Chapter 9: The PIC16F84 Microcontroller

Table des matieres du chapitre 9

1 Features of the PICLI6F84 MICrOCONTIOIIENccuiiiiieiiieeciee ettt e e st aae e saee e sbae e saneesaeas 2
2 Internal Architecture of the PICLEFA...........ooi ittt et e s e e s sbae e e s saaae e e saraeeessnnneee s 2
3 Description Of the PICLEFBA PiNS ...cccccuviiiieiiiee ettt e scitee s ettt eesite e e e ssete e e s e sabaeeessstaeeessssaeessnnsaeeesnssseeessssenenn 3
POWET SUPPIY PINS coeiiiii ittt ettt ettt ettt sttt e et e e s s st e e e e st ee e e s eabee e e s abeeeeeaabeeeeenbeeeeessbeeeesnsseeessnnsenesennsens 3
] o o PP PP PPPPPPPPTPRR: 3
(1o Yol | 2412 PPN 3
INPUL/OULPUL POIES ..c.uiiiiieieceiiecee sttt et e e e st e st eebeeteesbeestaesaaesabesabeenbeebaesbaessaeeaseesseantaesssesasesasesnbeenteeseessns 4

4 INSErUCLION EXECULION CYCIE c.viiiiiiiie ittt sttt e st e e et e e e sate e e e sabbeeeesasaeeesnsaeaesnnsseeeen 4
(@Yol [T o' = TP 5
Note: All instructions execute in a single cycle, except for branch instructions.cccoeeveeiiiciei e, 5
Program Counter (INSTrUCTION POINTEI) ..oiicuiiiiiieeiie e ciee ettt e e rtee e s e e et e e rrae e sateeessaeesaseesnsaeesnseeennns 5
Data MemOry OrZanizZatiOnuiiiiiiiiiiiieiiitieteeeeeeeeeeeeeeeetereeteereeeettteteeetteta—...—..tt..—.......................—...—.... 6
4.1.1 Overview of Memory Registers in the PICLEF84...........ccuuiiieiiieeeeiiiee ettt e e saaee e 8
4.1.2 Status Register (STATUS) (ADDRESS 031, 83h) ...cccccuiiiiiciiie ettt ettt e e e e e 9
4.1.3 OPTION_REG REGISTER (ADDRESS 81h)ciiiiiiiiiiiiiieiiieeiteeeieessieesteeesieeesveessnaeesneesnneesnseeenees 10
4.1.4 INTCON REGISTER (ADDRESS OBh, 8Bh)uviiiiieiiiiesieeeieeesteeecieeesteesiesesaeessveeeseeeesneeesneeesnneesns 11

5 Fi¥e Lo 1YY [o= 1V, Lo e [T 11
5.1 IMMEAIAtE AQUIESSING...eeieiiiiie ettt et e e e ette e e e e tte e e e eebeeee e e bteeeeebeaeeeasteeeeanseseaeanssenananes 11
5.2 [Tt Yo Lo 1YY o = PSP 12
53 [gTo [T Yot Yo Fo [T T o = U SURUPRUN 12

6 INPUL/OULPUL POIES ..uiiiiiecie ettt cte e ettt e ste e s teeetbeetbeebe e beesbaestsesasesabeeabeenbaebaeasaesabeesbeenseesseessaesasesarennns 12
6.1 [0 2 7 PSPPI 12
6.2 [O] 2 1= T PSPPI 13

7 TIMEROD IMOGUIE ..ottt ettt e e e e e e et a e e e e e e e e e s e tabbaaeeeeeeessabsbbaaeeaeeseasssbaaaeeeaeesannssraasaeeaenn 13
7.1 Operating Modes of the TIMer MOUIEuiiiiieiiiiice e e e s saaee e s 14
7.1.1 (0] Y R @ o TU] =T g 1V, o o [PPSR 14
7.1.2 Timer Mode (Time COUNTEr MOE)uvviieiirieeieireee ettt ettt et e e eetre e e e eetreeeeeetaeeeesareeeestreeeesnns 14
7.1.3 Configuring Operating Modes of the TIMER ModUlE.........cccooviiiiiciiiie et 15

8 Managing INterrupts 0N the PICLEF8Aoov ittt tee e st e e s abae e s s aaae e e s nbae e e e anes 16
8.1 ENnabling Peripheral INtErTUPLS ...uviii ittt e e e sbre e e s sbte e e s ebaeeeesnreeeeeans 16
8.2 Handling an Interrupt by the MicroCoNntroller...........ccueieiiiiie ettt e e 17
8.3 Assembly Program for Handling PICIEF84 INterTUPTS.......ueeeeeiuieieeeiieeeceiiee e et e et e e e evee e e avae e e 18
20T 04 1= T USSR 19
Saving and Restoring Context DUMNG INTEITUPLS......uuiiiii i e e e e e aee s 19

LI USRS 20

8.4 Y LY oY, FoTe L Y W o o 1Y/ o o [USSR 21

9 INSEFUCTION SET ...ttt e e e e e e e bbbt e e e e e e s e s b e bt e e e e e e e e s nnreneeeeeeeeeaannnrneeeas 22
9.1 DY T T 1 =T G o) 4 8 ord o Yo S 22
9.2 AFENMETIC INSEIUCTIONS ...eiiiee ettt et e e e e st e e saae e sate e ebeeesnteeeseeesnseeeneeesnseeans 22
9.3 (oY = Tor= 1INV 1) o o U Tox o T o -3 SR 23
9.4 BranCh INSEIUCTIONS. ... veiiiiiiiee ettt ettt ettt st e st e e sab e e sabe e sbaeesabaesbbeesateesabaeesaseesases 24
9.5 CONLIOL INSTIUCTIONS 1eeiitieiee ittt ettt ettt e s e st e st e e s ba e e sabeesabaeeabeesabaeesabeesasaesnsseesabaesnsseenns 24

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 1

Chapter 9: The PIC16F84 Microcontroller

Chapter 9: PIC16F84 Microcontroller

1 Features of the PIC16F84 Microcontroller

The PIC16F84 is an 8-bit RISC architecture microcontroller. It belongs to the PIC family known as the Mid-Line
series. There are three PIC families:

e Base-Line: Instructions are encoded in 12 bits.
e Mid-Line: Instructions are encoded in 14 bits.
e High-End: Instructions are encoded in 16 bits.

The PIC16F84 is equipped with:

1. An eight-level stack with a width of 13 bits and multiple internal and external interrupt sources.

2. Two separate buses, an instruction bus (14 bits) and a data bus (8 bits), based on the Harvard
architecture.

3. Single-cycle execution for all instructions except branch instructions, which require two cycles.

4. Atwo-stage instruction pipeline allowing all instructions to execute in a single cycle, except for branch
instructions (jumps), which take two cycles.

