaction aspect was ambiguously and badly modeled and covered. No formalization is provided for example even to basic interactions such as exchanging messages which deviates the formalization from the main semantics-purpose of communication diagrams. An interested reader can rapidly detect that the novel aspect proposed in [7] has immediately turned the approach to a statechart-oriented contribution because the focus in the formalization is on the lifecycle of each object instead of communication between objects.

In contrast to all these works, our contribution provides multiple benefits over them:

- Our study addresses directly communication diagrams from the UML2 specification [1] in contrast to the works in [20], [6], [8], [9], and [10]. It tackles the main objective of a communication diagram such as defined in the OMG specification i.e. the underlying structure and interaction of system’s objects unlike in [7].
- Our study is a first attempt in regard to the formalization of UML communication diagrams using the \(\pi \)-calculus. The target semantic domain chosen in our translation provides a rich theory and tools, which will allow and automate formal analysis and verification of communication diagrams such as model checking and equivalence checking.
- Our study provides a full formal definition of the semantic mapping between UML communication diagrams and the \(\pi \)-calculus, especially in contrast to [7], and [16], which will allow easily the automation of the translation for rigorous analysis tasks.
- We provide an exhaustive approach in our formalization (Unlike in [16]), so that all systems modeled in such diagrams can be perfectly described in our process algebras.
- Our approach covered the aspect of using collaboration diagrams invented in [7], i.e., the specification of system’s state transformation.

III. BACKGROUND

A. UML Communication Diagrams (CDs)

A communication diagram (collaboration diagrams in UML 1.x) is one of interaction diagrams that display a spatial representation of the objects and their interactions. We present in this section the syntax and semantics of these diagrams.

1) Structural elements of UML CDs.

We present below the notational elements of UML communication diagrams [1, 19] in (Fig. 1) and we show the different combination of these elements which used to build the diagrams.

Other visual stereotypes symbols of the robustness diagram can be considered since they are used to improve the readability of the communication diagrams [18]. (Fig. 2) depicts these symbols.
2) **Semantics of UML CDs.**

A Communication Diagram shows the interactions through an architectural view where the arcs between the communicating lifelines are decorated with descriptions of the exchanged messages and their sequencing [1].

In (Figure 1) several constituents of a communication diagram are depicted. In fact, it is often described within a frame. It contains multiple lifelines (objects) which are related by means of connectors and which interact using messages exchanging. A lifeline can be anonymous (has no name), and with/without selector (the lifeline is selected with selector). A message represents the entity of interaction. It can be conditional message (with a guard condition), with sequential loop (one by one iteration), and with/concurrent loop (parallel iteration). Furthermore, we can have sequential messages (one by one) or concurrent messages (in parallel) in the communication diagram.

With regard to the visual stereotypes symbols in (Figure 2), an actor represents all systems with which the modeled system interacts. Process/Controller classes implement logic which corresponds to multiple business entities. Domain classes implement basic business entities. Interface classes allow actors to interact with the system described via an interface. An association is revealed whenever an actor interacts with a class, or two classes interact.

Communication diagrams can be used on two different levels [18]; Instance-level UML communication diagrams and Specification-Level Diagrams.

a) Instance-level UML communication diagrams: they are the most common used style of UML communication diagram. They display the interactions between instances (objects). They are usually created to describe and explore the internal design of object-oriented system. We focus on these diagrams since they provide both structural and interaction aspects of systems. Figure 3 shows an example of such diagrams.

![Figure 3: An instance-level UML communication diagram.](image)

b) Specification-Level Diagrams: they are not the common used style of UML communication diagram due to the suitability of UML class diagrams which are extensively used by modelers to identify the roles. They are typically used to describe and explore the roles that domain classes take in a system. Figure 4 shows an example of such diagrams.

