
Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 1

Table des matières du chapitre 9
1 Features of the PIC16F84 Microcontroller .. 2
2 Internal Architecture of the PIC16F84 ... 2
3 Description of the PIC16F84 Pins .. 3

Power Supply Pins ... 3
Reset Pin .. 3
Clock Pins ... 3
Input/Output Ports .. 4

4 Instruction Execution Cycle ... 4
Cycle Time .. 5

Note: All instructions execute in a single cycle, except for branch instructions. .. 5
Program Counter (Instruction Pointer) ... 5
Data Memory Organization ... 6
4.1.1 Overview of Memory Registers in the PIC16F84 ... 8
4.1.2 Status Register (STATUS) (ADDRESS 03h, 83h) .. 9
4.1.3 OPTION_REG REGISTER (ADDRESS 81h) .. 10
4.1.4 INTCON REGISTER (ADDRESS 0Bh, 8Bh) .. 11

5 Addressing Modes ... 11
5.1 Immediate Addressing ... 11
5.2 Direct Addressing... 12
5.3 Indirect Addressing .. 12

6 Input/Output Ports .. 12
6.1 PORTA .. 12
6.2 PORTB .. 13

7 TIMER0 Module ... 13
7.1 Operating Modes of the Timer Module .. 14

7.1.1 Pulse Counter Mode .. 14
7.1.2 Timer Mode (Time Counter Mode) ... 14
7.1.3 Configuring Operating Modes of the TIMER Module .. 15

8 Managing Interrupts on the PIC16F84 .. 16
8.1 Enabling Peripheral Interrupts .. 16
8.2 Handling an Interrupt by the Microcontroller ... 17
8.3 Assembly Program for Handling PIC16F84 Interrupts ... 18

Remarks ... 19
Saving and Restoring Context During Interrupts ... 19
Task: ... 20

8.4 Sleep Mode (SLEEP Mode) .. 21
9 Instruction Set ... 22

9.1 Data Transfer Instructions ... 22
9.2 Arithmetic Instructions .. 22
9.3 Logical Instructions .. 23
9.4 Branch Instructions .. 24
9.5 Control Instructions ... 24

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 2

Chapter 9: PIC16F84 Microcontroller

1 Features of the PIC16F84 Microcontroller

The PIC16F84 is an 8-bit RISC architecture microcontroller. It belongs to the PIC family known as the Mid-Line
series. There are three PIC families:

• Base-Line: Instructions are encoded in 12 bits.

• Mid-Line: Instructions are encoded in 14 bits.

• High-End: Instructions are encoded in 16 bits.

The PIC16F84 is equipped with:

1. An eight-level stack with a width of 13 bits and multiple internal and external interrupt sources.

2. Two separate buses, an instruction bus (14 bits) and a data bus (8 bits), based on the Harvard
architecture.

3. Single-cycle execution for all instructions except branch instructions, which require two cycles.
4. A two-stage instruction pipeline allowing all instructions to execute in a single cycle, except for branch

instructions (jumps), which take two cycles.
5. An instruction set comprising 35 instructions (reduced instruction set).
6. A maximum external clock frequency of 10 MHz.
7. An 18-pin Dual In-line Package (DIP) form factor.

Table 9.1: General Characteristics of the PIC16F84

 Feature PIC16F84 PIC 16CR84

Memory

Program memory 1K × 14 bits (flash) 1K × 14 bits (ROM)
Data memory (Byte) 68 × 8 bits 68 × 8 bits
Data memory of EEPROM 64 64
Stack 8 × 14 bits 8 × 14 bits

Peripherals Timer module Timer 0 Timer 0

Specifications

Interrupt source 4 4
I/O pins 13 13
Operating voltage 2V ~ 6V 2V ~ 6V
Total number of pins 18 18
Number of I/O ports PORT A and PORT B PORT A and PORT B

Clock Clock (max) 10 MHz 10 MHz

CR: Refers to a microcontroller where the program memory is of the ROM type.
F: Refers to a microcontroller where the program memory is of the Flash type.

PIC microcontrollers with Flash memory (F) allow the same microcontroller to be used for both prototyping and
production. They are reprogrammable, enabling the code to be updated without removing the microcontroller
from the electronic board.

2 Internal Architecture of the PIC16F84

The PIC16F84 is based on a RISC architecture and employs the Harvard architecture. The microcontroller
features separate address buses for program memory and data memory. This separation allows program and
data memory to have different word sizes. Data words are 8 bits wide, while machine instruction codes are 14
bits wide. The program memory data bus is referred to as the instruction bus.