5. Aninstruction set comprising 35 instructions (reduced instruction set).

6. A maximum external clock frequency of 10 MHz.

7. An 18-pin Dual In-line Package (DIP) form factor.

Table 9.1: General Characteristics of the PIC16F84

Feature PIC16F84 PIC 16CR84

Program memory 1K x 14 bits (flash) 1K x 14 bits (ROM)

Data memory (Byte) 68 x 8 bits 68 x 8 bits
Memory

Data memory of EEPROM 64 64

Stack 8 x 14 bits 8 x 14 bits
Peripherals Timer module Timer 0 Timer 0

Interrupt source 4 4

1/0 pins 13 13
Specifications Operating voltage 2V~ 6V 2V~ eV

Total number of pins 18 18

Number of 1/0 ports PORT A and PORT B PORT A and PORT B
Clock Clock (max) 10 MHz 10 MHz

CR: Refers to a microcontroller where the program memory is of the ROM type.
F: Refers to a microcontroller where the program memory is of the Flash type.

PIC microcontrollers with Flash memory (F) allow the same microcontroller to be used for both prototyping and
production. They are reprogrammable, enabling the code to be updated without removing the microcontroller
from the electronic board.

2 Internal Architecture of the PIC16F84

The PIC16F84 is based on a RISC architecture and employs the Harvard architecture. The microcontroller
features separate address buses for program memory and data memory. This separation allows program and
data memory to have different word sizes. Data words are 8 bits wide, while machine instruction codes are 14
bits wide. The program memory data bus is referred to as the instruction bus.

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 2

Chapter 9: The PIC16F84 Microcontroller

13 DataBus g
Flash/ROM = _Program Counter | EEPROM Data Memory
Program
Memory u

RAM

PIC16FB84/CRB4 0 ; EEPROM
1K x 14 8 Level Stack Fila Registers — EEDATA <> Data Memory
(13-bit) B4 x 8

PIC16F84/CRB4
68 x 8

Program t
Bus | EEADR
Instruction reg
‘ 5 Direct Addr TMRO
IE RA4/TOCKI
8,
Power-up %
! Timer 8 IO Ports
Instruction Oscillator .
Decode & [<—=>| | Start-up Timer /
Control P~ ALU (@@
Wer-on RA3:RAOD
Reset]
Timing Watchdog _ RB7:RB1
Generation [Timer Wreg <::>g
% % é <] reoinT

QSC2/ICLKOUT MCLR vop, Vss
OSC1/CLKIN

Figure 9.1: Internal Architecture of the PIC16F84 Microcontroller

3 Description of the PIC16F84 Pins

L
J | |
RA2 =—»[|s1 18] =—= RA1 220F T | o= 10mnz
RA3 =—=[]2 17[J =— RAO — y T 18 T oscucLin
- f =— OSC2/CLKOUT
RA4/TOCKI =—[]3 =g 16[]<— OSC1/CLKIN Sk P e
e -] <
MCIR—=[]4 @™ 15— OSC2/CLKOUT
iy —le
vss —=[] 5 o 141 =— VoD o—
RBO/INT <—[] 6 6‘3 13[] =—= RB7 Ri
RB1=—[]7 & 12[]=—RB6 — [10k
RB2 <[] 8 11[] = RB5
9 I
RB3 =—=[] 10[] =—= RB4 svV T
Figure 9.2: Pinout of the PIC16F84 Figure 9.3: Reset and Oscillator Circuits for the PIC

Power Supply Pins
Pin 5 and Pin 14 must be connected to the negative and positive terminals of the power supply, respectively.

Reset Pin

This is Pin 14, referred to as MCLR (Master Clear). It is used to reset the PIC program whenever it is held at a
low voltage level (OV).

Clock Pins

Pins 15 and 16 must be connected to the quartz oscillator. The higher the frequency of the quartz used, the
faster the processor operates.

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 3

Chapter 9: The PIC16F84 Microcontroller

Input/Output Ports

The PIC16F84 has 13 GPIO (General Purpose Input/Output) pins distributed across two ports (PORTA and
PORTB). These pins can be independently configured as digital inputs or outputs. Additionally, each pin can
source or sink a maximum current of 25 mA per pin.

The table below describes all the pins of the PIC16F84.

Table 9.2: Description of the PIC16F84 Pins

Pin Name Nu:r:Jer Type Description

OSC1/CLKIN 16 Input External clock source input.

0SC2/CLKOUT 15 Output External clock source output.

MCLR 4 Input (Master Clear) Reset input, active when at a low level.

VSS 5 Power Ground reference (0V).

VDD 14 Power Positive power supply.
PORT A

RAO 17 1/0 Bidirectional: Can be configured as input or output.

RA1 18 1/0 Bidirectional.

RA2 1 1/O Bidirectional.

RA3 2 1/O Bidirectional.

RA4/TOCKI 3 1/O Bidirectional / Can also be selected as the input clock for the TMRO timer/counter.
PORT B

RBO/INT 6 1/O Bidirectional / Can also be selected as the external interrupt pin.

RB1 7 1/O Bidirectional.

RB2 8 1/0 Bidirectional.

RB3 9 1/0 Bidirectional.

RB4 10 1/0 Bidirectional / Interrupt on pin change.

RB5 11 1/0 Bidirectional / Interrupt on pin change.

RB6 12 1/0 Bidirectional / Interrupt on pin change.

RB7 13 1/0 Bidirectional / Interrupt on pin change.

Designation: E: Input, S: Output, A: Power Supply

The pins of Port A and Port B are bidirectional.

4 Instruction Execution Cycle

Each instruction cycle (Tcy) consists of four Q cycles (Q1-Q4). The Q cycle corresponds to the microcontroller's
oscillator cycle (TOSC). The following diagram illustrates the relationship between the Q cycles and the
instruction cycle.
The four Q cycles that make up an instruction cycle (Tcy) can be summarized as follows:

1. Q1: Instruction fetch cycle.

2. Q2: Instruction decode cycle.

3. Q3: Data processing cycle.

4. Q4: Result write cycle.

Each instruction details the specific Q cycle operations for that instruction.

Q1 Q2,03 Q4 ., Q1 ,Q2, Q3,04 ,0Q1,Q2,Q3, Q4 ,

Tey1 Tey2 Tey3

Figure 9.4: Instruction Execution Cycle

PC: The Program Counter, also known as the instruction pointer.

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 4

Chapter 9: The PIC16F84 Microcontroller

Cycle Time
The PIC microcontroller divides the external clock frequency by 4 to obtain the instruction cycle frequency.

