
Chapter 4: PLC Programming Programmable Logic Controller

 Prepared by: Dr. M.C. Amara Korba 43

Chapter IV : PLC Programming
Chapter IV: Programming a PLC .. 44

1. PLC Programming Languages .. 44
1.1. Ladder Diagram (LD) .. 44
1.2. Function Block Diagram (FBD) ... 44
1.3. Sequential Function Chart (SFC) .. 45
1.4. Instruction List (IL) ... 45
1.5. Structured Text (ST) ... 45

Note: In the following sections, we will focus exclusively on Ladder language for Siemens PLCs from
the SIMATIC S7-1200 and 1500 series. .. 45

2. Ladder Language in SIMATIC S7-1200 ... 45
2.1. Basic Combinatorial Operations in Ladder Language .. 46

• Logical 'AND' Function ... 46

• Logical 'OR' Function ... 46

• Logical Negation .. 47
3. Conversion from GRAFCET to Ladder Language (LADDER) ... 47
4. Description of Bitwise Combinatorial Operations .. 49

Chapter 4: PLC Programming Programmable Logic Controller

 Prepared by: Dr. M.C. Amara Korba 44

Chapter IV: Programming a PLC

In this chapter, we will first provide an overview of the different programming languages used for

PLCs. Then, we will briefly introduce the basic concepts of Ladder programming and explain how to

translate a Grafcet into contact language. Additionally, we will define linear and structured

programming under SIMATIC S7 and present the memory zones and variables supported by the

SIMATIC S7-1200. Through various examples provided at the end of this chapter, we will learn to

program Grafcets in Ladder language, use IEC timers, and convert analog signals into numerical

values. An appendix is included at the end of the chapter to describe in detail bitwise combinatorial

operations.

1. PLC Programming Languages

The IEC (International Electrotechnical Commission) officially recognizes five PLC programming
languages as defined in the IEC 61131-3 standard. These languages are categorized into graphical
and textual languages:

Graphical Languages:

• LD: Ladder Diagram (Contact Schematics)

• FBD: Function Block Diagram (Logic Diagrams)

• SFC: Sequential Function Chart (Grafcet)

Textual Languages:

• IL: Instruction List

• ST: Structured Text

Each PLC programming language has its own advantages and disadvantages depending on the task.
The vast majority of industrial automation projects utilize a single language to accomplish the
required task.

1.1. Ladder Diagram (LD)

This is the most popular PLC programming language, designed to replace wired relay control

systems. Ladder languages have limitations, as you can only use predefined blocks. However, you

can program the majority of control systems using Ladder diagrams alone.

1.2. Function Block Diagram (FBD)

The second most popular PLC programming language is the Function Block Diagram. In this
language, program blocks are interconnected to create a complete program. Many commands used
in Ladder logic are also used in FBD, but it is often easier to read and conceptualize.

Chapter 4: PLC Programming Programmable Logic Controller

 Prepared by: Dr. M.C. Amara Korba 45

1.3. Sequential Function Chart (SFC)

The SFC concept is simple: an action block remains active until the transition step below it is

triggered. The transition step contains all the conditions that must be fulfilled for the next block to

activate. For projects with repeatable steps or tasks that can be divided into smaller units, SFC is the

easiest language to implement.

1.4. Instruction List (IL)

This language consists of multiple lines of code, with a single instruction per line. It is read from top

to bottom and left to right. The instruction list is very straightforward, as each line is executed

sequentially. Once you learn the mnemonics (e.g., Load = LD, Start = ST), it becomes an excellent

language for creating compact and efficient code tailored to application needs.

1.5. Structured Text (ST)

Structured Text closely resembles BASIC or C programming. It is ideal for control systems requiring

mathematical computations or complex tasks. Trigonometry, calculations, and data analysis can be

implemented much more easily in this language than in Ladder diagrams.

Note: In the following sections, we will focus exclusively on Ladder language for Siemens PLCs from
the SIMATIC S7-1200 and 1500 series.