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 3

Figure 9.1: Internal Architecture of the PIC16F84 Microcontroller

3 Description of the PIC16F84 Pins

Figure 9.2: Pinout of the PIC16F84 Figure 9.3: Reset and Oscillator Circuits for the PIC

Power Supply Pins

Pin 5 and Pin 14 must be connected to the negative and positive terminals of the power supply, respectively.

Reset Pin

This is Pin 14, referred to as MCLR (Master Clear). It is used to reset the PIC program whenever it is held at a
low voltage level (0V).

Clock Pins

Pins 15 and 16 must be connected to the quartz oscillator. The higher the frequency of the quartz used, the
faster the processor operates.

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 4

Input/Output Ports

The PIC16F84 has 13 GPIO (General Purpose Input/Output) pins distributed across two ports (PORTA and

PORTB). These pins can be independently configured as digital inputs or outputs. Additionally, each pin can

source or sink a maximum current of 25 mA per pin.

The table below describes all the pins of the PIC16F84.

Table 9.2: Description of the PIC16F84 Pins

Pin Name
Pin

Number
Type Description

OSC1/CLKIN 16 Input External clock source input.

OSC2/CLKOUT 15 Output External clock source output.

MCLR 4 Input (Master Clear) Reset input, active when at a low level.

VSS 5 Power Ground reference (0V).

VDD 14 Power Positive power supply.

PORT A

RA0 17 I/O Bidirectional: Can be configured as input or output.

RA1 18 I/O Bidirectional.

RA2 1 I/O Bidirectional.

RA3 2 I/O Bidirectional.

RA4/T0CKI 3 I/O Bidirectional / Can also be selected as the input clock for the TMR0 timer/counter.

PORT B

RB0/INT 6 I/O Bidirectional / Can also be selected as the external interrupt pin.

RB1 7 I/O Bidirectional.

RB2 8 I/O Bidirectional.

RB3 9 I/O Bidirectional.

RB4 10 I/O Bidirectional / Interrupt on pin change.

RB5 11 I/O Bidirectional / Interrupt on pin change.

RB6 12 I/O Bidirectional / Interrupt on pin change.

RB7 13 I/O Bidirectional / Interrupt on pin change.

Designation: E: Input, S: Output, A: Power Supply

The pins of Port A and Port B are bidirectional.

4 Instruction Execution Cycle

Each instruction cycle (Tcy) consists of four Q cycles (Q1-Q4). The Q cycle corresponds to the microcontroller's

oscillator cycle (TOSC). The following diagram illustrates the relationship between the Q cycles and the

instruction cycle.

The four Q cycles that make up an instruction cycle (Tcy) can be summarized as follows:

1. Q1: Instruction fetch cycle.

2. Q2: Instruction decode cycle.

3. Q3: Data processing cycle.

4. Q4: Result write cycle.

Each instruction details the specific Q cycle operations for that instruction.

Figure 9.4: Instruction Execution Cycle

PC: The Program Counter, also known as the instruction pointer.

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 5

Cycle Time

The PIC microcontroller divides the external clock frequency by 4 to obtain the instruction cycle frequency.

𝐹𝑐𝑦𝑐𝑙𝑒 =
𝐹𝑜𝑠𝑐

4

𝑇𝑐𝑦𝑐𝑙𝑒 = 𝑇𝑜𝑠𝑐 × 4

: Oscillator Period (External Clock)

If the oscillator frequency is 10 MHz, its period is calculated as 1/107 s = 0,1 µs = 100 ns.

The cycle time is = 100ns × 4 = 400ns

If the clock frequency is 4 MHz, its period is 1/4·106 s = 250 ns, and the cycle time is 1000ns = 1µs.

Note: All instructions execute in a single cycle, except for branch instructions.

Program Memory and Stack Organization

The PIC16FXX has a 13-bit program counter capable of addressing a program memory space of 8K x 14. For the

PIC16F84, The first 1K x 14 (0000h-03FFh). The reset vector is located at 0000h and the interrupt vector is at

0004h.

Figure 9.5: Organization of Program Memory and the Stack

Program Counter (Instruction Pointer)

The program counter (PC) is 13 bits wide. The low byte of the PC is the PCL register, which is both readable and
writable. The high byte of the PC (PC<12:8>) is not directly readable or writable and is derived from the PCLATH
register.