![Figure 4: A specification-level UML communication diagram.](image)

B. **π-calculus**

The π-calculus [4] has been introduced as a new and fundamental way of thinking about concurrent interactive processes, and one which is amenable to rigorous treatment [4]. It is a process algebra developed to cover the limitation of the process calculus CCS (Calculus of Communicating Systems) in terms of expression power by authorizing the passage of “channels” between processes; it can be used for the representation, the analysis, the verification and simulation of concurrent systems. The abstract syntax for the π-calculus is built from the following BNF grammar (x and y are any names in the set of names N) [4]:

\[
P ::= \emptyset \quad \text{Nil; empty process}
\]

\[
| x \leftarrow y . P \quad \text{Input prefix; receive y along x}
\]

\[
| x \leftarrow \lambda . P \quad \text{Output prefix; send y along x}
\]

\[
| \tau \cdot P \quad \text{Silent prefix; an internal action}
\]

\[
| P \parallel P \quad \text{Parallel composition}
\]

\[
| P + P \quad \text{non-deterministic choice}
\]

\[
| (y) P \quad \text{Restriction of name } y \text{ to process } P
\]

\[
| x = y \mid P \quad \text{Match; if } x = y \text{ then } P
\]

\[
| x \neq y \mid P \quad \text{Mismatch; if } x \neq y \text{ then } P
\]

\[
| \Pi (y_1, \ldots, y_n) \quad \text{Process Identifier}
\]

There are several extensions of the π-calculus, in our paper we choose the polyadic version that extends the monadic π-calculus.
A communication diagram shows the spatial organization of interacting participants. It represents the interactions in a spatial point of view. The π-calculus describes the interaction of linked processes in a virtual space. The reason for using the π-calculus computation model is that it is more suitable for reasoning. In fact, the behavior of a communication diagram can be perfectly modeled using the π-calculus because this computation model provides multiple constructs, which are able to describe the meaning of different interactions in such diagrams. Furthermore, it contains a rich theory and background for the analysis and verification of these systems modeled as process expressions.

We propose in this section inspired by [13, 14] a formal definition of UML communication diagrams; first, we define a communication diagram in terms of sets and functions. Then, we start our formalization by formally defining the translation mapping between the source and target models.

A. Formal definition of UML CDs

Definition 1: (CDs definition)

We suppose the types of notational elements of communication diagrams as:

\[
\text{Elements} = \{\text{Lifelines}, \text{Links}, \text{Messages}, \text{Conds}, \text{Msgs}, \text{Vals}, \text{Prms}\}
\]

A communication diagram is a 8-tuple:

\[
\text{CD} = (\text{CDname}, \text{Elements}, \alpha_{\text{cond}}, \alpha_{\text{msg}}, \alpha_{\text{val}}, \alpha_{\text{prm}}, \alpha_{\text{in}}, \alpha_{\text{out}})
\]

Where:

- \(\text{CDname}\) is the communication diagram name.
- \(\text{Lifelines}\) represents the set of lifelines
- \(\text{Links}\) represents the set of links
- \(\text{Messages}\) represents the set of messages
- \(\text{Conds}\) represents the set of conditions.
- \(\text{Msgs}\) represents the set of messages names.
- \(\text{Vals}\) represents the set of return values.
- \(\text{Prms}\) represents the set of parameters.

- \(\alpha_{\text{cond}}: \text{Messages} \rightarrow \text{Conds}\) Defines for a messages its condition.
- \(\alpha_{\text{msg}}: \text{Messages} \rightarrow \text{Msgs}\) Specifies for a message its name.
- \(\alpha_{\text{val}}: \text{Messages} \rightarrow \text{Vals}\) Specifies for a message its return value.
- \(\alpha_{\text{prm}}: \text{Messages} \rightarrow \text{Prms}\) Specifies for a message its parameters.
- \(\alpha_{\text{in}}: \text{Lifelines} \cup \text{Messages} \rightarrow \text{Links}\) Relates a lifeline (resp. message) to links (considered as entering links).
- \(\alpha_{\text{out}}: \text{Lifelines} \cup \text{Messages} \rightarrow \text{Links}\) Relates a lifeline (resp. message) to links (considered as leaving links).

Definition 2: (Process expression function)

In order to capture the semantics of communication diagrams, we define a function \(\Omega\) for representing UML communication diagrams as process expressions in the π-calculus. The function \(\Omega\) is defined as follows:

\[
\forall E \in \text{Elements}, \exists P \in \text{Pi-calculus}, \text{where } \Omega_{E:\text{Elements}}(E) = P \text{. Which means that each elements of the communication diagram has its correspond process expression “}P\text{” in the π-calculus.}

Using this function, we can map each notational element of the communication diagram into the adequate π-calculus specification as process expressions.

