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Human motion analysis has received a great attention from researchers in the last

decade due to its potential use in different applications such as automated visual surveil-

lance. This field of research focuses on the perception and recognition of human activi-

ties, including people identification. We explore a new approach for walking pedestrian

detection in an unconstrained outdoor environment. The proposed algorithm is based

on gait motion as the rhythm of the footprint pattern of walking people is considered the

stable and characteristic feature for the classification of moving objects. The novelty of

our approach is motivated by the latest research for people identification using gait. The

experimental results confirmed the robustness of our method to discriminate between

single walking subject, groups of people and vehicles with a successful detection rate of

100%. Furthermore, the results revealed the potential of our method to extend visual

surveillance systems to recognize walking people.

Furthermore, we propose a new approach to extract human joints (vertex positions)

using a model-based method. The spatial templates describing the human gait motion

are produced via gait analysis performed on data collected from manual labelling. The

Elliptic Fourier Descriptors are used to represent the motion models in a parametric

form. The heel strike data is exploited to reduce the dimensionality of the parametric

models. People walk normal to the viewing plane, as major gait information is available

in a sagittal view. The ankle, knee and hip joints are successfully extracted with high
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accuracy for indoor and outdoor data. In this way, we have established a baseline

analysis which can be deployed in recognition, marker-less analysis and other areas.

The experimental results confirmed the robustness of the model-based approach to

recognise walking subjects with a correct classification rate of 95% using purely the

dynamic features derived from the joint motion. Therefore, this confirms the early

psychological theories claiming that the discriminative features for motion perception

and people recognition are embedded in gait kinematics. Furthermore, to quantify the

intrusive nature of gait recognition we explore the effects of the different covariate factors

on the performance of gait recognition. The covariate factors include footwear, clothing,

carrying conditions and walking speed. As far as the author can determine, this is

the first major study of its kind in this field to analyse the covariate factors using a

model-based method.
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Chapter 1

Context and Contribution

1.1 Context

Surveillance technology is now ubiquitous in modern society. This is due to the increas-

ing number of crimes as well as the vital need to provide a safer environment. Because

of the rapid growth of security cameras and impossibility of manpower to supervise

them, the deployment of biometric technologies becomes important for the development

of automated visual surveillance systems. Recently, the use of gait for people identifi-

cation in surveillance applications has attracted researchers from computer vision. The

suitability of gait recognition for surveillance systems emerges from the fact that gait

can be perceived from a distance as well as its non-invasive nature. Interestingly, in

one of the high profile murder cases in the UK where a child was abducted and killed,

the identity of the murderer could not be revealed directly from the surveillance video

footage. The only solution that could be employed to determine the suspect’s identity

in this situation was gait recognition, as proposed by researchers from the University of

Southampton [92]. However, gait as a biometric is still in its infancy and most of the

gait recognition methods rely on whole body analysis.

1
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1.2 Main Contributions

A number of new methods and approaches based on gait analysis and suited for de-

ployment in automated visual surveillance applications are proposed in this study. The

major contributions of this research are presented in this section. We propose a layer-

ing approach to ease the process of tracking multiple moving objects based on low-level

feature correspondence between consecutive frames [D]. Moving objects are assigned to

different layers whereby blobs corresponding to the same object are assigned to the same

layer. The criteria for allocating objects to layers are based on the Mahalanobis distance

measure of shape-based features. A number of constraints is imposed to efficiently han-

dle occlusion, background clutter and other difficulties encountered during the tracking

process.

Because of the dearth of visual surveillance systems that exploit human gait for

object classification and their limited aim of only detecting pedestrians using simple

shape-based or motion-based features extracted from silhouette data, we have explored

an alternative technique for walking people detection and recognition based on their gait

pattern [A,B]. In our method, walking pedestrians are distinguished from other moving

objects via exploiting the rhythmic and periodic nature of human gait. The foot print

pattern produced from the heel strikes of walking subjects is considered the primary cue

for people detection.

Furthermore, we present a new method aimed to extract the foot print pattern of

walking subjects (i.e. the heel strike locations) [E]. The method is based on the obser-

vation that the foot is stabilised on the ground for around half a gait cycle during the

striking phase. Therefore, if we extract corners or edges of every frame and combine

them together, dense or crowded areas will be produced at the heel strike positions. In

order to derive the heel strikes, a new measure of point proximity is introduced in this

research which gives a discrete value for the density of points in an image. The proximity

value for a given point is evaluated based on the number of points in the neighbourhood

region and their distance to the point.
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A new model-based method is described to extract the positions of the joints for walk-

ing people [C]. A recursive evidence gathering algorithm is presented for the extraction

process whereby spatial model templates for the human motion are described in a pa-

rameterized form using the Elliptic Fourier Descriptors. In this way, we have established

a baseline analysis which can be deployed in recognition, marker-less analysis and other

areas. Moreover, a novel approach for developing an automated non-invasive biometric

system based on gait is described. The gait signature is derived using the model-based

method. As most surveillance systems are limited to tracking and detecting moving

objects, we have made a new attempt to extend visual surveillance systems to recognise

walking people using a biometric solution based on gait.

