

FACULTY OF ECONOMIC SCIENCES, COMMERCE AND MANAGEMENT SCIENCES, FIRST YEAR, COMMON TRUNK MOHAMMED CHERIF MESSAADIA UNIVERSITY SOUK-AHRAS

# **Chapter 02: Numerical sequences**



Prepared by

DR. BEN HANACHI SABRINA

MOHAMED CHERIF MESSAADIA UNIVERSITY -SOUK AHRAS - FACULTY OF SCIENCES AND TECHNOLOGY DEPARTEMENT OF MATHEMATICS

Email: sc. benhanachi@gmail.com

# Chapter 2

# Numerical sequences

# 2.1 General information about numerical sequences

# 2.1.1 Definition of a numerical sequence

**Definition 2.1.1** A numerical sequence is a function u with:

$$u: \mathbb{N} \to \mathbb{R}$$
$$n \to u(n) = u_n$$

The sequences are denoted by  $v_n, w_n, a_n, f_n$ .....

#### Example 2.1.1

• Let  $(u_n)$  is sequence given by:

$$u: \mathbb{N}^* \to \mathbb{R}$$
$$n \to u_n = \frac{1}{n}$$

Calculate  $u_1, u_2, u_{10}$ .

**The answer:** To calculate the given terms we will remplace the index n by 1,2 and 10.

$$u_1 = \frac{1}{1} = 1, u_2 = \frac{1}{2}, u_{10} = \frac{1}{10}$$

• Same question for the sequence  $(v_n)$  defined for any natural number n by:

$$v: \mathbb{N} \to \mathbb{R}$$
$$n \to v_n = 5^n$$

The answer: The same previous steps for this example:

$$v_1 = 5^1 = 5, v_2 = 5^2 = 25, v_{10} = 5^{10}.$$

#### 2.1.2 Sequence defined by a recurrence relation

**Definition 2.1.2** A sequence is defined by a recurrence relation when it is defined by giving :

- its first term.
- a relation that allows you to calculate the next term from each term (Express  $u_{n+1}$ as a function of  $u_n$  for any natural number n). This relation is called a recurrence relation.

#### Example 2.1.2

Let  $(u_n)$  be the sequence defined by:

$$\begin{cases} u_0 = 2\\ u_{n+1} = -2u_n + 3; \quad \forall \ n \in \mathbb{N} \end{cases}$$

Calculate  $u_1, u_2$ .

**The answer:** To calculate the given term we will remplace the index n by 1,2 in the recurrence relation  $u_{n+1}$ .

$$u_1 = -2u_0 + 3 = -2(-2) + 3 = -1$$
  
 $u_2 = -2u_1 + 3 = -2(-1) + 3 = 5$ 

## 2.1.3 Sequence defined by an explicit formula

A sequence is defined by an explicit formula when  $u_n$  is expressed directly as a function of  $n(u_n = f(n))$ . In this case, each term can be calculated from its index.

#### Example 2.1.3

 $Sabrina\ ben\ hanachi$ 

Let  $(u_n)_{n \in \mathbb{N}}$  be the sequence defined for any natural number n by  $u_n = 1 + 3n$ .

Calculate  $u_0, u_1, u_2$  and  $u_{10}$ 

The answer: As we said in this case each term can be calculated from its index

$$u_0 = 1 + 3(0) = 1$$
  
 $u_1 = 1 + 3(1) = 4$   
 $u_2 = 1 + 3(2) = 7$   
 $u_{10} = 1 + 3(10) = 31$ 

# 2.1.4 Direction of variation of a sequence

**Definition 2.1.3** A numerical sequence  $(u_n)_{n \in \mathbb{N}}$  is:

- Strictly increasing if, for all  $n : u_{n+1} u_n > 0$
- Increasing if, for all  $n : u_{n+1} u_n \ge 0$
- Strictly decreasing if, for all  $n: u_{n+1} u_n < 0$
- Decreasing if, for all  $n : u_{n+1} u_n \leq 0$
- Monotonic if it is increasing or decreasing .
- Non-monotonic if it is neither increasing nor decreasing.
- Fixed if, for all  $n : u_n = u_{n+1}$

**Example 2.1.4** Study the monotonicity of the following sequences:  $v_n = n, w_n = \frac{1}{n}$ 

- we have  $v_n = n$  and  $v_{n+1} = n + 1$ , so  $v_{n+1} v_n = 1$ , therefore  $(v_n)$  is strictly increasing.
- $w_n = \frac{1}{n}$  and  $w_{n+1} = \frac{1}{n+1}$ , so  $w_{n+1} w_n = \frac{-1}{n(n+1)}$ , therefore  $(w_n)$  is strictly decreasing.