The PCLATH register (PC latch high) acts as a holding register for PC<12:8>. The contents of PCLATH are
transferred to the high byte of the program counter whenever the PC is loaded with a new value. This occurs
during a CALL, GOTO, or a write to the PCL register. The high bits of the PC are loaded from PCLATH, as illustrated
in the figure below.

Tosc

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 6

Figure 9.6: Loading the Program Counter (PC) in Different Situations

Data Memory Organization

The data memory is divided into two areas (see figure below). The first area consists of Special Function
Registers (SFRs), which control the microcontroller's operation. The second area consists of General Purpose
Registers (GPRs), used for general storage.
The data memory is organized into two banks containing both the general-purpose registers and the special
function registers. Bank selection requires the use of control bits located in the STATUS register.
Bank selection is managed using the PR0 and PR1 bits in the STATUS register.

• Bank 0 is selected by setting PR0 = 0 and PR1 = 0 in the STATUS register.
• Bank 1 is selected by setting PR0 = 1 and PR1 = 0 in the STATUS register.

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 7

Figure 9.7. Organization of Program and Data Memory

 : Unused memory area, read as '0'.
(1) : The indirect address does not physically exist.

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 8

4.1.1 Overview of Memory Registers in the PIC16F84

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 9

4.1.2 Status Register (STATUS) (ADDRESS 03h, 83h)

The status register, known as STATUS, located at address 03h in bank 0, contains the status of certain operations
performed by the processor (C, DC, and Z). Additionally, the TO and PD bits are read-only. The PR0 and PR1 bits
are used to select data banks in the data memory.

The STATUS register has a copy in bank 1 at address 83h.

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 10

4.1.3 OPTION_REG REGISTER (ADDRESS 81h)

The OPTION_REG register is a readable and writable register which contains various control bits to configure

the TMR0/WDT prescaler, the external INT interrupt, TMR0, and the weak pull-ups on PORTB.

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 11

4.1.4 INTCON REGISTER (ADDRESS 0Bh, 8Bh)

The INTCON register is a readable and writable register which contains the various enable bits for all interrupt
sources.

5 Addressing Modes

Data transfer instructions allow the following operations:

• Move an immediate value (L) to the accumulator (W), using the instruction MOVLW.

• Move the contents of the accumulator (W) to a memory location, using the instruction MOVWF.

• Move a memory location value to the accumulator (W), using the instruction MOVFW.

The entire data memory is accessible either directly, using the direct address of each memory register, or
indirectly, via the File Select Register (FSR). Indirect addressing uses the current values of the RP1:RP0 bits in
the status register to access the banked areas of data memory.

5.1 Immediate Addressing

The operand appears directly in the instruction and is a constant value (also referred to as a Literal in English).
Example: MOVLW 0XC4 ; This instruction loads the accumulator W (working register) with the hexadecimal
value C4H.

Note: The PIC16F84 microcontroller only handles 8-bit data.

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 12

5.2 Direct Addressing

In direct addressing, the desired memory bank (bank 0 or bank 1) must first be selected, followed by specifying
the memory address for the instruction to execute.
Example:

BCF STATUS, 5 ; Select bank 0 (RP1 = 0 and RP0 = 0)
MOVF 0X6, 0 ; Load the content of memory register at address 6H into W.

In this case, address 06H corresponds to the PORTB register in the data memory.

5.3 Indirect Addressing

The INDF register is not a physical register. It contains the content of the memory location pointed to by the
FSR register. The FSR register is a memory pointer that holds the address of the memory register.
Example:
The memory register 0CH contains the value 22H, and the memory register 0DH contains the value 33H. Both
belong to bank 0.

BCF STATUS, 5 ; Select bank 0
BCF STATUS, 6
MOVLW 0X0C ; Initialize the pointer
MOVWF FSR ; FSR is the memory pointer, now contains 0CH
MOVF INDF, 0 ; Transfer the content of memory register at 0CH into W (W=22H)
INCF FSR ; Increment FSR: FSR ← FSR + 1, so FSR = 0DH
MOVF INDF, 0 ; Transfer the content of memory register at 0DH into W (W=33H)

6 Input/Output Ports

The PIC16F84 has two input/output ports: PORTA and PORTB, referred to as PortA and PortB. Output values
on the ports are stored in memory, while values read from the ports are not stored.

Setting a pin n of the PORT to '1' in output mode corresponds to a voltage of 5V on pin n.

6.1 PORTA

PORTA has 5 bidirectional input/output pins. The PORTA register, located at address 05h in bank 0, can be
configured for input (read) or output (write). Each bit in this register corresponds to one pin.