2. Ladder Language in SIMATIC S7-1200

This language is well-suited for describing combinatorial functions, creating function blocks, or

programming Grafcets. Its name, "Ladder," comes from the resemblance of its programs to a ladder.

Ladder programs are read from top to bottom, with value evaluation occurring from left to right.

They consist of networks where all the left-hand contacts must be true for the output coils to be

energized. Each input signal is represented by a contact (switch) that is either normally closed or

normally open.

Note: There can only be one coil per network.

Example:

Reading Direction

Chapter 4: PLC Programming Programmable Logic Controller

 Prepared by: Dr. M.C. Amara Korba 46

2.1. Basic Combinatorial Operations in Ladder Language

Combinatorial operations on bits utilize the binary system. For contacts and coils, '1' indicates
activated or energized, while '0' indicates deactivated or de-energized.

Bitwise combinatorial operations evaluate the signal states (1 and 0) and combine them based on
Boolean logic. The result of these combinations is either 1 or 0, referred to as the Logical Result
(LR). Below, we will illustrate some logical equations in Ladder language.

• Logical 'AND' Function

Let I0.0 and I0.1 be two discrete inputs (DI) on a PLC input module, represented by the Boolean
variables ‘a’ and ‘b’, respectively.

Let Q0.2 be a discrete output (DO), represented (renamed) by the Boolean variable ‘R’.

The equation Q = a·b can be expressed in Ladder language through the following graphical
representation:

 I 0.0

 Input (DI) Input Module Address Input adress on Input module

The output Q0.2 is high (coil energized) if and only if I0.0 is high and I0.1 is low. In other words, R =
1 if a = 1 and b = 0.

• Logical 'OR' Function

Let I0.0, I0.1, and I0.2 be three inputs of a PLC, represented by the Boolean variables a, b, and c,

respectively. The output Q0.2 is denoted by the variable R.

Evaluation Direction

≡

𝐚 𝐛ҧ 𝐑

𝐑 = 𝐚 ∙ 𝐛ҧ

Chapter 4: PLC Programming Programmable Logic Controller

 Prepared by: Dr. M.C. Amara Korba 47

The equation R = (a + c) · b̅ is expressed in Ladder language through the following graphical

representation:

The output Q0.0 is active if input I0.0 is high, or if I0.2 is high and I0.1 is low.

• Logical Negation

Let I0.0 and I0.1 be two inputs of a PLC, represented by the Boolean variables a and b, respectively,

and an output Q0.0, renamed c.

The equation 𝐜 = 𝐚 ∙ 𝐛̅̅ ̅̅ ̅̅ is expressed in Ladder language through the following graphical

representation:

3. Conversion from GRAFCET to Ladder Language (LADDER)

In certain cases, it can be useful to translate a GRAFCET into LADDER language. GRAFCET steps can

be viewed as memory functions, each having an activation condition (AC) and a deactivation

condition (DC).

• Activation Condition (AC): A step is activated if the immediately preceding step is active AND

the associated transition condition is satisfied.

• Deactivation Condition (DC): A step is deactivated if the activation condition of the next step is

validated.

The activation and deactivation equations for each step take the following form:

𝐗𝐢 = 𝐂𝐃̅̅ ̅̅ 𝐢 ∙ 𝐗𝐢 + 𝐂𝐀𝐢 (4.1)

𝐑 = (𝐚 + 𝐜) ∙ 𝐛ҧ

𝐜 = 𝐚 ∙ 𝐛̅̅ ̅̅ ̅̅

Chapter 4: PLC Programming Programmable Logic Controller

 Prepared by: Dr. M.C. Amara Korba 48

To fully understand the operation of logical equation (4.1), we have established its truth table.