B. Formalization of UML CDs

The technique adopted to formalize UML communication diagrams is to define the appropriate π-calculus representation for each of their notational elements. The task is repeated until no elements are left and a complete π-calculus specification for a communication diagram is generated. The lifelines are modeled as processes, the messages as processes and the links as connectors.

Rule 1: (lifeline “object”)

Suppose \(O1 \in \text{Lifelines}, \alpha_{\text{in}}(O1) = \{\text{IN}_i\}, \alpha_{\text{out}}(O1) = \{\text{OUT}_j\}, \Omega_{\text{IN}_i}(\text{IN}_i) = \text{in}_{\text{O}1}, \Omega_{\text{OUT}_j}(\text{OUT}_j) = \text{out}_{\text{O}1}, \text{for } i = 1, \ldots, n, j = 1, \ldots, m \text{ is the number of links associated with the lifeline. “seq” is a channel for evaluating the sequence number of the next message that will be sent. }\Omega_{\text{Lifelines}}(O1) = O1(\text{in}_{\text{O}1}, \text{seq}, \text{out}_{\text{O}1})\text{. We model the semantics of a lifeline by the behavior of the parameterized process } O1(\text{in}_{\text{O}1}, \text{seq}, \text{out}_{\text{O}1})\text{ as follows (While i and j represent different inputs and outputs respectively of the object):}

\[
O1(\text{in}_{\text{O}1}, \text{seq}, \text{out}_{\text{O}1}) = \text{in}_{\text{O}1}. \tau. (\text{v x}) \text{seq}<s>.x(s). \text{out}_{\text{O}1}<s>.
\]

An event that occurs in the process modeling the object is specified using the internal action “\(\tau\)”. We use the “seq” channel to evaluate the sequence number of the message generated in response to the event produced. The output action seq<s> and the input action x(s) specify the sequence number of the next message. The concerned message process will be
fired using the output action \(\text{out}_o \langle s \rangle \) in the process. The replication operator \(\langle ! \rangle \) is used to indicate that the process modeling the object will trigger multiple messages processes (towards different objects), by outputting multiple copies of the \(\langle ! \rangle \) channel, if they have letters on messages i.e. different threads concurrently (in parallel). The recurrence of the process \(O_1(\text{in}_o, \text{seq}, \text{out}_o) \) in the end of the expression is to deal with sequential messages (one by one).

- **Rule 2: (message)**

 We take the following notation that gives us a general representation of messages and summarizes those described in (Figure 1).

\[
\begin{align*}
\text{Message} & \sqsubseteq ([<\text{sel}>] | <\text{cond}> | [!][|[]]| |<\text{side}>]) \sqcup \{[\text{var}] : = \{\text{msg} \} | \langle\{\text{prm}\}\rangle

\end{align*}
\]

Suppose \(M \in \text{Messages}, a_{\text{in}}(M) = \{I_i\}, a_{\text{out}}(M) = \{O_j\}, \Omega_{\text{link}}(I_i) = \text{in}_{m_i}, \Omega_{\text{link}}(O_j) = \text{out}_{m_j}, \text{for } i = 1, \ldots, n, j = 1, \ldots, m. f = n + m \) is the number of links associated with the message. \(a_{\text{msg}}(M) = \{\text{MSG}_1\}, \Omega_{\text{msg}}(\text{MSG}_1) = \text{msg}_i \). “\text{msg}_i” is a channel which represents the message that will be sent.

- **A simple message:**

 When we have a simple message, \(\Omega_{\text{Messages}}(M) = M(\text{in}_{m_i}, \text{msg}_i, \text{out}_{m_j}), \) the semantics of the message is represented in the \(\pi \)-calculus as a process with parameters \(M(\text{in}_{m_i}, \text{msg}_i, \text{out}_{m_j}) \) as follows:

\[
\begin{align*}
M(\text{in}_{m_i}, \text{msg}_i, \text{out}_{m_j}) & = \text{in}_{m_i}(s).\text{out}_{m_j}(s)\text{msg}_i.M(\text{in}_{m_i}, \text{msg}_i, \text{out}_{m_j})
\end{align*}
\]

The process modeling the message waits its turn to be executed (i.e. message sending), this is represented by an input on the “\text{in}_{m_i}” channel. The output action \(\text{in}_{m_i}(s) \text{msg}_i.\text{out}_{m_j}(s) \) sends the message.