# 2.1.5 Bounded sequences

**Definition 2.1.4** A numerical sequence  $(u_n)_{n \in \mathbb{N}}$  is:

• Bounded above if, for all n, there exists M such that:

 $u_n \leq M$ 

M is an upper bound for  $(u_n)$ .

• Bounded below if, for all n, there exists M such that :

 $u_n \ge M$ 

M is an lower bound for  $(u_n)$ .

• Bounded if it is both bounded above and bounded below.

# Example 2.1.5

 $\forall n \in \mathbb{N}: u_n \leq 3$ , Here the sequence is bounded from above by 3.  $\forall n \in \mathbb{N}: v_n \geq 4$ , Here the sequence is bounded from below by 4.

# 2.1.6 Convergent sequences

**Definition 2.1.5** we say that a sequence  $(u_n)_{n \in \mathbb{N}}$  is convergent if it has a unique finite *limit*.

$$\lim_{n \to \infty} u_n = l, \ l \in \mathbb{R}$$

if  $l = +\infty$  or  $-\infty$ ; in this case  $(u_n)$  is devergent.

**Proposition 2.1.1** Let  $(u_n)_{n \in \mathbb{N}}$  a sequence:

- Every convergent sequence is bounded
- Every increasing sequence that is bounded above is convergent.
- Every decreasing sequence that is bounded below is convergent.

# 2.2 Arithmetic sequences

# **2.2.1** Arithmetic sequence of reason r

**Definition 2.2.1** A sequence  $(u_n)$  is said to be **arithmetic** if there exists a real number r such that for any integer natural number n,  $u_{n+1} = u_n + r$ . The real number r is called the reason of the sequence.

$$u_0, u_1, u_2, u_3, \dots, \dots, u_n, u_{n+1}$$

## Example 2.2.1

• Let  $(u_n)$  be the arithmetic sequence with first term  $u_0 = 5$  and reason r = 4. Calculate  $u_1, u_2$ , and  $u_3$ .

The answer: We can find each term by adding the reason r to the previous term

$$u_1 = u_0 + r = 5 + 4 = 9$$
$$u_2 = u_1 + r = 9 + 4 = 13$$
$$u_3 = u_2 + r = 13 + 4 = 17$$

• Let  $(u_n)$  be sequence such that  $u_n = 3n+1$ , prove that the sequence is an arithmetic sequence.

The answer: We calculate  $u_{n+1} - u_n$ 

$$u_{n+1} - u_n = 3(n+1) - (3n+1) = 3n+3 - 3n - 1 = 2$$

so the sequence  $(u_n)$  is an arithmetic sequence with r = 2.

**Proposition 2.2.1** An arithmetic sequence of reason r is increasing if and only if r > 0and decreasing if and only if r < 0.

# 2.2.2 Explicit formula

If  $(u_n)$  is an arithmetic sequence of reason r, and let  $u_p$  is the first item, then for all natural numbers n and p

$$u_n = u_p + (n-p)r$$

• if  $u_0$  the first item then the explicit formula is

$$u_n = u_0 + nr$$

• if  $u_1$  the first item then the explicit formula is

$$u_n = u_1 + (n-1)r$$

## Example 2.2.2

Let  $(u_n)$  be the arithmetic sequence with first term  $u_0=8$  and reason r=2

- For a natural number n, give the expression of the sequence  $(u_n)$  as a function of n.
- Calculate  $u_1$  and  $u_7$ .
- Calculate the term at rank 12.