_ Fosc
F cycle 4

Tcycle = Tosc X 4

Tos: Oscillator Period (External Clock)

If the oscillator frequency is 10 MHz, its period is calculated as 1/107 s = 0,1 ps = 100 ns.
The cycle time is = 100ns x 4 = 400ns

If the clock frequency is 4 MHz, its period is 1/4-10° s = 250 ns, and the cycle time is 1000ns = 1us.
Note: All instructions execute in a single cycle, except for branch instructions.
Program Memory and Stack Organization

The PIC16FXX has a 13-bit program counter capable of addressing a program memory space of 8K x 14. For the
PIC16F84, The first 1K x 14 (0000h-03FFh). The reset vector is located at 0000h and the interrupt vector is at
0004h.

PC<12:0> |
CALL, RETURN 13
RETFIE, RETLW
Stack Level 1
Stack Level 8
Ny Vecteur d'interruption Reset 0000h
™
a Vecteur d'interruption périphérique | 0004h
®
]
5 :
Q
=
Q
E
b]
£
Q
o
o
[=3
0
L]
A 3FFh
1FFFh

YT

Figure 9.5: Organization of Program Memory and the Stack

Program Counter (Instruction Pointer)

The program counter (PC) is 13 bits wide. The low byte of the PC is the PCL register, which is both readable and
writable. The high byte of the PC (PC<12:8>) is not directly readable or writable and is derived from the PCLATH
register.

The PCLATH register (PC latch high) acts as a holding register for PC<12:8>. The contents of PCLATH are
transferred to the high byte of the program counter whenever the PC is loaded with a new value. This occurs
during a CALL, GOTO, or a write to the PCL register. The high bits of the PC are loaded from PCLATH, as illustrated
in the figure below.

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 5

The PIC16F84 Microcontroller

Chapter 9:
PCH PCL
12 8 7 0
pc‘ ‘ ‘ INST with PCL
A as dest
' PCLATH<4:0> 8
5 H=“ ALU result
LI LT[
PCLATH
PCH PCL
12 1110 8 7 0
PC‘ : ‘ GOTO, CALL
2% PCLATH<4:3> ‘@ 11
Opcode <10:0>
LIT T T ITT]
PCLATH

Figure 9.6: Loading the Program Counter (PC) in Different Situations

Data Memory Organization

The data memory is divided into two areas (see figure below). The first area consists of Special Function
Registers (SFRs), which control the microcontroller's operation. The second area consists of General Purpose

Registers (GPRs), used for general storage.

The data memory is organized into two banks containing both the general-purpose registers and the special
function registers. Bank selection requires the use of control bits located in the STATUS register.

Bank selection is managed using the PRO and PR1 bits in the STATUS register.
e Bank 0 is selected by setting PRO = 0 and PR1 =0 in the STATUS register.
e Bank 1 is selected by setting PRO =1 and PR1 =0 in the STATUS register.

Prepared by: Pr. M.C. Amara Korba

Academic Year 2023/2024

Chapter 9:

The PIC16F84 Microcontroller

File Address File Address
00h | Indirect addr." | Indirect addr.!" | 80n
01h TMRO OPTION 81h
02h PCL PCL 82h
03h STATUS STATUS 83h
04h FSR FSR 84h
05h PORTA TRISA 85h
06h PORTB TRISB 86h
07h 87h
08h EEDATA EECON1 88h
09h EEADR EECON2(T) 89h
0Ah PCLATH PCLATH 8Ah
0Bh INTCON INTCON 8Bh
OCh 8Ch

68
gﬁr%%?é (ahggggsegsh
reqisters in Bank 0
(SRAM)
4Fh CFh
50h DOh
—
™
7Fh ‘ FFh
Bank D Bank 1
Figure 9.7. Organization of Program and Data Memory

|:| : Unused memory area, read as '0".
(1) : The indirect address does not physically exist.

Prepared by: Pr. M.C. Amara Korba

Academic Year 2023/2024

Chapter 9: The PIC16F84 Microcontroller

4.1.1 Overview of Memory Registers in the PIC16F84

Value on Value on all

Address | Name Bit7 Bit 6 BitS Bit 4 Bit3 Bit 2 Bit1 BEit 0 Power-on other resets
Reset {Note3)
Bank 0

00h INDF Uses contents of FSR to address data memory (not a physical register)
Mh TMRO B-bit real-time clockicounter HEMH KEXX | uUUuu uuauu
02h FCL Low order 8 bits of the Program Counter (PC) agon 0ooo | 0000 0000
03h status @ | rp ‘ RP1 ‘ RPO | ™ I PG ‘ z ‘ DC | c 0001 1xxx | 000G quuu
0dh F3R Indirect data memory address pointer 0 KHHA HEXK | uuuu uuuu
05k FORTA — — — RALTOCKI RA3 RAZ RA1 RAQ - oMmHE | ---uouuudu
08h PORTE RB7 REG RES RE4 RE3 RB2 RE1 RBO/NT | socex sooex | uuuu uuuy
07k Unimplemented location, read as "0 e
Dah EEDATA, EEFROM data ragister UMK HENK RE AR R N1 B AR E]
0gh EEADR EEFROM address register MM MMM | uUuu uuaun
0Ah PCLATH — —_ — Write buffer for upper 5 bits of the PC o ---0 0000 | ---0 0000
0Bh INTCON GIE EEIE TOIE INTE | REIE | TOIF | INTF | RBIF | 0000 000x | Q00D 000u
Bank 1
&0h INDF Uses contents of FSR 1o address data memeory (not a physical register) | === === | -oon --o-
g1h EEQON— RBFU | INTEDG | TOCS TOSE PSA PS2 PS1 pgo | TP it 1iiloaial
82h PCL Low order 8 bits of Program Counter (PC} agoo 0000 | 0000 0000
8ah status @ | rP ‘ RP1 { RPO | ™ I PO ‘ z J De | c 0001 1xxx | 000G quuu
84h FSR Indirect data memory address pointer 0 XHMM MK | Uuuu uuuu
85h TRISA — | — | — | PORTAdata direction register -e1 1111 ---1 1111
B6h TRISE FORTE data direction register 1111 1111 | 1111 1111
&7h Unimplemented location, read as ‘0’ T
8ah EECON1 — |] [= | EEIF] WRERR| WREN] WR | RD ---0 x000 | ---D gooo
89h EECOM2 EEPROM control register 2 (not a physical register) B el L
0Ah PCLATH — — — Write buffer for upper 5 bils of the PC Y ---0 0000 ---0 0000
OBh INTCON GIE EEIE TOIE INTE | REIE | TOIF | INTF | RBIF | 0000 000x | 0000 00Du

Legend: x = unknown, u = unchanged. - = unimplemented read as '0', g = value depends on candition.

Mote 1: The upper byte of the program counter is not directly accessible. PCLATH is a slave register for PC<12:8>. The contents
of PCLATH can be transferred to the upper byte of the program counter, but the contents of PC<12:8= is never trans-
ferred to PCLATH.