Finally, intensive research is carried out to confirm the early psychological theories

claiming that the discriminative features for motion perception and people recognition

are embedded in gait kinematics. We show that the gait angular measurements derived

from the joint motions possess most of the discriminatory power for gait recognition.

Furthermore, we explore the effects of the different covariate factors of gait recognition

including footwear, clothing, carrying conditions and walking speed. This is the first

major study of its kind in this field which attempts to analyse the covariate factors

using a model-based method.

1.3 Thesis Overview

This thesis is structured as follows:

• Chapter 2: Introduction

In this chapter, an introductory motivation for the use of gait as a biometric

method and its prospect deployment in visual surveillance applications is pre-

sented. This is followed by a discussion of the various challenges encountered to

develop a gait recognition system for smart surveillance. Finally, the chapter ex-

tensively reviews the research carried out in the field of visual surveillance with a

particular emphasis on gait recognition.
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• Chapter 3: Human Motion Analysis

This chapter is devoted to providing an insight into human motion perception

and gait analysis. The different motion capture systems employed for motion

analysis including marker-based and marker-less are reviewed. This is followed by

a discussion of the different stages involved in the processing and perception of

human motion using vision-based systems. The chapter delves into the arena of

gait analysis describing the gait cycle, gait characteristics and gait motion in full

details. Lastly, a brief review of the current gait databases is plotted.

• Chapter 4: Gait for People Detection

In this chapter, the proposed method for tracking multiple moving objects in an

unconstrained environment is described. The method uses a layering technique

in order to establish motion correspondence between frames based on low-level

features. The chapter presents the gait-based approach employed for the classi-

fication of moving objects. The rhythmic pattern of gait motion derived via the

extraction of the heel strikes is utilised as the main cue to distinguish walking

subjects from other moving objects. The experimental results for tracking and

classifying moving objects are discussed at the end of the chapter.

• Chapter 5: Feature Extraction via Model-Based Method

This chapter is dedicated to presenting the proposed model-based method for the

extraction of the joint trajectories of walking subjects. The spatial templates

describing the human gait motion are produced via gait analysis performed on

data collected from manual labelling. The Elliptic Fourier Descriptors are used to

represent the motion models in a parametric form. We show how the heel strike

data can be exploited to reduce the dimensionality of the parametric models. In

this chapter, the recursive evidence gathering algorithm used for the extraction of

the joints is described. The experimental results for the extraction of the joints in

indoor and outdoor scenarios are presented at the end of the chapter.

• Chapter 6: Gait Recognition by Dynamic Cues

In this chapter, the different types of features used for gait analysis and recognition
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are presented citing some of the reported results for gait recognition using body-

related features. The different stages for the derivation of gait signatures for

walking subjects using dynamic measurements are described. The recognition

significance of the various dynamic cues which are extracted from the joint angular

motion of the lower limbs is examined for constructing a gait signature based purely

on the gait kinematics.

• Chapter 7: Exploratory Analysis of Gait Recognition

This chapter is devoted to investigating the covariate effects on gait recognition.

We present a brief review from the medical literature describing the various factors

which affect the gait pattern. Afterwards, experimental studies are carried out to

explore the different covariates on gait recognition using dynamic features. The

covariate factors include footwear, clothing, carrying conditions and walking speed.

• Chapter 8: Conclusions and Future Work

Overall conclusions are drawn in this chapter. Future work and research thrusts

are discussed at the end of the chapter.