The answer: We know that for any natural number n:  $u_n = u_0 + nr$ , so

$$u_n = 8 + 2n$$

Calculate  $u_1$  and  $u_7$ 

$$u_1 = 8 + 2(1) = 10$$
  
 $u_7 = 8 + 2(7) = 22$ 

# 2.2.3 Partial sum

The *n*-th partial sum of an arithmetic sequence  $(u_n)$  with  $u_n = u_p + (n-p)r$  (where  $u_p$  is the first item) is given by

$$s_n = \frac{n-p+1}{2}(u_p + u_n)$$

We determine the total car production within the first twelve months of production. To this end, we have to determine the partial sum of an arithmetic sequence  $S = u_1 + \cdots + u_{12}$ , with  $u_1 = 750$  and r = 20. we have  $u_n = u_p + nr$ , so  $u_{12} = u_1 + (n-1)20 = 750 + 20(11) = 970$ 

$$s = \frac{12 - 1 + 1}{2}(u_1 + u_{12})$$
$$= \frac{12 - 1 + 1}{2}(970 + 750)$$
$$= 10320$$

the total car production within the first year is equal to 10,320.

# 2.3 Geometric sequences

#### **2.3.1** Geometric sequences of reason q

**Definition 2.3.1** A sequence  $(u_n)$  is said to be geometric if there exists a real number q such that for any integer natural number n:  $u_{n+1} = u_n \times q$ . The real number q is called the reason of the sequence.

#### Example 2.3.1

Let be (u<sub>n</sub>) the geometric sequence with first term u<sub>0</sub> = 5 and reason q = −2. Calculate u<sub>1</sub>, u<sub>2</sub> and u<sub>3</sub>

#### The answer:

$$u_1 = u_0 \times q = 5 \times -2 = -10$$
  
 $u_2 = u_1 \times q = -10 \times -2 = 20$   
 $u_3 = u_2 \times q = 20 \times -2 = -40$ 

• Let  $(u_n)$  be sequence such that  $u_n = 3^n$ , prove that the sequence is geometric sequence.

The answer: We calculate  $u_{n+1}$ 

$$u_{n+1} = 3^{n+1} = 3^n \times 3 = u_n \times 3$$

so the sequence  $(u_n)$  is a geometric sequence with q = 3.

#### 2.3.2 Explicit formula

**Proposition 2.3.1** If  $(u_n)$  is a geometric sequence of reason  $q \neq 0$ , and let  $u_p$  the first item, for all natural numbers n and p,

$$u_n = u_p \times q^{n-p}$$

• if  $u_0$  the first item then the explicit formula is

$$u_n = u_0 \times q^n$$

• if  $u_1$  the first item then the explicit formula is

$$u_n = u_1 + q^{(n-1)}$$

#### Example 2.3.2

Let  $(u_n)$  be the geometric sequence with first term  $u_0=3$  and reason q=2

• Calculate  $u_1$  and  $u_7$ 

The answer: We know that for any natural number n:  $u_n = u_0 \times q^n$ , so

$$u_n = 3 \times 2^n$$

Calculate  $u_1$  and  $u_7$ 

$$u_1 = 3 \times 2^1 = 6$$
  
 $u_7 = 3 \times 2^7 = 384$ 

#### 2.3.3 Partial sum

The *n*-th partial sum of an geometric sequence  $(u_n)$  with  $u_n = u_p \times q^{(n-p)}$  (where  $u_p$  is the first item) is given by

$$s_n = u_p\left(\frac{1-q^{n-p+1}}{1-q}\right)$$

#### Example 2.3.3

Sabrina ben hanachi

Consider a geometric sequence with  $u_0 = 2$  and  $q = \frac{1}{2}$ , calculate the partial sum

$$s = u_0 + \dots + u_5$$
$$s_n = u_0 \left( \frac{1 - (\frac{1}{2})^{5 - 0 + 1}}{1 - \frac{1}{2}} \right)$$
$$= 2 \times \left( \frac{1 - (\frac{1}{2})^{5 - 0 + 1}}{1 - \frac{1}{2}} \right)$$

The convergence of the geometric sequences depends on the value of the common ratio q:

- If : -1 < q < 1, the sequence converges.
- If : q > 1, the sequence divergents.
- If :  $q \leq -1$ , the sequence divergents.