Table 9.3: Overview of Registers Associated with PORTA Operations

The TRISA register, located at address 85h in bank 1, allows selecting the direction of each pin (input or
output):

• Each bit set to 1 in TRISA configures the corresponding pin as an input.
• Each bit set to 0 in TRISA configures the corresponding pin as an output.

The RA4 pin can also serve as a counting input for timer0.

Example:
To configure all PORTA pins as inputs, load the value FFH into the TRISA register:

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 13

BSF STATUS, RP0 ; Select Bank 1
MOVLW 0xFF ; W ← FFH
MOVWF TRISA ; TRISA ← W

If you want to configure RA0 and RA1 as inputs, RA2 and RA3 as outputs, and RA4 as an input:

BCF STATUS, RP0 ; Select Bank 0, as PORTA is located in Bank 0.
CLRF PORTA ; Initialize PORTA pins as outputs with '0'.
BSF STATUS, RP0 ; Select Bank 1 to configure the pin directions.
MOVLW B'00010011' ; Configure RA<1:0> as input, RA<3:2> as output, and RA4 as input.
MOVWF TRISA ; TRISA ← W

6.2 PORTB

PORTB has 8 bidirectional input/output pins. The PORTB register, located at address 06h in bank 0, can be
configured for input (read) or output (write). Each bit in this register corresponds to one pin.

Table 9.4: Overview of Registers Associated with PORTB Operations

The TRISB register, located at address 86h in bank 1, is used to select the direction of each pin (input or
output):

• Each bit set to 1 in TRISB configures the corresponding pin as an input.
• Each bit set to 0 in TRISB configures the corresponding pin as an output.

Example:

BCF STATUS, RP0 ; Select Bank 0, as the PORTB register is located in Bank 0.
CLRF PORTB ; Initialize PORTB.
BSF STATUS, RP0 ; Select Bank 1.
MOVLW B'11001111' ; Value used to initialize the direction of PORTB.
MOVWF TRISB ; Configure RB<3:0> as input, RB<5:4> as output, and RB<7:6> as input.

7 TIMER0 Module

The PIC16F84 features a single 8-bit Timer module, unlike other PIC microcontrollers in the same mid-range
family, such as the PIC16F877, which includes three timers (see the previous chapter). The primary function of
the Timer is counting (essentially acting as a counter).

The table below summarizes the registers associated with the operation of the TIMER0 module.

Table 9.5: Overview of Registers Associated with TIMER0 Operations

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 14

Note: The bits in red are associated with the operation of the TIMER.

7.1 Operating Modes of the Timer Module

The Timer module has two operating modes: timer mode or counter mode. The selection between these
modes is made using bit 5 of the OPTION_REG register, called T0CS (Timer0 Clock Source Select bit):

• T0CS = 0: Operates in timer mode.
• T0CS = 1: Operates in counter mode.

7.1.1 Pulse Counter Mode

In this mode, the Timer counts pulses received on the RA4/TOKI pin. Since the TMR0 register is an 8-bit
memory register, it can count up to 255 pulses. If this value is exceeded, it resets to 0. Reading the TMR0
register provides the number of pulses received on the RA4/TOKI pin.

In this mode, you can specify whether the counting occurs on the rising or falling edge of the pulse. This is
determined by bit 4 of the OPTION_REG register, called T0SE (Timer0 Source Edge Select bit):

• T0SE = 0: Counting occurs on the rising edge, when the input (RA4/TOKI) transitions from 0 to 1.
• T0SE = 1: Counting occurs on the falling edge, when the input (RA4/TOKI) transitions from 1 to 0.

7.1.2 Timer Mode (Time Counter Mode)

In this mode, the Timer counts the PIC's clock cycles, effectively measuring time. When the TMR0 register
overflows (i.e., transitions from FFH to 00H), the T0IF flag in the INTCON register is set to 1.

Overflow detection can be done in two ways:

• Polling: The program checks the T0IF bit to detect the overflow of TMR0.
• Interrupt: The timer interrupt can be enabled by setting the T0IE bit (TMR0 Overflow Interrupt Enable) to 1.

When T0IF is set to 1, the interrupt occurs. The T0IF bit must be cleared by the Timer0 interrupt service
routine before re-enabling this interrupt.

Note: The TMR0 interrupt cannot wake the processor from sleep mode, as the Timer stops functioning in
sleep mode.

