

FACULTY OF ECONOMIC SCIENCES, COMMERCE AND MANAGEMENT SCIENCES, FIRST YEAR, COMMON TRUNK MOHAMMED CHERIF MESSAADIA UNIVERSITY SOUK-AHRAS

Chapter 02: Numerical sequences

Prepared by

DR. BEN HANACHI SABRINA

MOHAMED CHERIF MESSAADIA UNIVERSITY -SOUK AHRAS - FACULTY OF SCIENCES AND TECHNOLOGY DEPARTEMENT OF MATHEMATICS

Email: sc. benhanachi@gmail.com

2

Numerical sequences

2.1 General information about numerical sequences

2.1.1 Definition of a numerical sequence

Definition 2.1.1 *A numerical sequence is a function u with:*

$$
u : \mathbb{N} \to \mathbb{R}
$$

$$
n \to u(n) = u_n
$$

The sequences are denoted by v_n, w_n, a_n, f_n

Example 2.1.1

• Let (u_n) *is sequence given by:*

$$
u: \mathbb{N}^* \to \mathbb{R}
$$

$$
n \to u_n = \frac{1}{n}
$$

Calculate u_1, u_2, u_{10} *.*

The answer: To calculate the given terms we will remplace the index n by 1,2 and 10.

$$
u_1 = \frac{1}{1} = 1, u_2 = \frac{1}{2}, u_{10} = \frac{1}{10}
$$

• *Same question for the sequence* (v_n) *defined for any natural number n by:*

$$
v : \mathbb{N} \to \mathbb{R}
$$

$$
n \to v_n = 5^n
$$

The answer: The same previous steps for this example:

$$
v_1 = 5^1 = 5, v_2 = 5^2 = 25, v_{10} = 5^{10}.
$$

2.1.2 Sequence defined by a recurrence relation

Definition 2.1.2 *A sequence is defined by a recurrence relation when it is defined by giving :*

- *its first term.*
- *a relation that allows you to calculate the next term from each term (Express* u_{n+1}) as a function of u_n for any natural number n). This relation is called a recurrence *relation.*

Example 2.1.2

Let (u_n) be the sequence defined by:

$$
\begin{cases} u_0 = 2 \\ u_{n+1} = -2u_n + 3; \quad \forall \ n \in \mathbb{N} \end{cases}
$$

Calculate u_1, u_2 .

The answer: To calculate the given term we will remplace the index *n* by 1,2 in the recurrence relation u_{n+1} .

$$
u_1 = -2u_0 + 3 = -2(-2) + 3 = -1
$$

$$
u_2 = -2u_1 + 3 = -2(-1) + 3 = 5
$$

2.1.3 Sequence defined by an explicit formula

A sequence is defined by an explicit formula when u_n is expressed directly as a function of $n(u_n = f(n))$. In this case, each term can be calculated from its index.

Example 2.1.3

Let $(u_n)_{n\in\mathbb{N}}$ be the sequence defined for any natural number *n* by $u_n = 1 + 3n$.

Calculate u_0, u_1, u_2 and u_{10}

The answer: As we said in this case each term can be calculated from its index

$$
u_0 = 1 + 3(0) = 1
$$

\n
$$
u_1 = 1 + 3(1) = 4
$$

\n
$$
u_2 = 1 + 3(2) = 7
$$

\n
$$
u_{10} = 1 + 3(10) = 31
$$

2.1.4 Direction of variation of a sequence

Definition 2.1.3 *A numerical sequence* $(u_n)_{n \in \mathbb{N}}$ *is:*

- *Strictly increasing if, for all* $n : u_{n+1} u_n > 0$
- *Increasing if, for all* $n : u_{n+1} u_n \geq 0$
- *Strictly decreasing if, for all* $n: u_{n+1} u_n < 0$
- *Decreasing if, for all* $n : u_{n+1} u_n \leq 0$
- *Monotonic if it is increasing or decreasing .*
- *Non-monotonic if it is neither increasing nor decreasing.*
- *Fixed if, for all* $n : u_n = u_{n+1}$

Example 2.1.4 *Study the monotonicity of the following sequences:* $v_n = n, w_n = \frac{1}{n}$ *n*

- *we have* $v_n = n$ *and* $v_{n+1} = n+1$ *, so* $v_{n+1} v_n = 1$ *, therefore* (v_n) *is strictly increasing.*
- $w_n = \frac{1}{n}$ $\frac{1}{n}$ and $w_{n+1} = \frac{1}{n+1}$, so $w_{n+1} - w_n = \frac{-1}{n(n+1)}$, therefore (w_n) is strictly decreasing.