2: The TO and PD status bits in the STATUS register are not affected by a MCLR reset.
3: Other {non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset,

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 8

Chapter 9: The PIC16F84 Microcontroller

4.1.2 Status Register (STATUS) (ADDRESS 03h, 83h)

The status register, known as STATUS, located at address 03h in bank 0, contains the status of certain operations
performed by the processor (C, DC, and Z). Additionally, the TO and PD bits are read-only. The PRO and PR1 bits
are used to select data banks in the data memory.

The STATUS register has a copy in bank 1 at address 83h.

R/W-0 R/W-0 R/W-0 R-1 R-1 R/W-x RMWW-x R/W-x
[R | Rr1 | RPo | T0 | PO | z | bc | ¢ | [|R=Readablebit
bit7 bito | W = Writable bit
U = Unimplemented bit,
read as'0’

- n =Value at POR reset

bit7: IRP: Register Bank Select bit (used for indirect addressing)
0 = Bank 0, 1 (00h - FFh)
1 =Bank 2, 3 (100h - 1FFh)
The IRP bit is not used by the PIC16F8X. IRP should be maintained clear.

bit 6-5: RP1:RPO0: Register Bank Select bits (used for direct addressing)

00 = Bank 0 (00h - 7Fh)

01 = Bank 1 (80h - FFh)

10 = Bank 2 (100h - 17Fh)

11 = Bank 3 (180h - 1FFh)

Each bank is 128 bytes. Only bit RPO is used by the PIC16F8X. RP1 should be maintained clear.
bit 4; TO: Time-out bit

1 = After power-up, CLRWDT instruction, or SLEEP instruction

0 = AWDT time-out occurred

bit 3: PD: Power-down bit
1 = After power-up or by the CLRWDT instruction
0 = By execution of the SLEEP instruction

bit 2. Z: Zero bit
1 = The result of an arithmetic or logic operation is zero
0 = The result of an arithmetic or logic operation is not zero

bit 1: DC: Digit carry/borrow bit (for ADDWF and ADDLW instructions) (For borrow the polarity is reversed)
1 = A carry-out from the 4th low order bit of the result occurred
0 = No carry-out from the 4th low order bit of the result

bit 0: C: Carry/borrow bit (for ADDWF and EDDLW instructions)
1 = A carry-out from the most significant bit of the result occurred
0 = No carry-out from the most significant bit of the result occurred
Note:For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of
the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low
order bit of the source register.

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 9

Chapter 9: The PIC16F84 Microcontroller

4.1.3 OPTION_REG REGISTER (ADDRESS 81h)

The OPTION_REG register is a readable and writable register which contains various control bits to configure
the TMRO/WDT prescaler, the external INT interrupt, TMRO, and the weak pull-ups on PORTB.

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 RW-1 R/W-1

| RBPU |INTEDG | Tocs | ToSE | PSA | Ps2 | Pst | Ps0o | [R =Readable bit
bit7 bito |W =Writable bit
U = Unimplemented bit,
read as ‘0’
-n =Value at POR reset

bit 7: RBPU: PORTB Pull-up Enable bit
1 = PORTB pull-ups are disabled
0 = PORTB pull-ups are enabled (by individual port latch values)

bit 6: INTEDG: Interrupt Edge Select bit
1 = Interrupt on rising edge of RBO/INT pin
0 = Interrupt on falling edge of RBO/INT pin

bit 5: TOCS: TMRO Clock Source Select bit
1 =Transition on RA4/TOCKI pin
0 = Internal instruction cycle clock (CLKOUT)

bit 4: TOSE: TMRO Source Edge Select bit
1 = Increment on high-to-low transition on RA4/TOCKI pin
0 = Increment on low-to-high transition on RA4/TOCKI pin

bit 3: PSA: Prescaler Assignment bit
1 = Prescaler assigned to the WDT
0 = Prescaler assigned to TMRO

bit 2-0: PS2:PS0: Prescaler Rate Select bits
BitValue TMRO Rate WDT Rate

000 1:2 1:1
001 1:4 1:2
010 1:8 1:4
011 1:16 1:8
100 1-32 1:16
101 1:64 1:32
110 1:128 1:64
111 1256 1:128

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 10

Chapter 9: The PIC16F84 Microcontroller

4.1.4 INTCON REGISTER (ADDRESS 0Bh, 8Bh)

The INTCON register is a readable and writable register which contains the various enable bits for all interrupt
sources.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RM-x

GIE EEIE TOIE INTE RBIE TOIF INTF RBIF R = Readable bit
hit7 bito |W = Writable bit
U = Unimplemented bit,
read as ‘0’
- n =Value at POR reset

bit 7: GIE: Global Interrupt Enable bit
1 = Enables all un-masked interrupts
0 = Disables all interrupts

Note: For the operation of the interrupt structure, please refer to Section 8.5.

bit 6: EEIE: EE Write Complete Interrupt Enable bit
1 = Enables the EE write complete interrupt
0 = Disables the EE write complete interrupt

bit 5: TOIE: TMRO Overflow Interrupt Enable bit
1 = Enables the TMRO interrupt
0 = Disables the TMRO interrupt

bit 4;: INTE: RBO/INT Interrupt Enable bit
1 = Enables the RBO/INT interrupt
0 = Disables the RBO/INT interrupt

bit 3: RBIE: RB Port Change Interrupt Enable bit
1 = Enables the RB port change interrupt
0 = Disables the RB port change interrupt

bit 22 TOIF: TMRO overflow interrupt flag bit
1 =TMRO has overflowed (must be cleared in software)
0 = TMRO did not overflow

bit 1: INTF: RBO/INT Interrupt Flag bit
1 =The RBO/INT interrupt occurred
0 =The RBO/INT interrupt did not occur

bit 0: RBIF: RB Port Change Interrupt Flag bit
1 =When at least one of the RB7:RB4 pins changed state (must be cleared in software)
0 = None of the RB7:RB4 pins have changed state

5 Addressing Modes
Data transfer instructions allow the following operations:
e Move an immediate value (L) to the accumulator (W), using the instruction MOVLW.

e Move the contents of the accumulator (W) to a memory location, using the instruction MOVWF.
e Move a memory location value to the accumulator (W), using the instruction MOVFW.

The entire data memory is accessible either directly, using the direct address of each memory register, or
indirectly, via the File Select Register (FSR). Indirect addressing uses the current values of the RP1:RPO0 bits in
the status register to access the banked areas of data memory.

5.1 Immediate Addressing

The operand appears directly in the instruction and is a constant value (also referred to as a Literal in English).
Example: MOVLW 0XC4 ; This instruction loads the accumulator W (working register) with the hexadecimal
value C4H.