- **A message with a return value:**

 When we have a message with return value \(\text{VAL}_1 \in \text{VAL}, a_{\text{val}}(M) = \{\text{VAL}_1\}, \Omega_{\text{val}}(\text{VAL}_1) = \text{val}_i, \Omega_{\text{Messages}}(M) = M(\text{in}_{m_i}, \text{msg}_i, \text{val}_i, \text{out}_{m_j}), \) the semantics of the message is represented in the \(\pi \)-calculus as a process with parameters \(M(\text{in}_{m_i}, \text{msg}_i, \text{val}_i, \text{out}_{m_j}) \) as follows:

\[
\begin{align*}
M(\text{in}_{m_i}, \text{msg}_i, \text{val}_i, \text{out}_{m_j}) & = \text{in}_{m_i}(s).\text{out}_{m_j}(s)\text{msg}_i.\text{val}_i.M(\text{in}_{m_i}, \text{msg}_i, \text{val}_i, \text{out}_{m_j})
\end{align*}
\]

When the message has a return value, the process modeling the message outputs the “\text{val}_i” channel on the channel “\text{out}_{m_j}” which will be used to get back the return value.

- **A message with parameters and a return value:**

 When we have a message with a return value and parameters \(\text{PRM}_1 \in \text{PRM}, a_{\text{prm}}(M) = \{\text{PRM}_1\}, \Omega_{\text{prm}}(\text{PRM}_1) = \text{prm}_i, \Omega_{\text{Messages}}(M) = M(\text{in}_{m_i}, \text{msg}_i, \text{val}_i, \text{prm}_i, \text{out}_{m_j}), \) the semantics of the message is represented in the \(\pi \)-calculus as a process with parameters \(M(\text{in}_{m_i}, \text{msg}_i, \text{val}_i, \text{prm}_i, \text{out}_{m_j}) \) as follows:

\[
\begin{align*}
M(\text{in}_{m_i}, \text{msg}_i, \text{val}_i, \text{prm}_i, \text{out}_{m_j}) & = \text{in}_{m_i}(s).((v(p)\text{\texttt{\textbackslash{}prm}_i \langle p \rangle} | p(\text{\texttt{\textbackslash{}ps}}).\text{out}_{m_j}(\text{msg}_i, \text{\texttt{\textbackslash{}ps}}, \text{val}_i) | M(\text{in}_{m_i}, \text{msg}_i, \text{val}_i, \text{prm}_i, \text{out}_{m_j})
\end{align*}
\]

The “\text{prm}_i” channel is used to obtain the list of parameters modeled as “\text{ps}” channels. When the message has some parameters, the process modeling the message creates a channel “\text{p}” and executes the output action “\text{prm}_i \langle p \rangle” and the input action “\text{ps}” to retrieve the parameters. The channel “\text{msg}_i” will be thereafter sent with multiple channels which represent the parameters and the returned value.

- **If there is a sequential iteration:**

 When we have a message with a sequential iteration \(k \) (\(k \) can be specified or unspecified i.e. “*”), \(\Omega_{\text{des}age} = M(\text{in}_{m_i}, \text{msg}_i, \text{out}_{m_j}) \), the semantics of the message is represented in the \(\pi \)-calculus as a process with parameters \(M(\text{in}_{m_i}, \text{msg}_i, \text{out}_{m_j}) \) as follows:

\[
\begin{align*}
M(\text{in}_{m_i}, \text{msg}_i, \text{out}_{m_j}) & = \text{in}_{m_i}(s).\text{out}_{m_j}^{\langle \text{msg}_i \rangle}.\ldots.\text{out}_{m_j}^{\langle \text{msg}_i \rangle}. \text{def } k \text{ times}
\end{align*}
\]

The message process will send sequentially (one by one) a specified or unspecified number of messages “\text{msg}_i” to the object \(O_j \).