2.1.5 Bounded sequences

Definition 2.1.4 *A numerical sequence* $(u_n)_{n \in \mathbb{N}}$ *is:*

• *Bounded above if, for all n, there exists M such that:*

 $u_n \leq M$

M is an upper bound for (u_n) *.*

• *Bounded below if, for all n, there exists M such that :*

 $u_n \geq M$

M is an lower bound for (u_n) *.*

• *Bounded if it is both bounded above and bounded below.*

Example 2.1.5

 $∀n ∈ ℕ : u_n ≤ 3$, *Here the sequence is bounded from above by 3.* $∀n ∈ ℕ : v_n ≥ 4$, *Here the sequence is bounded from below by 4.*

2.1.6 Convergent sequences

Definition 2.1.5 *we say that a sequence* $(u_n)_{n \in \mathbb{N}}$ *is convergent if it has a unique finite limit.*

$$
\lim_{n \to \infty} u_n = l, \ l \in \mathbb{R}
$$

if $l = +\infty$ *or* $-\infty$ *; in this case* (u_n) *is devergent.*

Proposition 2.1.1 *Let* $(u_n)_{n \in \mathbb{N}}$ *a seqence:*

- *Every convergent sequence is bounded*
- *Every increasing sequence that is bounded above is convergent.*
- *Every decreasing sequence that is bounded below is convergent.*

2.2 Arithmetic sequences

2.2.1 Arithmetic sequence of reason *r*

Definition 2.2.1 *A sequence* (u_n) *is said to be arithmetic if there exists a real number r such that for any integer natural number <i>n*, $u_{n+1} = u_n + r$. The real number *r is called the reason of the sequence.*

$$
u_0, \underbrace{u_1, \underbrace{u_2, \dots, u_3}_{+r}, \dots, \dots, u_n}_{+r}, \underbrace{u_{n+1}}_{+r}
$$

Example 2.2.1

• Let (u_n) be the arithmetic sequence with first term $u_0 = 5$ and reason $r = 4$. Calculate u_1, u_2 , and u_3 .

The answer: We can find each term by adding the reason *r* to the previous term

$$
u_1 = u_0 + r = 5 + 4 = 9
$$

$$
u_2 = u_1 + r = 9 + 4 = 13
$$

$$
u_3 = u_2 + r = 13 + 4 = 17
$$

• Let (u_n) be sequence such that $u_n = 3n+1$, prove that the sequence is an arithmetic sequence.

The answer: We calculate $u_{n+1} - u_n$

$$
u_{n+1} - u_n = 3(n+1) - (3n+1) = 3n+3 - 3n - 1 = 2
$$

so the sequence (u_n) is an arithmetic sequence with $r = 2$.

Proposition 2.2.1 An arithmetic sequence of reason r is increasing if and only if $r > 0$ and decreasing if and only if $r < 0$.

2.2.2 Explicit formula

If (u_n) is an arithmetic sequence of reason *r*, and let u_p is the first item, then for all natural numbers *n* and *p*

$$
u_n = u_p + (n - p)r
$$

• if u_0 the first item then the explicit formula is

$$
u_n = u_0 + nr
$$

• if u_1 the first item then the explicit formula is

$$
u_n = u_1 + (n-1)r
$$

Example 2.2.2

Let (u_n) be the arithmetic sequence with first term $u_0=8$ and reason $r=2$

- For a natural number *n*, give the expression of the sequence (u_n) as a function of *n*.
- Calculate u_1 and u_7 .
- Calculate the term at rank 12.