Note: The PIC16F84 microcontroller only handles 8-bit data.

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 11

Chapter 9: The PIC16F84 Microcontroller

5.2 Direct Addressing

In direct addressing, the desired memory bank (bank 0 or bank 1) must first be selected, followed by specifying
the memory address for the instruction to execute.
Example:

BCF STATUS,5 ;Select bank 0 (RP1=0and RP0O=0)
MOVF 0X6,0 ;Load the content of memory register at address 6H into W.

In this case, address 06H corresponds to the PORTB register in the data memory.

5.3 Indirect Addressing

The INDF register is not a physical register. It contains the content of the memory location pointed to by the
FSR register. The FSR register is a memory pointer that holds the address of the memory register.

Example:

The memory register OCH contains the value 22H, and the memory register ODH contains the value 33H. Both
belong to bank 0.

BCF STATUS,5 ;Select bankO
BCF STATUS, 6

MOVLW 0X0C ; Initialize the pointer

MOVWEF FSR ; FSR is the memory pointer, now contains OCH

MOVF INDF,0 ;Transfer the content of memory register at OCH into W (W=22H)
INCF FSR ; Increment FSR: FSR < FSR + 1, so FSR = ODH

MOVF INDF,0 ;Transfer the content of memory register at ODH into W (W=33H)

6 Input/Output Ports

The PIC16F84 has two input/output ports: PORTA and PORTB, referred to as PortA and PortB. Output values
on the ports are stored in memory, while values read from the ports are not stored.

Setting a pin n of the PORT to '1' in output mode corresponds to a voltage of 5V on pin n.

6.1 PORTA

PORTA has 5 bidirectional input/output pins. The PORTA register, located at address 05h in bank 0, can be
configured for input (read) or output (write). Each bit in this register corresponds to one pin.

Table 9.3: Overview of Registers Associated with PORTA Operations

Address | Name Bit7 | Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit 0
BANKO | 05h PORTA — — — |RA4/TOCKI| RA3 RA2 | RA1 | RAO
BANK1 | 85h TRISA — — — TRISA4 | TRISA3| TRISA2 |TRISA1] TRISAQ

The TRISA register, located at address 85h in bank 1, allows selecting the direction of each pin (input or
output):

e Each bit set to 1 in TRISA configures the corresponding pin as an input.
e Each bit set to 0 in TRISA configures the corresponding pin as an output.

The RA4 pin can also serve as a counting input for timer0.

Example:
To configure all PORTA pins as inputs, load the value FFH into the TRISA register:

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 12

Chapter 9: The PIC16F84 Microcontroller

BSF STATUS, RPO ; Select Bank 1
MOVLW OxFF ; W <& FFH
MOVWEF TRISA ; TRISA & W

If you want to configure RAO and RA1 as inputs, RA2 and RA3 as outputs, and RA4 as an input:

BCF STATUS, RPO ; Select Bank 0, as PORTA is located in Bank 0.

CLRF PORTA ; Initialize PORTA pins as outputs with '0".

BSF STATUS, RPO ; Select Bank 1 to configure the pin directions.

MOVLW B'00010011' ; Configure RA<1:0> as input, RA<3:2> as output, and RA4 as input.
MOVWEF TRISA ; TRISA < W

6.2 PORTB

PORTB has 8 bidirectional input/output pins. The PORTB register, located at address 06h in bank 0, can be
configured for input (read) or output (write). Each bit in this register corresponds to one pin.

Table 9.4: Overview of Registers Associated with PORTB Operations

Address | Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
BANKO| 06h PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RBO
BANK1| 86h TRISB TRISB7 | TRISB6 TRISBS TRISB4 TRISB3 TRISB2 | TRISB1 [TRISBO
BANK1| 81h OPTION_REG | RBPU | INTEDG | TOCS TOSE PSA Ps2 Ps1 PSO

The TRISB register, located at address 86h in bank 1, is used to select the direction of each pin (input or
output):

e Each bit set to 1 in TRISB configures the corresponding pin as an input.
e Each bit set to 0 in TRISB configures the corresponding pin as an output.

Example:

BCF STATUS, RPO ; Select Bank 0O, as the PORTB register is located in Bank O.

CLRF PORTB ; Initialize PORTB.

BSF STATUS, RPO ; Select Bank 1.

MOVLW B'11001111" ; Value used to initialize the direction of PORTB.

MOVWEF TRISB ; Configure RB<3:0> as input, RB<5:4> as output, and RB<7:6> as input.

7 TIMERO Module

The PIC16F84 features a single 8-bit Timer module, unlike other PIC microcontrollers in the same mid-range
family, such as the PIC16F877, which includes three timers (see the previous chapter). The primary function of
the Timer is counting (essentially acting as a counter).

The table below summarizes the registers associated with the operation of the TIMERO module.

Table 9.5: Overview of Registers Associated with TIMERO Operations

Address | Name Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0
01h TMRO
0Bh INTCON GIE EEIE TOIE INTE RBIE TOIF INTF RBIF
81h OPTION_REG | RBPU | INTEDG | TOCS TOSE PSA PsS2 Ps1 PSO
85h TRISA — — — TRISA4 TRISA3 | TRISA2 | TRISA1 | TRISAO

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 13

Chapter 9: The PIC16F84 Microcontroller

Note: The bits in red are associated with the operation of the TIMER.
7.1 Operating Modes of the Timer Module

The Timer module has two operating modes: timer mode or counter mode. The selection between these
modes is made using bit 5 of the OPTION_REG register, called TOCS (Timer0 Clock Source Select bit):

e TOCS = 0: Operates in timer mode.
e TOCS = 1: Operates in counter mode.

7.1.1 Pulse Counter Mode

In this mode, the Timer counts pulses received on the RA4/TOKI pin. Since the TMRO register is an 8-bit
memory register, it can count up to 255 pulses. If this value is exceeded, it resets to 0. Reading the TMRO
register provides the number of pulses received on the RA4/TOKI pin.

In this mode, you can specify whether the counting occurs on the rising or falling edge of the pulse. This is
determined by bit 4 of the OPTION_REG register, called TOSE (Timer0 Source Edge Select bit):

e TOSE = 0: Counting occurs on the rising edge, when the input (RA4/TOKI) transitions from 0 to 1.
e TOSE = 1: Counting occurs on the falling edge, when the input (RA4/TOKI) transitions from 1 to 0.

7.1.2 Timer Mode (Time Counter Mode)

In this mode, the Timer counts the PIC's clock cycles, effectively measuring time. When the TMRO register
overflows (i.e., transitions from FFH to 00H), the TOIF flag in the INTCON register is set to 1.

