People's Democratic Republic of Algeria Ministry of Higher Education and Scientific Research

M^{ed} Cherif Messaadia University - Souk ahras

Faculty of Economics, Commerce and Management Sciences

Department of Basic Education

Exercises serie n :02

Exercise 01 :

1/ Determine the first 4 terms of the following sequences:

 $U_n = 2n^2 - n + 3$ and $V_n = \frac{3n+5}{2-3n}$

1.1/ Calculate $U_{n+1} - U_n$, what do you conclude?

2/ Let $(U_n)_{n \in \mathbb{N}}$ the sequence defined by:

$$\begin{bmatrix} u_0 = 1 \\ u_{n+1} = u_n - 7 \end{bmatrix} \quad \forall n \in \mathbb{N}$$

2.1/ Calculate: U₁, U₂, U₃.

2.2/ Calculate $U_{n+1} - U_n$, what do you conclude?

Exercise 02 :

Study the direction of the following sequences:

- $1/U_n = 2n + 1$
- $2/V_n = 5 \times 3^n$

 $3/W_n = 4 \times 3^n + 9$

Exercise 03 :

Let the arithmetic sequence $(U_n)_{n \in \mathbb{N}}$ be defined on \mathbb{N} , with reason r = -2 and the first term $U_0 = 15$.

- 1/ Write U_{n+1} in terme of U_n .
- 2/Write U_n in terme of n.
- 3/ Calculate U_1 , U_{10}
- 4/ Calculate the sum $S_{10} = U_0 + U_1 + \dots + U_{10}$

Exercise 04 :

Let $(U_n)_{n \in \mathbb{N}}$ a geometric sequence such that: $U_1 = \frac{3}{2}$ and $U_4 = \frac{3}{16}$

- 1/ Determine the reason 'q'.
- 2/Write U_n in terme of n.
- 3/ Calculate the sum $S_{15} = U_0 + U_1 + \dots + U_{15}$.

Exercise 05 :

We consider two sequences (U_n) and (V_n) defined for all $n \in \mathbb{N}$ by:

$$U_n = \frac{3 \times 2^n - 4n - 3}{2}, V_n = \frac{3 \times 2^n + 4n - 3}{2},$$

1

Level: 1st year Bachelor degree Section: 1st and 2nd section Subject: Mathematics 01

People's Democratic Republic of Algeria Ministry of Higher Education and Scientific Research

1/Let (W_n) be the sequence defined by $W_n = U_n + V_n$.

Prove that (W_n) is a geometric sequence.

2/ Let (T_n) be the sequence defined by $T_n = U_n - V_n$.

Prove that (T_n) is an arithmetic sequence.

3/ Prove that for all $n \in \mathbb{N}$, $U_n = \frac{W_n + T_n}{2}$.

Exercise 06 :

Let $(U_n)_{n \in \mathbb{N}}$ an arithmetic sequence such that: $U_1 = 3$ and $U_3 = 9$

- 1/ Determine the reason 'r'
- 2/Write U_n in terme of n.
- 3/ Calculate U₅, U₂₀
- 3/ Calculate the sum $S_{20} = U_5 + U_6 + \dots + U_{20}$.