Example of polling:

CLRF TMR0 ; Start counting after 2 cycles
BCF INTCON, T0IF ; Clear the overflow flag
loop:
BTFSS INTCON, T0IF ; Test if the counter has overflowed
GOTO loop ; No, wait for overflow
...
XXX ; Continue the program

Suppose you want to wait for 100 increments. In this case, load TMR0 with a value such that the overflow
occurs after 100 increments.

Example:

MOVLW 156 ; Load 156

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 15

MOVWF TMR0 ; Initialize TMR0
BCF INTCON, T0IF ; Clear the flag
loop:
BTFSS INTCON, T0IF ; Test if the counter has overflowed
GOTO loop ; No, wait for overflow
...
XXX ; Yes, proceed: 100 events elapsed (256-156=100)

7.1.3 Configuring Operating Modes of the TIMER Module

The figure below shows the functional block diagram of Timer 0.

Figure 9.8: Functional Block Diagram of Timer0

The timer mode is selected by setting the T0CS bit to 0 (located in the OPTION_REG). In timer mode, the
TMR0 register increments with each clock cycle (without a prescaler).

The counter mode is selected by setting the T0CS bit to 1. In this mode, the TMR0 register increments on each
rising or falling edge of the RA4/T0CKI pin. The edge for incrementing is determined by the T0SE bit in the
OPTION_REG register:

• T0SE = 0: TMR0 increments on the rising edge.
• T0SE = 1: TMR0 increments on the falling edge.

The prescaler is shared between the Timer0 module and the Watchdog Timer (WDT). The assignment of the
prescaler is programmatically controlled by the PSA control bit in OPTION_REG<3>:

• PSA = 0: The prescaler is assigned to Timer0.
• PSA = 1: The prescaler is assigned to the Watchdog Timer (WDT).

The prescaler rate is determined by the table below:

PS2 PS1 PS0
TMR0 Division

Rate
WDT Division

Rate

0 0 0 1:2 1:1

0 0 1 1:4 1:2

0 1 0 1:8 1:4

0 1 1 1:16 1:8

1 0 0 1:32 1:16

1 0 1 1:64 1:32

1 1 0 1:128 1:64

1 1 1 1:256 1:128

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 16

Example:
Suppose the external clock frequency is 4 MHz (the oscillator is equipped with a 4 MHz quartz crystal). In this
case, the internal cycle frequency is:

Thus, the internal cycle period is: .

If we use Timer0 in its timer function and in interrupt mode, an interrupt will occur every 256μs.

If we want to blink an LED at a frequency of 1Hz, we need a delay of 500ms. To achieve this, we can use a
prescaler to slow down the Timer0's time base.

• The prescaler allows the Timer0 register to increment more slowly, thereby increasing the time required to
generate an interrupt.

8 Managing Interrupts on the PIC16F84

The PIC16F84 has four possible interrupt sources. The events that can trigger an interrupt are as follows:

• RB0/INT: An interrupt can be generated when the RB0 pin (also called the INTerrupt pin), configured as an
input, detects a change in the applied signal level.

• TMR0: The TIMER0 module can generate an interrupt when the TMR0 register overflows (i.e., when its
content transitions from FFH to 00H).

• PORTB: An interrupt can be generated when there is a change in the signal level on any of the RB4 to RB7
pins. The interrupt will be effective for all four pins collectively or none at all.

• EEPROM: This interrupt can be generated when a write operation to an internal EEPROM cell is completed.

8.1 Enabling Peripheral Interrupts

To enable one or more interrupts, you must first allow interrupts globally by setting the GIE (Global Interrupt
Enable) bit in INTCON<7> to 1. Then, enable only the specific interrupts of interest by setting their
corresponding enable bits to 1.

When a peripheral requests an interrupt, the processor invokes the appropriate Interrupt Service Routine
(ISR) to determine how to handle the interrupt.

Figure 9.9: Interrupt Management Diagram of the PIC16F84

Fcycle=
Fosc

4
=

4∙10
6

4
= 1MHz.

Tcycle= 1μs

T
2

= 500ms= 500× 1000= 500000μs

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 17

• INTE bit (INTCON<4>): Enables the interrupt on the RB0/INT pin.
• RBIE bit (INTCON<3>): Enables the "RB" interrupt.
• T0IE bit (INTCON<5>): Enables the Timer0 interrupt.
• EEIE bit (INTCON<6>): Enables the interrupt triggered at the end of an EEPROM write operation.

Before enabling an interrupt, the flag that indicates the occurrence of the interrupt must be cleared (set to 0):

• INTF bit (INTCON<1>): Signals an interrupt on the RB0/INT pin.
• RBIF bit (INTCON<0>): Signals an interrupt on pins RB4..7.
• T0IF bit (INTCON<2>): Signals the Timer0 interrupt.
• EEIF bit (EECON1<4>): Signals the end of an EEPROM write operation.