N°
𝒙𝒊

(Actuel)
𝑪𝑫𝒊 𝑪𝑨𝒊

𝒙𝒊
(Future)

Observation

0

D
é

sa
ct

iv
é

e 0 0 0 0 State of 𝒙𝒊 maintained

1 0 0 1 1 Activation of 𝒙𝒊 : 0 → 1

2 0 1 0 0 State of 𝒙𝒊 maintained

3 0 1 1 1 Activation of 𝒙𝒊 : 0 → 1 (dominant activation condition)

4

A
ct

iv
e

1 0 0 1 State of 𝒙𝒊 maintained

5 1 0 1 1 State of 𝒙𝒊 maintained

6 1 1 0 0 Desactivation of 𝒙𝒊 : 1 → 0

7 1 1 1 1 State of 𝒙𝒊 maintained (Active)

Table 4.1. Truth Table for the Activation/Deactivation Equation of Steps

• When step 𝑥𝑖 is desactivated and both activation and desactivation conditions are simultaneously

true (𝐶𝐷𝑖 = 1 et 𝐶𝐴𝑖 = 1) step 𝑥𝑖 becomes active (𝑥𝑖: 0 → 1).

• When step 𝒙𝒊 is active and both activation and deactivation conditions are simultaneously true

(𝑪𝑫𝒊 = 𝟏 et 𝑪𝑨𝒊 = 𝟏) step 𝒙𝒊 maintains its active state (𝒙𝒊: 𝟏 → 𝟏). This confirms the crossing

rule number 3 (refer to the Grafcet course).

Truth Table of the SR Flip-Flop

𝑸𝒏

(Actuel)

𝑹

𝑺

𝑸𝒏+𝟏

(Future)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 -

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 -

Rule 3: When a step must be simultaneously activated and deactivated, it remains active.

Symbol of the SR Flip-Flop

Chapter 4: PLC Programming Programmable Logic Controller

 Prepared by: Dr. M.C. Amara Korba 49

The output equation of the RS flip-flop can be determined using the Karnaugh map.

𝐐𝐢+𝟏 = �̅� ∙ 𝐐𝐢 + 𝐒 (4.2)

Note: If both inputs are activated simultaneously (S=R=1S = R = 1), this can cause an undefined or

unstable state in the output.

The activation and deactivation equation of each step (4.1) is similar to the output equation of the

SR flip-flop (4.2). The only difference arises during the simultaneous activation of both inputs

(R=S=1R = S = 1). To make the two equations identical, the SR flip-flop can be replaced with an RS1

flip-flop, which forces the flip-flop's output to 1 when both inputs are active simultaneously.

Truth Table of the RS1 Flip-Flop

Representation of a Step Using an RS1 Flip-Flop

4. Description of Bitwise Combinatorial Operations

- Normally Open Contact

Normally
Open

Contact

Operand
type

Description
Memory

Area

Bool

The contact is closed if the operand value equals 1, allowing current to flow
through it. If the operand value equals 0, the contact is open, and no
current flows through it.

I , Q , M ,

D , L

𝑸𝒏

(Actuel)
𝑹 𝑺

𝑸𝒏+𝟏

(Future)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

Truth Table of the RS1 Flip-Flop

Chapter 4: PLC Programming Programmable Logic Controller

 Prepared by: Dr. M.C. Amara Korba 50

- Normally Closed Contact

Normally
Closed

Contact

Operand
type

Description
Memory

Area

Bool

The contact is closed if the operand value equals 0, allowing current to flow
through it. If the operand value equals 1, the contact is open, and no
current flows through it.

I , Q , M ,
D , L

- Assignment

Assignment
Operand

type
Description Memory

Area

Bool

This operation functions like a coil in a relay diagram. If energy reaches
the coil, the operand is set to 1. If energy does not reach the coil, the
operand is set to 0.

I , Q , M ,
D , L

- Negation of Assignment

Assignment
Operand

type
Description Memory

Area

Bool

This operation inverts the logical result and assigns it to the specified
operand. When the coil input equals "1," the operand is set to 0. When the
coil input equals "0," the operand is set to the logical state "1."

