Exercise 1 – Simplify the following relationships:

13!	3!15	5!	200!	5! + 7	!	14!	
$\overline{11!}$	12!	, 2	2!198!	6!	⁻ , 1	3! + 1	2!
(1 \ 1	(1)	0.1		(1)101
(n +	1)!	(n -	- 1)!	2n!		(n -	1)!2!
n!	,	(n +	(-1)!	$\overline{(2n-3)}$	$\overline{\mathbf{S})!}$	(n-1)	$\overline{2)!1!}$

Exercise 2 – Combinatorial analysis:

- **a.** Calculate the following values: A_4^3 , A_{10}^{10} , C_3^2 , C_{10}^5
- **b.** Let n and p be two natural numbers. Prove that:

$$C_n^p = C_{n-1}^p + C_{n-1}^{p-1}, \quad \forall 1 \le p \le n-1$$

Calculate C_5^2, C_6^1 . Using this relationship.

Exercise 3 – Solve the following equations in the set of natural numbers:

- $\cdot A_n^2 20n = 0$
- $\cdot \ C_n^1 + C_n^2 = 5n.$
- $\cdot 2A_n^2 + 50 = A_{2n}^2$

Exercise 4 – Publish the following sums using Newton's Binomial Theorem:

$$(x-1)^3$$
, $(x+y)^2$, $(3x+2)^4$, $\left(x+\frac{1}{x}\right)^3$.