 7 6 5 4 3 2 1 0

INTCON Register (Bank0) GIE EEIE T0IE INTE RBIE T0IF INTF RBIF

 7 6 5 4 3 2 1 0

EECON1 Register (Bank1) - - - EEIF WRERR WREN WR RD

Figure 9.10: Register Responsible for Interrupt Management in the PIC16F84

8.2 Handling an Interrupt by the Microcontroller

When an interrupt occurs, the main program is interrupted as follows:

1. The processor completes the execution of the current instruction in the main program and pushes the
Program Counter (PC) value onto the stack.

2. The processor jumps to address 0004H in the program memory (the interrupt vector is located at
address H'0004').

3. The programmer must save the STATUS and W registers into temporary registers in RAM.
4. The program calls the interrupt subroutine (ISR) using the CALL instruction.
5. Once the ISR is completed, the programmer must clear the flag that signaled the interrupt.
6. The programmer must restore the STATUS and W registers from RAM.
7. The programmer signals the end of the interrupt using the RETFIE (Return from Interrupt) instruction.

When this instruction is executed, the PC register content is restored from the stack, and the
microcontroller resumes execution of the program it had interrupted.

The figure below illustrates the various steps involved in executing an interrupt subroutine.

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 18

Figure 9.11: Flowchart for Interrupt Handling in the PIC16F84

8.3 Assembly Program for Handling PIC16F84 Interrupts

ORG 0x004 ; Interrupt vector address
; Save W and STATUS registers
 MOVWF W_TEMP ; Save W register
 SWAPF STATUS, W ; Swap STATUS into W
 MOVWF STATUS_TEMP ; Save swapped STATUS

; CHECK TIMER 0 INTERRUPT
 BTFSC INTCON, T0IE ; Check if Timer0 interrupt is enabled
 BTFSS INTCON, T0IF ; If yes, check if Timer0 interrupt is active
 GOTO test_RB0 ; No, go to the next test
 CALL ISR_TIMER0 ; Yes, handle Timer0 interrupt
 BCF INTCON, T0IF ; Clear Timer0 interrupt flag
 GOTO restore_registre ; End of interrupt

; CHECK RB0 INTERRUPT
test_RB0
 BTFSC INTCON, INTE ; Check if RB0 interrupt is enabled
 BTFSS INTCON, INTF ; If yes, check if RB0 interrupt is active

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 19

 GOTO test_RB4_RB7 ; No, go to the next test
 CALL ISR_RB0 ; Yes, handle RB0 interrupt
 BCF INTCON, INTF ; Clear RB0 interrupt flag
 GOTO restore_registre ; End of interrupt

; CHECK RB4..RB7 INTERRUPT
test_RB4_RB7
 BTFSC INTCON, RBIE ; Check if RB4..RB7 interrupt is enabled
 BTFSS INTCON, RBIF ; If yes, check if RB4..RB7 interrupt is active
 GOTO test_EEPROM ; No, go to the next test
 CALL ISR_RB4_7 ; Yes, handle RB4..RB7 interrupt
 BCF INTCON, RBIF ; Clear RB4..RB7 interrupt flag
 GOTO restore_registre ; End of interrupt

; CHECK EEPROM WRITE COMPLETION INTERRUPT
test_EEPROM
 BSF STATUS, RP0 ; Switch to Bank 1
 BTFSC INTCON, EEIE ; Check if EEPROM interrupt is enabled
 BTFSS EECON1, EEIF ; If yes, check if EEPROM interrupt is active
 GOTO restore_registre ; Restore registers
 CALL ISR_EEPROM ; Handle EEPROM interrupt

restore_registre
 SWAPF STATUS_TEMP, W ; Restore old STATUS into W
 MOVWF STATUS ; Restore STATUS
 SWAPF W_TEMP, F ; Restore W register
 SWAPF W_TEMP, W
 RETFIE ; Return from interrupt

; INTERRUPT SERVICE ROUTINES FOR EACH PERIPHERAL
ISR_TIMER0
 RETURN ; End of Timer0 interrupt

ISR_RB0
 RETURN ; End of RB0/INT interrupt

ISR_RB4_7
 RETURN ; End of RB4..RB7 interrupt

ISR_EEPROM
 BCF EECON1, EEIF ; Clear EEPROM interrupt flag
 BCF STATUS, RP0 ; Switch to Bank 0
 RETURN ; End of EEPROM interrupt

Remarks

• An interrupt cannot interrupt another interrupt routine.
• If another interrupt occurs during the execution of an interrupt routine, it is ignored and will only be

handled after the current routine finishes, when the microcontroller resumes the main program.