Overflow detection can be done in two ways:

e Polling: The program checks the TOIF bit to detect the overflow of TMRO.

e Interrupt: The timer interrupt can be enabled by setting the TOIE bit (TMRO Overflow Interrupt Enable) to 1.
When TOIF is set to 1, the interrupt occurs. The TOIF bit must be cleared by the TimerQ interrupt service

routine before re-enabling this interrupt.

Note: The TMRO interrupt cannot wake the processor from sleep mode, as the Timer stops functioning in
sleep mode.

Example of polling:

CLRF TMRO ; Start counting after 2 cycles

BCF INTCON, TOIF ; Clear the overflow flag

loop:

BTFSS INTCON, TOIF ; Test if the counter has overflowed
GOTO loop ; No, wait for overflow

XXX ; Continue the program

Suppose you want to wait for 100 increments. In this case, load TMRO with a value such that the overflow
occurs after 100 increments.

Example:

MOVLW 156 ; Load 156

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 14

Chapter 9: The PIC16F84 Microcontroller

MOVWF TMRO ; Initialize TMRO

BCF INTCON, TOIF ; Clear the flag

loop:

BTFSS INTCON, TOIF ; Test if the counter has overflowed
GOTO loop ; No, wait for overflow

XXX ; Yes, proceed: 100 events elapsed (256-156=100)

7.1.3 Configuring Operating Modes of the TIMER Module

The figure below shows the functional block diagram of Timer 0.

Data bus
Fosc/d 0 PSout 8
' 1
Sync with
Dﬁ 1 Internal | ——| TMRO register
RA4/TOCKI Programmable | | o clocks | bsout
pin Prescaler
TOSE (2 cycle delay)
s _
Set bit TOIF
PS2, PS1,PS0 PSA on Overflow
TOCS

Figure 9.8: Functional Block Diagram of Timer0O

The timer mode is selected by setting the TOCS bit to O (located in the OPTION_REG). In timer mode, the
TMRO register increments with each clock cycle (without a prescaler).

The counter mode is selected by setting the TOCS bit to 1. In this mode, the TMRO register increments on each
rising or falling edge of the RA4/TOCKI pin. The edge for incrementing is determined by the TOSE bit in the
OPTION_REG register:

e TOSE = 0: TMRO increments on the rising edge.
e TOSE = 1: TMRO increments on the falling edge.

The prescaler is shared between the Timer0 module and the Watchdog Timer (WDT). The assignment of the
prescaler is programmatically controlled by the PSA control bit in OPTION_REG<3>:

e PSA =0:The prescaler is assigned to TimerO.
e PSA =1:The prescaler is assigned to the Watchdog Timer (WDT).

The prescaler rate is determined by the table below:

PS2 PS1 PSO TMRO Division WDT Division
Rate Rate
000 1:2 1:1
001 1:4 1:2
010 1:8 1:4
011 1:16 1:8
100 1:32 1:16
101 1:64 1:32
110 1:128 1:64
111 1:256 1:128

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 15

Chapter 9: The PIC16F84 Microcontroller

Example:
Suppose the external clock frequency is 4 MHz (the oscillator is equipped with a 4 MHz quartz crystal). In this
case, the internal cycle frequency is:

Fo 4-10°
cycle 4 4

F =1MHz.

Thus, the internal cycle period is: Toyae= LS,
If we use Timer0 in its timer function and in interrupt mode, an interrupt will occur every 256s.

If we want to blink an LED at a frequency of 1Hz, we need a delay of 500ms. To achieve this, we can use a
prescaler to slow down the TimerQ's time base.

e The prescaler allows the Timer0 register to increment more slowly, thereby increasing the time required to
generate an interrupt.

%: 500ms= 500x 1000= 500000 us

8 Managing Interrupts on the PIC16F84

The PIC16F84 has four possible interrupt sources. The events that can trigger an interrupt are as follows:

¢ RBO/INT: An interrupt can be generated when the RBO pin (also called the INTerrupt pin), configured as an
input, detects a change in the applied signal level.

e TMRO: The TIMERO module can generate an interrupt when the TMRO register overflows (i.e., when its
content transitions from FFH to O0H).

e PORTB: An interrupt can be generated when there is a change in the signal level on any of the RB4 to RB7
pins. The interrupt will be effective for all four pins collectively or none at all.

e EEPROM: This interrupt can be generated when a write operation to an internal EEPROM cell is completed.

8.1 Enabling Peripheral Interrupts
To enable one or more interrupts, you must first allow interrupts globally by setting the GIE (Global Interrupt
Enable) bit in INTCON<7> to 1. Then, enable only the specific interrupts of interest by setting their

corresponding enable bits to 1.

When a peripheral requests an interrupt, the processor invokes the appropriate Interrupt Service Routine
(ISR) to determine how to handle the interrupt.

Reveille le processeur

TOIF [(s'il est en mode SLEEP)

TOIE

INTF
INTE

RBEIF
RBIE —

m interruption vers le processeur

EEIF EEPROM
EEIE —

Global INT enable
GIE

Figure 9.9: Interrupt Management Diagram of the PIC16F84

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 16

Chapter 9: The PIC16F84 Microcontroller

o INTE bit (INTCON<4>): Enables the interrupt on the RBO/INT pin.

e RBIE bit (INTCON<3>): Enables the "RB" interrupt.

e TOIE bit (INTCON<5>): Enables the Timer0 interrupt.

e EEIE bit (INTCON<6>): Enables the interrupt triggered at the end of an EEPROM write operation.

Before enabling an interrupt, the flag that indicates the occurrence of the interrupt must be cleared (set to 0):

e INTF bit (INTCON<1>): Signals an interrupt on the RBO/INT pin.

e RBIF bit (INTCON<0>): Signals an interrupt on pins RB4..7.

e TOIF bit (INTCON<2>): Signals the Timer0 interrupt.

e EEIF bit (EECON1<4>): Signals the end of an EEPROM write operation.

7 6 5 4 3 2 1 0
INTCON Register (Bank0) | GIE | EEIE | TOIE | INTE | RBIE | TOIF | INTF | RBIF |

7 6 5 4 3 2 1 0
EECON1 Register (Bank1) | - | - | - [EEIF [WRERR | WREN | WR [RD |

Figure 9.10: Register Responsible for Interrupt Management in the PIC16F84
8.2 Handling an Interrupt by the Microcontroller
When an interrupt occurs, the main program is interrupted as follows:

1. The processor completes the execution of the current instruction in the main program and pushes the
Program Counter (PC) value onto the stack.

2. The processor jumps to address 0004H in the program memory (the interrupt vector is located at

address H'0004').

The programmer must save the STATUS and W registers into temporary registers in RAM.

The program calls the interrupt subroutine (ISR) using the CALL instruction.

Once the ISR is completed, the programmer must clear the flag that signaled the interrupt.