1.4 List of Publications

So far the following papers have been published:

[A] I. Bouchrika and M. S. Nixon. People Detection using Gait for Visual Surveillance,

BMVA Symposium on Detection vs. Tracking, London, United Kingdom 2006

[B] I. Bouchrika and M. S. Nixon. People Detection and Recognition using Gait for

Automated Visual Surveillance, in Proceedings of the IEE International Sympo-

sium on Imaging for Crime Detection and Prevention, pp.576-581, London, United

Kingdom, June 2006

[C] I. Bouchrika and M. S. Nixon. Markerless Feature Extraction for Gait Analysis,

in Proceedings of 5th IEEE SMC Chapter Conference on Advances in Cybernetic

Systems, pp.55-60, Sheffield, United Kingdom. September 2006
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[D] I. Bouchrika and M. S. Nixon. Gait-Based Pedestrian Detection for Automated

Surveillance. in Proceedings of International Conference on Computer Vision Sys-

tems, Bielfeld, Germany, March 2007

[E] I. Bouchrika and M. S. Nixon. Model-Based Feature Extraction for Gait Analysis

and Recognition, in Proceedings of Mirage: Computer Vision / Computer Graph-

ics Collaboration Techniques and Applications pp.150-160, INRIA Rocquencourt,

France, March 2007

[F] I. Bouchrika and M. S. Nixon. Exploratory Factor Analysis of Gait Recognition,

in Proceedings of 8th International Conference on Automatic Face and Gesture

Recognition, Amsterdam, The Netherlands, September 2008



Chapter 2

Introduction

In recent years, automatic visual surveillance has received considerable interest in

the computer vision community. This is due to the increasing numbers of crimes from

robbery to terrorist attacks, as well as the inability of human operators to monitor the

increasingly growing numbers of surveillance cameras deployed in security sensitive areas

such as government buildings and airports, or public places such as shopping malls and

streets. According to the British Security Industry Association, the number of CCTV

cameras installed in the UK was estimated to be more than 4.25 million in 2004; this

figure is expected to grow rapidly particularly after the terrorist attacks that London

witnessed in July 2005. Despite the huge increase of surveillance systems, the question

whether current surveillance systems work as a deterrent to crime is still debatable.

Security systems should not only be able to predict when a crime is about to happen

but, more importantly, they ought to identify the individuals suspected of committing

crimes, say through the use of biometrics such as gait recognition. In this chapter, the

use of gait analysis for visual surveillance is introduced. This is followed by a discussion

of the various challenges in developing a smart surveillance system. Finally, the chapter

extensively reviews the research carried out in the field of visual surveillance with a

particular emphasis on gait recognition.

7
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2.1 Gait for Visual Surveillance

A vision-based system for automated surveillance consists of three main phases: detec-

tion, tracking and perception. In the last phase, a high-level description is produced

based on the features extracted during the previous phases from the temporal video

stream. The main aim of a smart surveillance system is to detect and track people in

the scene as well as to perceive their behaviour and report any suspicious activities to

the control centre. However, an ideal security system for crime detection and prevention

should be able to recognise potential offenders from existing data.

Identification systems will undoubtedly play a key role in aiding law enforcement offi-

cers in their forensic investigations. More importantly, by early recognition of suspicious

individuals who may pose security threats, the system would be able to reduce future

crimes. Human motion perception has been of interest to researchers from different

disciplines due to the wide range of applications ranging from activity recognition to

people identification. In fact, early studies by Johansson [63] on human motion percep-

tion using Moving Light Displays (MLD) have revealed that an observer can recognise

different types of human motion based on joint motions. Moreover, the observer can

make a judgement of the gender of the person [70], and even further identify the person

if they are already familiar with their gait [45]. This leads to the conclusion that gait

might be a potential biometric for surveillance systems.

A biometric is a descriptive measure based on the human behavioural or physiolog-

ical characteristics [59] which distinguishes a person uniquely among other people; this

unique description should be universal and permanent. Currently, as most biometric

systems are still in their infancy [59], the use of biometrics is limited to identity verifica-

tion and authentication. Gait is an emergent biometric which is increasingly attracting

the interests of researchers as well as the industry. Gait is defined as the manner of

locomotion, i.e. the way of walking. Early studies by Murray [84] revealed that gait

might be a useful biometric for people identification, a total of 20 feature components

including ankle rotation, spatial displacement and vertical tipping of the trunk have

been identified to render uniquely the gait signature for every individual. While some of
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these features are difficult to extract using current computer vision systems, others are

not consistent over time for the same person [84]. In one of the early experiments on gait

recognition conducted by Cutting et al in 1978 [70], it was demonstrated that people can

recognise others just by gait cues. Interestingly, in one of Shakespeare’s theatre plays

(The Tempest: Act 4, Scene 1) the following sentence gives a clear indication that gait

recognition is not a novel concept:

”High’st Queen of state, Great Juno comes;

I know her by her gait”.