Saving and Restoring Context During Interrupts

When an interrupt subroutine is called, only the Program Counter (PC) value is saved on the stack. It is
essential to save the content of the W accumulator and the STATUS register before executing the tasks in the

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 20

Interrupt Service Routine (ISR). After executing the ISR, the W and STATUS registers must be restored. The
tasks can be outlined as follows:

1. Store the W register into W_TEMP.
2. Store the STATUS register into STATUS_TEMP.
3. Execute the interrupt service routine code.
4. Restore the STATUS register.
5. Restore the W register.

Example: Assembly program for saving the STATUS and W registers in RAM.

MOVWF W_TEMP ; Save W into W_TEMP
SWAPF STATUS, W ; Swap STATUS into W
MOVWF STATUS_TEMP ; Save STATUS into STATUS_TEMP
:
: ; Perform interrupt service tasks
:
SWAPF STATUS_TEMP, W ; Swap STATUS_TEMP into W
MOVWF STATUS ; Restore W into STATUS
SWAPF W_TEMP, F ; Swap W_TEMP with itself
SWAPF W_TEMP, W ; Restore W register

Note: The SWAP instruction is used because it performs the transfer without affecting the flags in the STATUS
register.

Exercise 1 :

Figure 9.12: Circuit Diagram

The circuit above contains a push button connected to the RB0 pin of the PIC16F84 and an LED connected to
the RA0 pin.
Task:

Write a program to turn on the LED when the button is pressed.
Solution for Exercise 1:
First, configure the direction of the microcontroller pins:

• RB0 as input.
• RA0 as output.

 LIST p=16F84A ; Processor definition
 #include <p16F84A.inc> ; Constant definitions

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 21

 __CONFIG _CP_OFF & _WDT_OFF & _PWRTE_ON & _HS_OSC
;==
; ASSIGNMENTS
;==
OPTIONVAL EQU H'0000' ; Option register value

#DEFINE led PORTA,0 ; LED
#DEFINE bouton PORTB,0 ; Push button
;==
; PROGRAM VARIABLE DECLARATIONS
;==
 CBLOCK 0x00C ; Start of data area in RAM

 cmpt1 : 1 ; Memory variable declaration cmpt1

 ENDC ; End of data area
;==
; RESET STARTUP
;==
 org 0x000 ; Start address after reset
 goto init ; Jump to initialization

init
 clrf PORTA
 clrf PORTB ; Set PORTB outputs to 0

 bsf STATUS,RP0 ; Select bank 1
 movlw OPTIONVAL ; Load configuration for OPTION register
 movwf OPTION_REG ; Initialize OPTION register
 movlw B'11111111' ; Configure PORTB as input
 movwf TRISB
 clrf TRISA
 bcf STATUS,RP0 ; Select bank 0
 goto start ; Jump to main program
;==
; MAIN PROGRAM
;==
start
 btfss bouton ; Check if button is pressed
 goto eteindre ; No, turn off LED
 bsf led ; Yes, turn on LED
 goto start ; Loop back

eteindre
 bcf led ; Turn off LED
 goto start ; Loop back
 END ; End of program directive

8.4 Sleep Mode (SLEEP Mode)

This mode minimizes energy consumption in battery-powered applications. When the device is put to sleep,
the program halts until it is awakened. Sleep mode is activated using the SLEEP instruction.

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 22

9 Instruction Set

The PIC16F84 features a set of 35 instructions, each encoded in 14 bits. The table below lists the mnemonics
for these instructions along with a brief explanation of their functions.

Operands can be of several types:

Table 9.6: Instruction Set of the PIC16F84

Field Description

f Memory address of registers (register file address) from 00 to 7F

W Working register (accumulator).

b Bit address within an 8-bit file register (0 to 7).

d d Destination selection:

 d = 0: Save the result in W.

 d = 1: Save the result in f.

k Literal field (8 or 11 bits) constant value

TOS Top of Stack (the top of the stack)

L Literal, meaning an immediate value (constant).