I , Q , M ,
D , L

- Invert RLO

Assignment
Operand

type
Description Memory

Area

Bool

Invert the Logical State
When the logical state "1" is present at the input of the instruction, its
output provides the logical state "0." If the logical state is "0" at the input
of the instruction, its output provides the logical state "1."

I , Q , M ,
D , L

- Setting and Resetting a Bit

Setting a Bit

Assignment
Operand

type
Description Memory

Area

Bool

Activate Output
When S (Set) is activated, the operand value is set to 1. When S is not
activated, the operand remains unchanged.

I , Q , M ,
D , L

Resetting a Bit

Assignment
Operand

type
Description Memory

Area

Bool

Deactivate Output
When R (Reset) is activated, the operand value is set to 0. When R is not
activated, the operand remains unchanged.

I , Q , M ,
D , L

- Bascule 'mise à 1/mise à 0'

Assignment Operand
type

Description Memory
Area

Bool

Flip-Flops with Set/Reset
The SR operation is a flip-flop with reset priority, where the reset dominates.

If both the set (S) and reset (R1) signals are true, the operand value will be

0.

I , Q , M ,
D , L

Truth Table of the SR Flip-Flop

Chapter 4: PLC Programming Programmable Logic Controller

 Prepared by: Dr. M.C. Amara Korba 51

S R1 𝐐𝐧+𝟏 operand

1 0 1 1

0 1 0 0

0 0 Qn Qn

1 1 0 0

- Reset/Set Flip-Flop

Assignment Operand
type

Description Memory
Area

Bool

Flip-Flops with Reset/Set:
The RS operation is a flip-flop with set priority, where the set dominates.
If both the set (S1) and reset (R) signals are true, the operand value will
be 1.

I , Q , M ,
D , L

Truth Table of the RS Flip-Flop

S1 R 𝐐𝐧+𝟏 operand

1 0 1 1

0 1 0 0

0 0 Qn Qn

1 1 1 1

- Setting the Operand on Rising Edge of the Signal ---(P)---

Assignment description Memory Area

Setting the Operand on Rising Edge:
When a rising edge is detected, the instruction sets <operand1> to the logical
state "1" for one program cycle. In all other cases, the operand provides the
logical state "0." This instruction compares the current RLO (Result of Logical
Operation) to the previous RLO stored in an edge memory (<operand2>).

operand1 : output

operand2 : input

I , Q , M , D , L

- Setting the Operand on Falling Edge of the Signal ---(N)---

Assignment description Memory Area

Setting the Operand on Falling Edge:
When a falling edge is detected, the instruction sets to the logical state "1" for
one program cycle. In all other cases, the operand provides the logical state "0."
This instruction compares the current RLO (Result of Logical Operation) to the
previous RLO stored in an edge memory ().

operand1 : output

operand2 : input

I , Q , M , D , L

- Detecting Rising Edge of an Operand ---|P|---

Assignment Description Memory Area

Detecting Rising Edge of an Operand:

The instruction detects a change from "0" to "1" in the logical state of <operand1>.

It compares the current logical state of <operand1> with the previous state, stored

in an edge memory (<operand2>). When the instruction detects a change from "0"

to "1," it identifies it as a rising edge.

When a rising edge is detected, the instruction output provides the logical state

"1." In all other cases, the output logical state is "0."

operand1 : Input

operand2 : output

I , Q , M , D , L

Chapter 4: PLC Programming Programmable Logic Controller

 Prepared by: Dr. M.C. Amara Korba 52

- Detecting Falling Edge of an Operand ---|N|---

Assignment description Memory Area

Detecting Falling Edge of an Operand:
The instruction detects a change from "1" to "0" in the logical state of . It
compares the current logical state of with the previous state, stored in an edge
memory (). When the instruction detects a change from "1" to "0," it identifies
it as a falling edge.
When a falling edge is detected, the instruction output provides the logical
state "1." In all other cases, the output logical state is "0."

operand1 : output

operand2 : input

I , Q , M , D , L