The answer: We know that for any natural number n: $u_n = u_0 + nr$, so

$$
u_n = 8 + 2n
$$

Calculate u_1 and u_7

$$
u_1 = 8 + 2(1) = 10
$$

$$
u_7 = 8 + 2(7) = 22
$$

2.2.3 Partial sum

The *n*-th partial sum of an arithmetic sequence (u_n) with $u_n = u_p + (n - p)r$ (where u_p is the first item) is given by

$$
s_n = \frac{n-p+1}{2}(u_p + u_n)
$$

We determine the total car production within the first twelve months of production. To this end, we have to determine the partial sum of an arithmetic sequence $S = u_1 + \cdots + u_{12}$,

with $u_1 = 750$ and $r = 20$. we have $u_n = u_p + nr$, so $u_{12} = u_1 + (n-1)20 = 750 + 20(11) =$ 970

$$
s = \frac{12 - 1 + 1}{2}(u_1 + u_{12})
$$

=
$$
\frac{12 - 1 + 1}{2}(970 + 750)
$$

= 10320

the total car production within the first year is equal to 10,320.

2.3 Geometric sequences

2.3.1 Geometric sequences of reason *q*

Definition 2.3.1 *A sequence* (u_n) *is said to be geometric if there exists a real number q such that for any integer natural number n*: $u_{n+1} = u_n \times q$. The real number q is called *the reason of the sequence.*

Example 2.3.1

• Let be (u_n) the geometric sequence with first term $u_0 = 5$ and reason $q = -2$. Cal*culate* u_1, u_2 *and* u_3

The answer:

$$
u_1 = u_0 \times q = 5 \times -2 = -10
$$

$$
u_2 = u_1 \times q = -10 \times -2 = 20
$$

$$
u_3 = u_2 \times q = 20 \times -2 = -40
$$

• Let (u_n) be sequence such that $u_n = 3^n$, prove that the sequence is geometric se*quence.*

The answer: We calculate u_{n+1}

$$
u_{n+1} = 3^{n+1} = 3^n \times 3 = u_n \times 3
$$

so the sequence (u_n) *is a geometric sequence with* $q = 3$ *.*

2.3.2 Explicit formula

Proposition 2.3.1 *If* (u_n) *is a geometric sequence of reason* $q \neq 0$ *, and let* u_p *the first item, for all natural numbers n and p,*

$$
u_n = u_p \times q^{n-p}
$$

• *if u*⁰ *the first item then the explicit formula is*

$$
u_n = u_0 \times q^n
$$

• *if u*¹ *the first item then the explicit formula is*

$$
u_n = u_1 + q^{(n-1)}
$$

Example 2.3.2

Let (u_n) be the geometric sequence with first term $u_0=3$ and reason $q=2$

• Calculate u_1 and u_7

The answer: We know that for any natural number n: $u_n = u_0 \times q^n$, so

$$
u_n = 3 \times 2^n
$$

Calculate u_1 and u_7

$$
u_1 = 3 \times 2^1 = 6
$$

$$
u_7 = 3 \times 2^7 = 384
$$

2.3.3 Partial sum

The *n*-th partial sum of an geometric sequence (u_n) with $u_n = u_p \times q^{(n-p)}$ (where u_p is the first item) is given by

$$
s_n = u_p \left(\frac{1 - q^{n-p+1}}{1 - q} \right)
$$

Example 2.3.3

Consider a geometric sequence with $u_0 = 2$ and $q = \frac{1}{2}$, calculate the partial sum

$$
s = u_0 + \dots + u_5
$$

\n
$$
s_n = u_0 \left(\frac{1 - \left(\frac{1}{2}\right)^{5-0+1}}{1 - \frac{1}{2}} \right)
$$

\n
$$
= 2 \times \left(\frac{1 - \left(\frac{1}{2}\right)^{5-0+1}}{1 - \frac{1}{2}} \right)
$$

The convergence of the geometric sequences depends on the value of the common ratio q :

- If : $-1 < q < 1$, the sequence converges.
- If : $q > 1$, the sequence divergents.
- If : $q\leq -1,$ the sequence divergents.