Mohamed Cherif Messaadia University, Souk Ahras Faculty of Science and Technology

Department of Electrical Engineering Subject: PLC Level: 3rd year

May 11, 2025 Duration: 01 :30H Speciality: Control

Correction of the Final Exam

Correction of the exercise 1: (05.5 pts)

- Sensors: LDR sensor, Gyroscope sensor. (0.75 pts) Pre-actuators: Relay, Speed controller. Actuators: Cylinder, DC motor.
- The most widely used PLC in the industry are: (0.75 pts) Siemens, Allen Bradley and Modicon.
- 3. The advantages of the PLCs are: (1.5 pts)
 - Robust design: Operates reliably in harsh environments.
 - Optimized electronics: Ensures fast, real-time response.
 - Easy maintenance: Modules are quickly replaceable.

The disadvantages of PLC are:

- More expensive than microcontroller-based solutions.
- Cost varies with I/O count, memory, and modules.
- Requires training in specific, often visual, languages.
- Language and mapping vary by brand, despite IEC 1131 standard.
- 4. The factors that can affect the cycle time of a PLC are: (1.0 pts)
 - Longer programs increase execution time.
 - Complex calculations slow the cycle.
 - More I/Os require more processing time.
 - Faster CPU reduces cycle time.
 - Some processes need faster response times.
- 5. The operating principles of a PLC are: (1.5 pts)
 - 1 Inputs read and stored in Input Image Memory (IIM).
 - 2 User program executed to process inputs.
 - 3 Outputs updated from Output Image Memory (OIM).
 - 4 Communication with external devices managed.
 - 5 Self-diagnosis performed and anomalies reported.

Figure 1. Operating Principle of a PLC

Correction of the exercise 2: (02.0 pts)

- a) True. (0.5 pts)
- b) False. (0.5 pts)
- c) False. (0.5 pts)
- d) False. (0.5 pts)

Correction of the exercise 3: (03.0 pts)

Correction of the exercise 04: (05.0 pts)

Nom	Type de données	Adresse
m	Bool	%I0.0
a	Bool	%IO.1
b	Bool	%10.2
volume_acqui	Int	%IW66
F1	Bool	%Q0.0
F2	Bool	%Q0.1
F3	Bool	%Q0.2
XO	Bool	%M0.0
X1	Bool	%M0.1
X2	Bool	%M0.2
X3	Bool	%M0.3
X4	Bool	%M0.4
fm_a	Bool	%M0.5
fin_tempo	Bool	%M0.6
t/X2/100s	Bool	%M0.7
vol_normal	Real	%MD2
volume	Real	%MD6
volume>300	Bool	%M1.0

(0.25 pts)

Table of Step Activation and Deactivation Conditions (1.0 pts)

$\text{Step}\left(X_{i}\right)$	Activation Condition (CA_i)	Deactivation Condition (CD_i)
X ₀	$\mathbf{X_3} \cdot \mathbf{X_4} \cdot \mathbf{a} \uparrow$	X ₁
<i>X</i> ₁	$X_0 \cdot (volume > 300L)$	$X_2 \cdot X_3$
<i>X</i> ₂	$X_1 \cdot m$	X ₄
X ₃	$X_1 \cdot m$	X ₀
<i>X</i> ₄	$X_2 \cdot (t/X2/100s)$	X ₀

Table of Actuator Activation Conditions (0.25 pts)

Actuator	Step
F1	$X_1 + X_3$
F2	$X_2 \cdot b$
F3	X ₄

OB100 (Startup Bloc)

(3.5 pts)

OB1 (Program Cyclic)

Network 1

Network 2

Network 3

Network 4

Network 5

Network 6

Correction of the exercise 5: (5.0 pts)

Figure 3. GRAFCET managing the cable car system