() The content

→ Assign to

< > Used to denote one or more bits of a register

PC Program Counter (instruction pointer)

9.1 Data Transfer Instructions

No Mnemonic Description
Affected

flags

1 MOVF f,d
Transfer the content of f into (f or W)
Si d=0, (f) → W
Si d=1, (f) → f

Z

2 MOVWF f
Transfer the content of W into f
(W) → f

None

3 MOVLW k
Load the literal k into W , 0 ≤ k ≤ 255
k → W

None

4 SWAPF f, d
Swap the 4-bit groups of f
Si d=0, (f<3:0>) → W<7:4> et (f<7:4>) → W<3:0>
Si d=1, (f<3:0>) → f<7:4> et (f<7:4>) → f<3:0>

None

9.2 Arithmetic Instructions

No Mnemonic Description
Affected

flags

5 ADDWF f, d
Add W to F
If d=0 , (W) + (f) → (W)
If d=1 , (W) + (f) → (f)

C, DC, Z

6 ADDLW k Add W to k , 0 ≤ k ≤ 255 literal C, DC, Z

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 23

If d=0, k + (W) → W

7 INCF f, d
Increment f
If d=0, (f) + 1 → W
If d=1, (f) + 1 → f

Z

8 SUBWF f, d
Subtract W from f
If d=0, (f) - (W) → W
If d=1, (f) - (W) → f

Z

9 SUBLW k
Subtract W from K , 0 ≤ k ≤ 255 literal
If d=0, k - (W) → W
If d=1, k - (W) → f

C, DC, Z

10 DECF f, d
Décremente f
If d=0, (f) - 1 → W
If d=1, (f) - 1 → f

Z

9.3 Logical Instructions

No Mnemonic Description
Affected

flags

11 ANDWF f, d
W and F
If d=0, (W) AND (f) → (W)
If d=1, (W) AND (f) → (f)

Z

12 ANDLW k

K and W , 0 ≤ k ≤ 255
(W).AND. (k) → W
If d=0, (W) AND k → (W)
If d=1, (W) AND k → (f)

Z

13 IORWF f, d

W OR f
(W).OR. (k) → W
If d=0, (W) OR k → (W)
If d=1, (W) OR k → (f)

Z

14 IORLW k
K OR W , 0 ≤ k ≤ 255
(W) OR k → W

Z

15 XORWF f, d
W XOR F
If d=0, (W) XOR (f) → (W)
If d=1, (W) XOR (f) → (f)

Z

16 XORLW k
W XOR k , 0 ≤ k ≤ 255
If d=0, (W) XOR k → (W)
If d=1, (W) XOR k → (f)

Z

17 COMF f, d
1's Complement of f
If d = 0 , 1's Complement (f) → W
If d = 1 , 1's Complement (f) → f

Z

18 CLRW
Clear W
00h → W
1 → Z

Z

19 CLRF f
Clear f
00h → f
1 → Z

Z

20 BCF f, b
Clear the bit at position b of f
0 → f

None

21 BSF f, b
Set the bit at position b of f to '1'
1 → f

None

Chapter 9: The PIC16F84 Microcontroller

Prepared by: Pr. M.C. Amara Korba Academic Year 2023/2024 24

22 RRF f, d

Rotate f one position to the right through the Carry Flag (CF)
If d = 0, f after rotation → W
If d = 1, f after rotation → f

C

23 RLF f, d

Rotate f one position to the left through the Carry Flag (CF)
- If d = 0, f after rotation → W
- If d = 1, f after rotation → f

C

9.4 Branch Instructions

No Mnemonic Description
Affected

flags

24 DECFSZ f, d
Decrement f and skip if zero

Si d=0, (f) - 1 → W; jump if resultat = 0
Si d=1, (f) - 1 → f; jump if resultat = 0

None

25 INCFSZ f, d
Increment f and skip if zero

Si d=0, (f) + 1 → W; jump if resultat = 0
Si d=1, (f) + 1 → f; jump if resultat = 0

None

26 BTFSC f, b
Test bit b of f and skip if '0'
Sauter Si (f) = 0

None

27 BTFSS f, b
Test bit b of f and skip if '1'
Sauter Si (f) = 1

None

28 CALL k

Save return address, load PC with k
(PC)+ 1→ TOS
k → PC<10 :0>
(PCLATH<4 :3>) → PC<12 :11>

None

29 GOTO k Jump to address k (9 bits!). None

30 RETFIE Return from interrupt. None

31 RETURN Return from subroutine. None

32 RETLW k Load k into W and return. None

9.5 Control Instructions

No Mnemonic Description
Affected

flags

33 NOP No operation. None

34 SLEEP Stops the processor. None

35 CLRWDT Resets the watchdog timer. None