- **If there is a parallel iteration:**

 When we have a message with a parallel iteration \(k \) (\(k \) can be specified or unspecified i.e. “*”), \(\Omega_{\text{des}age} = M(\text{in}_{m_i}, \text{msg}_i, \text{out}_{m_j}) \), the semantics of the message is represented in the \(\pi \)-calculus as a process with parameters \(M(\text{in}_{m_i}, \text{msg}_i, \text{out}_{m_j}) \) as follows:

\[
\begin{align*}
M(\text{in}_{m_i}, \text{msg}_i, \text{out}_{m_j}) & = \text{in}_{m_i}(s).\prod_{k=1}^{k} \text{out}_{m_j}^{\langle \text{msg}_i \rangle}. \text{def } k \text{ times}
\end{align*}
\]

The message process will send concurrently a specified or unspecified number of message “\text{msg}_i” to the object \(O_j \).

- **If it is a conditional message:**

 When we have a message with a condition \(\text{COND}_1 \in \text{COND}, a_{\text{cond}}(M) = \{\text{COND}_1\}, \Omega_{\text{cond}}(\text{COND}_1) = \text{guard}_1, \Omega_{\text{Messages}}(M) = M(\text{in}_{m_i}, \text{guard}_1, \text{msg}_i, \text{out}_{m_j}), \) the semantics of the message is represented in the \(\pi \)-calculus as a process with parameters \(M(\text{in}_{m_i}, \text{guard}_1, \text{msg}_i, \text{out}_{m_j}) \) as follows:

\[
\begin{align*}
M(\text{in}_{m_i}, \text{guard}_1, \text{msg}_i, \text{out}_{m_j}) & = \text{in}_{m_i}(s).((v(g)\text{\texttt{\textbackslash{}guard}_1 \langle g \rangle} | g(y), y=[\text{false}] \text{\texttt{\textbackslash{}out}_{m_j}^{\langle \text{msg}_i \rangle}}.\ldots.\text{def } M(\text{in}_{m_i}, \text{guard}_1, \text{msg}_i, \text{out}_{m_j}))
\end{align*}
\]

The message process creates a channel “\text{g}” and executes the output action “\text{guard}_1 \langle g \rangle” and the input action “\text{g}(y)” to retrieve the current evaluation of the condition. If the condition is verified, the matching construct “\{y=[\text{true}]\}” allows the submission of the message along the output action “\text{out}_{m_j}^{\langle \text{msg}_i \rangle}” to the target process which models “\text{O}_j”. In the other case the message will not be sent and the process will wait until the condition is verified.
A full message:

When we have a full message M1, \(\Omega_{M1} = M1(\text{in}m1, \text{guard}1, \text{msg}1, \text{val}1, \text{prm}1, \text{out}m1) \) as follows:

\[
M1(\text{in}m1, \text{guard}1, \text{msg}1, \text{val}1, \text{prm}1, \text{out}m1) = \text{in}m1(s)(y g) \\
\text{guard}1<s>, y[t<y]= \{(p) \text{pr}m1<s> | p(p^{t})\} \\
\text{out}m1<\text{msg}1, p^{t}, \text{val}1>, \ldots \text{out}m1<\text{msg}1, p^{t}, \text{val}1>, \ldots + \\
K \text{times}
\]

The process modeling the message is executed when the \(\text{in}m1 \) channel is fired, after that, the condition will be evaluated using the “\(\text{guard}1 \)” channel. If the condition is not verified, the message will not be sent. If the condition is verified, the message process proceeds to send either one message, multiple messages consequently or multiple messages concurrently.