The programmer must restore the STATUS and W registers from RAM.

The programmer signals the end of the interrupt using the RETFIE (Return from Interrupt) instruction.

When this instruction is executed, the PC register content is restored from the stack, and the

microcontroller resumes execution of the program it had interrupted.

Nousw

The figure below illustrates the various steps involved in executing an interrupt subroutine.

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 17

Chapter 9: The PIC16F84 Microcontroller

Charger PCdans la piIeJ—+
Routine d'interruption
programme principal ORG '0004H"

Sauvegarde des
registres STATUS et W

|l .¢— Effectué par le programmeur

Oul

tester si

interruption TIMER 0

Instruction en cours — —h Interruption
Prochaine Instruction

tester si oul

interruption RBO

O,

tester si
interruption RB4:RB7

oul

testersi ¥ ¥

Y

interruption EEPROM
ISR de ISR de ISR de ISR de
NON EEPROM RB4..7 RBO/INT TIMERO
¥ Y Y ¥
| EEIF <0 | | RBIF <0 | | INTF <0 TOIF <0 |
[|
¥
rezzii::r::gﬂsd:sw |¢— Effectué par le programmeur
@ RETFIE
retour de la routine
d'interruption
Charger PC depuis la pile
Figure 9.11: Flowchart for Interrupt Handling in the PIC16F84

8.3 Assembly Program for Handling PIC16F84 Interrupts
ORG 0x004 ; Interrupt vector address
; Save W and STATUS registers

MOVWF W_TEMP ; Save W register

SWAPF STATUS, W ; Swap STATUS into W

MOVWEF STATUS_TEMP ; Save swapped STATUS
; CHECK TIMER O INTERRUPT

BTFSC INTCON, TOIE ; Check if Timer0 interrupt is enabled

BTFSS INTCON, TOIF ; If yes, check if TimerQ interrupt is active

GOTO test RBO ; No, go to the next test

CALL ISR_TIMERO ; Yes, handle Timer0 interrupt

BCF INTCON, TOIF ; Clear TimerQ interrupt flag

GOTO restore_registre ; End of interrupt
; CHECK RBO INTERRUPT
test_RBO

BTFSC INTCON, INTE ; Check if RBO interrupt is enabled

BTFSS INTCON, INTF ; If yes, check if RBO interrupt is active

18

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024

Chapter 9:

The PIC16F84 Microcontroller

GOTO test_ RB4_RB7 ; No, go to the next test
CALLISR_RBO ; Yes, handle RBO interrupt
BCF INTCON, INTF ; Clear RBO interrupt flag
GOTO restore_registre ; End of interrupt

; CHECK RB4..RB7 INTERRUPT

test_ RB4_RB7
BTFSC INTCON, RBIE ; Check if RB4..RB7 interrupt is enabled
BTFSS INTCON, RBIF ; If yes, check if RB4..RB7 interrupt is active
GOTO test_ EEPROM ; No, go to the next test
CALLISR_RB4_7 ;Yes, handle RB4..RB7 interrupt
BCF INTCON, RBIF ; Clear RB4..RB7 interrupt flag
GOTO restore_registre ; End of interrupt

; CHECK EEPROM WRITE COMPLETION INTERRUPT

test_ EEPROM
BSF STATUS, RPO ; Switch to Bank 1
BTFSC INTCON, EEIE ; Check if EEPROM interrupt is enabled
BTFSS EECON1, EEIF ; If yes, check if EEPROM interrupt is active
GOTO restore_registre ; Restore registers
CALL ISR_EEPROM ; Handle EEPROM interrupt

restore_registre
SWAPF STATUS_TEMP, W ; Restore old STATUS into W
MOVWEF STATUS ; Restore STATUS
SWAPFW_TEMP, F ; Restore W register
SWAPFW_TEMP, W
RETFIE ; Return from interrupt

; INTERRUPT SERVICE ROUTINES FOR EACH PERIPHERAL
ISR_TIMERO

RETURN ; End of TimerO0 interrupt
ISR_RBO

RETURN ; End of RBO/INT interrupt
ISR_RB4_7

RETURN ; End of RB4..RB7 interrupt
ISR_EEPROM

BCF EECON1, EEIF ; Clear EEPROM interrupt flag
BCF STATUS, RPO ; Switch to Bank 0
RETURN ; End of EEPROM interrupt

Remarks

e Aninterrupt cannot interrupt another interrupt routine.

e If another interrupt occurs during the execution of an interrupt routine, it is ignored and will only be
handled after the current routine finishes, when the microcontroller resumes the main program.

Saving and Restoring Context During Interrupts

When an interrupt subroutine is called, only the Program Counter (PC) value is saved on the stack. It is
essential to save the content of the W accumulator and the STATUS register before executing the tasks in the

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024

19

Chapter 9: The PIC16F84 Microcontroller

Interrupt Service Routine (ISR). After executing the ISR, the W and STATUS registers must be restored. The
tasks can be outlined as follows:

Store the W register into W_TEMP.

Store the STATUS register into STATUS_TEMP.
Execute the interrupt service routine code.
Restore the STATUS register.

Restore the W register.

Uk wNRE

Example: Assembly program for saving the STATUS and W registers in RAM.

MOVWF W_TEMP ; Save W into W_TEMP
SWAPF STATUS, W ; Swap STATUS into W
MOVWEF STATUS_TEMP ; Save STATUS into STATUS_TEMP

; Perform interrupt service tasks
SWAPF STATUS TEMP, W ; Swap STATUS_TEMP into W
MOVWEF STATUS ; Restore W into STATUS

SWAPF W_TEMP, F ; Swap W_TEMP with itself
SWAPF W_TEMP, W ; Restore W register

Note: The SWAP instruction is used because it performs the transfer without affecting the flags in the STATUS
register.

Exercise 1:

C1
ligec |
F U1 D2
II_0 o7 R 16 17 R1
11 AP un CRYSTAL 12— OSC1/CLKIN RAO [—=
1 = 0SC2/CLKOUT RA1 [—= 300
RAZ |
HAIF 2| ieIR RA3 —g
RA4/TOCK] fmim
RBO/INT ?
R3 RB1 [——
RB2 [——
10k RB3 [—= L]
RB4 [
RB5 [—o
RB6 [—=
RB7 |—= R2
PIC16FB4A 10k &

Figure 9.12: Circuit Diagram

The circuit above contains a push button connected to the RBO pin of the PIC16F84 and an LED connected to
the RAO pin.
Task:

Write a program to turn on the LED when the button is pressed.
Solution for Exercise 1:
First, configure the direction of the microcontroller pins:
e RBOasinput.
e RAO as output.
LIST p=16F84A ; Processor definition
#include <p16F84A.inc> ; Constant definitions

