Mohamed Cherif Messaadia University, Souk Ahras Faculty of Science and Technology

Department of Electrical Engineering Subject: PLC Level: 3rd year

Retake Exam

June 09, 2025 Duration: 01 :30H Speciality: Control

Exercise 1: (04.0 pts)

Answer the following course-related questions: p

- **1.** List four factors that can affect the cycle time of a PLC. (1.0 pts)
- 2. Describe the operating principle of a PLC in five steps, then illustrate it with a diagram. (1.5 pts)
- 3. List the two main components that make up an automated system. (0.5 pts)
- 4. List two sensors, two pre-actuators, and three actuators. (1.0 pts)

Exercise 2: (04.0 pts)

Complete the timing diagram of X1, X3, X5, and X6.

Exercise 3: (6.0 pts)

A cable car uses three electric motors: **M1**, **M2**, and **M3**. Each motor is activated based on the load level (**LC**) to ensure smooth cabin movement.

The load capacity (LC) is categorized into three levels: low (C1), medium (C2), and high (C3). The motors are activated to maintain smooth and safe operation depending on LC:

General Operating Conditions

The system operates only if the "start" switch is in the ON position (start = 1). If start = 0, the system remains in its initial state, meaning that all motors are deactivated.

Operating Logic Based on Load Capacity (LC)

- If LC < C2, only motor M1 operates.
- If the LC increases and reaches the C2 level (LC \geq C2), motor M2 is activated. However, if the load drops below the C1 level, motor M2 is deactivated (M1 continues running).
- If the LC increases and reaches the C3 level (LC \geq C3), motor M3 is activated. However, if the load drops below the C2 level, motor M3 is deactivated (M1 and M2 continue running).
- Describe the system using a GRAFCET.

Unauthorized documents

Proposed by: Pr. M.C. Amara Korba

Exercise 4: (6.0 pts)

A drill performs a drilling cycle controlled by the input variables **d**, **h**, **m**, **f**, **b**, and **p**.

- **d**: Cycle start push button
- **h**: Upper limit switch contact
- m: Midpoint switch contact
- **f**: End-of-course switch contact
- **b**: Piece height contact
- **p**: Piece presence contact
- M: Ascending motor
- **D**: Descending motor
- **R**: Rotation motor

Short cycle

Long cycle

• $R = 1 \rightarrow Motor running$

• $R = 0 \rightarrow Motor stopped$

When the drill is at mid-course (m = 1):

- If the piece is low $\rightarrow b = 0$
- If the piece is high $\rightarrow b = 1$

The cycle begins when the push button 'd' is pressed. The drill must be in the upper position, and a piece must be present. drilled The pieces to be can be of two types: high piece or low piece. The description of the two cycles, short and long, is shown in the figure above. Before starting a new cycle, the drilled piece must be removed and replaced.

- Describe the operation of the automation system using a Grafcet.