- Definition 3: (Processes communication)

The objects are related using the connectors, which are consequently represented as links between processes representing objects and processes representing messages and vice versa. They relate output ports of source processes with input ports of target processes. Here, we can use the communication reduction rule defined in [4]:

\[
\text{COMM} : (\ldots x(y).P) \mid (\ldots z.Q) \rightarrow P \{z/y\} \mid Q
\]

This rule represents the communication between two complementary processes (have complementary subjects) and consequently all free occurrence of \(y \) in \(P \) will be replaced by \(z \) using the substitution \(\{z/y\} \) after the communication. Based on this rule, the author in [4] has introduced a linking operator relation “\(\cap \) ” on two \(\pi \)-calculus processes as follows:

\[
P \cap Q(t/p, \text{t/q}) = v(t/\{t/p\}P \mid \{t/q\}Q)
\]

This relation indicates that port \(p \) of the process \(P \) is linked with the port \(q \) of the process \(Q \) and then the channel \(t \) will be internalized.

- Rule 3: (links)

We aspire from the interesting relation defined in (definition 3) to facilitate the expression of the translation from an object to message and vice versa represented as processes. Furthermore, we define a process called “Connector” that links all object processes “\(O_i \)” and message processes “\(M_j \)” of a system as follows:

\[
\text{Connector} = \prod_{i,j \in I} v marker(r, \{c/o\}O_i \mid \{c/m\}M_j)
\]

- Rule 4: (CDs)

Suppose an UML communication diagram \(CD = (\text{CDname}, \text{Elements}, \alpha_{\text{cond}}, \alpha_{\text{msg}}, \alpha_{\text{val}}, \alpha_{\text{prm}}, \alpha_{\text{out}}) \). \(\Omega_{\text{CDname}}(CD) = \text{CDname} \). The semantics of this communication diagram is modeled in the \(\pi \)-calculus by the process expression:

\[
\text{CDname} = \prod_{i \in \mathcal{I}} O_i \mid \prod_{j \in \mathcal{J}} M_j \mid \text{Connector}
\]

Where “\(O_i \)” and “\(M_j \)” represent respectively the objects and messages processes resulting from applying the function defined in (Def 2) in (rule 1) and (rule 2) on the communication diagram. Thus the model can be seen as \(\pi \)-calculus concurrent processes which are running in parallel.

V. EXAMPLE: ONLINE BOOKSHOP

To illustrate our approach, we consider an example of an UML communication diagram for an Online Bookshop [19] which is described in Figure 5.

Web customer which is depicted as actor can search, view, select and buy books. Communication starts with the iterative message “\(1^* \) : find_books()” which could be repeated some unspecified number of times. Client searches inventory of books “\(1.1 \) : search()”, and if he is interested in some book, he can view description of the book “\(1.2 \) [interested] : view_book()”. If client decides to buy, he can add the book to the shopping cart “\(1.3 \) [decided to buy] : add_to_cart()”.

Checkout “\(2 \) : checkout()” includes getting list of books “\(2.1 \) : get_books()” from shopping cart, creating order “\(2.2 \) [not empty(cart)] : make_order()”, and updating inventory “\(2.3 \) [order complete] : update_inventory()”, if order was completed.

![Fig. 5. An example of UML communication diagram for online bookshop.](http://www.unis-soukahras.dz/en/publication/article/410)
VI. CONCLUDING REMARKS

In this paper we proposed an intuitive yet systematic formalization of UML communication diagrams using a π-calculus computation model. A major motivation for this work is to provide rigorous execution semantics for UML objects interactions modeled as communication diagram models. An eventual aim of our paper is to make possible model equivalence and model checking of communication diagrams by exploring the rich theory and background of the π-calculus. In our proposition, we provided a full bottom-up formalization of a communication diagram which is defined by a set of concurrent mutual-recursively defined π-calculus processes, each of them corresponds to a lifeline or a message.

The generated specification can be considered as underlying formal basis that strengthens UML communication diagrams and allows analysis, verification and reasoning about the behavior of systems modeled in these diagrams. In order to illustrate the applicability of our approach, we have applied it to an example of an online bookshop system modeled in a communication diagram and we have shown how to generate the π-calculus specification from it. Using our approach, each system modeled as a communication diagram can be analyzed and verified using π-calculus tools, for example, this will allow analyzing the dynamic behavior of a program modeled as a communication diagram like indicated in the second example.

In our future work, we plan to extend our approach by formalizing others diagrams such as sequence and interaction overview diagrams to give a full formal semantics based π-calculus for all UML diagrams.

REFERENCES