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 20

Chapter 9: The PIC16F84 Microcontroller

__CONFIG _CP_OFF & WDT_OFF & PWRTE_ON & _HS_OSC

; ASSIGNMENTS

OPTIONVAL EQU H'0000" ; Option register value

#DEFINE led PORTA,0 ; LED
#DEFINE bouton PORTB,0 ; Push button

’

; PROGRAM VARIABLE DECLARATIONS

CBLOCK 0x00C ; Start of data area in RAM
cmptl:1 ; Memory variable declaration cmptl
ENDC ; End of data area
; RESET STARTUP
org 0x000 ; Start address after reset
goto init ; Jump to initialization
init
clrf PORTA
clrf PORTB ; Set PORTB outputs to 0
bsf STATUS,RPO ; Select bank 1
moviw OPTIONVAL ; Load configuration for OPTION register
movwf OPTION_REG ; Initialize OPTION register
moviw B'11111111' ; Configure PORTB as input
movwf TRISB
clrf TRISA
bcf STATUS,RPO ; Select bank O
goto start ; Jump to main program

; MAIN PROGRAM

’

start
btfss bouton ; Check if button is pressed
goto eteindre ; No, turn off LED
bsf led ; Yes, turn on LED
goto start ; Loop back
eteindre
bcf led ; Turn off LED
goto start ; Loop back
END ; End of program directive

8.4 Sleep Mode (SLEEP Mode)

This mode minimizes energy consumption in battery-powered applications. When the device is put to sleep,
the program halts until it is awakened. Sleep mode is activated using the SLEEP instruction.

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 21

Chapter 9:

The PIC16F84 Microcontroller

9 Instruction Set

The PIC16F84 features a set of 35 instructions, each encoded in 14 bits. The table below lists the mnemonics
for these instructions along with a brief explanation of their functions.

Operands can be of several types:

Table 9.6: Instruction Set of the PIC16F84

Field Description

f Memory address of registers (register file address) from 00 to 7F
w Working register (accumulator).
b Bit address within an 8-bit file register (0 to 7).
d d Destination selection:

d = 0: Save the result in W.

d = 1: Save the result in f.
k Literal field (8 or 11 bits) constant value
TOS Top of Stack (the top of the stack)
L Literal, meaning an immediate value (constant).
() The content
> Assign to
<> Used to denote one or more bits of a register
PC Program Counter (instruction pointer)

9.1 Data Transfer Instructions

No | Mnemonic Description Affected
flags
Transfer the content of f into (f or W)
1 |MOVFf,d Sid=0, (f) > W y4
Sid=1, (f)>f
Transfer the content of W into f None
2 |MOVWF f
(W)>f
Load the literal kinto W , 0 <k <255 None
3 |MOVLW k K> W
Swap the 4-bit groups of f None
4 |SWAPFf,d Sid=0, (f<3:0>) > W<7:4> et (f<7:4>) > W<3:0>
Sid=1, (f<3:0>) - f<7:4> et (f<7:4>) > f<3:0>
9.2 Arithmetic Instructions
No | Mnemonic Description Affected
flags
Add W toF
5 |ADDWFf,d [Ifd=0, (W)+(f) > (W) C,DCz
If d=1, (W) +(f) = (f)
6 |ADDLW k Add Wtok, 0<k<255literal C,DCz
Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 22

Chapter 9:

The PIC16F84 Microcontroller

If d=0, k + (W) > W

INCFf, d

Increment f
Ifd=0, (f)+1>W
Ifd=1, (f)+1->f

SUBWFf, d

Subtract W from f
If d=0, (f) - (W) > W
If d=1, (f) - (W) > f

SUBLW k

Subtract W from K, 0 <k < 255 literal
If d=0, k - (W) > W
Ifd=1,k-(W)->f

G, DCz

10

DECFf, d

Décremente f
Ifd=0, (f)-1>W
Ifd=1, (f)-1->f

9.3 Logical Instructions

No

Mnemonic

Description

Affected
flags

11

ANDWF f, d

W and F
If d=0, (W) AND (f) = (W)
If d=1, (W) AND (f) = (f)

12

ANDLW k

Kand W, 0<k<255
(W).AND. (k) > W

If d=0, (W) AND k > (W)
If d=1, (W) AND k = (f)

13

IORWF f, d

W OR f

(W).OR. (k) > W

If d=0, (W) OR k => (W)
If d=1, (W) OR k = ()

14

IORLW k

KORW, 0 <k<255
(W) ORk > W

15

XORWFf, d

W XOR F
If d=0, (W) XOR (f) > (W)
If d=1, (W) XOR (f) - (f)

16

XORLW k

W XORk , 0<k<255
If d=0, (W) XOR k > (W)
If d=1, (W) XOR k > ()

17

COMFf, d

1's Complement of f
Ifd=0,1's Complement (f) > W
Ifd=1,1's Complement (f) > f

18

CLRW

Clear W
00h>W
1->7

19

CLRF f

Clear f
00h > f
1>7Z

20

BCFf, b

Clear the bit at position b of f
0 - f

None

21

BSFf, b

Set the bit at position b of fto '1'
1> f

None

Prepared by: Pr. M.C. Amara Korba

Academic Year 2023/2024

23

Chapter 9:

The PIC16F84 Microcontroller

Rotate f one position to the right through the Carry Flag (CF)
If d =0, f after rotation > W
22 |RRFf, d If d =1, f after rotation > f C
| Register f }—T
Rotate f one position to the left through the Carry Flag (CF)
- If d =0, f after rotation > W
23 |RLFf, d - If d = 1, f after rotation - f C
<—| Register f]<_‘
9.4 Branch Instructions
No | Mnemonic Description Affected
flags
Decrement f and skip if zero None
24 | DECFSZf, d Sid=0, (f) -1 > W; jumpif resultat=0
Sid=1, (f)-1->f; jumpifresultat=0
Increment f and skip if zero None
25 |INCFSzf, d Sid=0, (f) +1 > W; jump if resultat=0
Sid=1, (f)+1>f; jumpifresultat=0
Test bit b of f and skip if ‘0’ None
26 |BTFSCE,b 1o iter Si (f) =0
Test bit b of f and skip if '1' None
27 [BTFSSH, b Sauter Si (f) =1
Save return address, load PC with k None
(PC)+ 1> TOS
28 | CALL k k - PC<10 :0>
(PCLATH<4 :3>) > PC<12 :11>
29 |GOTO k Jump to address k (9 bits!). None
30 | RETFIE Return from interrupt. None
31 |RETURN Return from subroutine. None
32 |RETLW k Load k into W and return. None
9.5 Control Instructions
No | Mnemonic Description Affected
flags
33 |NOP No operation. None
34 | SLEEP Stops the processor. None
35 | CLRWDT Resets the watchdog timer. None
Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 24