Although gait recognition is still a new biometric and is not sufficiently mature to

be deployed in real world applications such as visual surveillance, it has the potential

to overcome most of the limitations that other biometrics suffer from such as face, fin-

gerprints and iris recognition which can be obscured in most situations where serious

crimes are involved. Face recognition in many cases has been proven to be unreliable

for visual surveillance systems; this is due to the fact that people can disguise or hide

their faces as well as that video data being captured can be inadequate at low resolution.

Furthermore, another major drawback of face identification in security applications is

its low recognition rates in poor illumination. This is because most of the facial features

cannot be recovered at large distances even using night vision capability [66]. Although

fingerprint and iris recognition have proved to be robust for applications where authenti-

cation or verification are required, such biometrics are inapplicable for situations where

the subject’s consent and cooperation are impossible to obtain.

Unlike other biometrics which might not be perceivable at low resolution, gait recog-

nition has attracted interest as it has the potential to be efficient even if the individual

being recognised is at a distance from the camera. Another advantage of gait recognition

is that it is a non-invasive biometric and hence does not require the subject to cooperate

with the system. Furthermore, as the purpose of any reliable biometric system is to

be robust enough to reduce the possibility of signature forgery, a gait signature which

is based on human motion is hard to conceal and forge. Recently, Lynnerup et al [79]

affirmed the usefulness of gait analysis in forensics. They were able to identify two bank
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robbers by matching surveillance images with images of the suspects and this evidence

was later used to convict two suspects. Based on body features, gait and anthropo-

metric1 measures, Lynnerup argued that there was a strong resemblance between the

suspect and one of the perpetrators.

2.2 Challenges

Despite the recent outstanding advancements in computer vision and pattern recogni-

tion technologies, there are still major challenges to be overcome for the realisation of

automated visual surveillance. Accurate and robust segmentation as well as the track-

ing of multiple moving objects in an unconstrained, dynamic and cluttered environment

are only a few of the numerous difficult challenges. Moreover, people detection and

moving object classification using a single surveillance camera is an intricate task. The

difficulties stem from a number of factors related either to the environment such as illu-

mination changes, shadows and occlusion [74] or to the nature of human being such as

self-occlusion, articulation and appearance variation due to the clothing type [1].

Most recent vision systems for human motion analysis rely primarily on the extraction

of markers attached to the joints of moving people. However, most applications such as

visual surveillance require the deployment of an automated marker-less vision system to

recover the joints’ trajectories. On the other hand, automated extraction of the joints’

positions from videos of walking subjects is still an unsolved problem [126, 76] as non-

rigid human motion encompasses a wide range of possible motion transformations due

to the highly flexible structure of the human body and to self occlusion [139, 43]. Fur-

thermore, clothing type, segmentation errors and different viewpoints pose a substantial

challenge for accurate joint localisation.

1Anthropometrics: The systematic quantitative representation of the human body. Anthropometric
techniques are used to measure the absolute and relative variability in size and shape of the human
body. McGraw-Hill Encyclopedia of Science and Technology, 2005
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It becomes clear that developing a biometric system based on gait motion is a highly

demanding problem in computer vision. This is due to the previously mentioned difficul-

ties encountered during the extraction of gait motion and other additional and equally

critical factors to consider what might affect the derivation of gait signature, such as the

physical and physiological conditions of the subject [108, 91]. Finally, the realization

and deployment of automated marker-less gait analysis and recognition in real world

applications would be a major contribution for various disciplines including forensics,

security and medical applications.

2.3 Related Work

Much research in computer vision is directed to the analysis of articulated moving objects

and more specifically into human gait analysis. This research is fuelled by the wide

range of applications where gait analysis can be deployed, such as [55] smart visual

surveillance and athletic performance. There is a large collection of literature from

various disciplines that approves of the concept of using gait for people recognition. The

following section sheds light on the recent state of the art studies related to gait analysis

and recognition covering the different methodologies employed for feature extraction.

As a potential application for gait analysis, we review the latest research for automated

visual surveillance based on human motion analysis.

2.3.1 Automated Visual Surveillance

Existing surveillance systems have been classified into several categories [51] accord-

ing to their type (single or multiple camera) and their functionality (tracking single ,

multiple people, etc.). Wren et al [136] proposed the PFinder system. It uses a uni-

modal background model to locate moving objects. The proposed system however is

constrained to analysing scenes containing a single individual at a time, which may not

be realistic for real world circumstances. The W 4 [51] surveillance system employs an

appearance model to track people whereby single subject or groups are distinguished
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using a projection histogram. Each person in the group is tracked via the detection of

their head. Lipton et al [77] proposed a real time vision-based system to classify moving

objects into either human or vehicle based on the ”dispersedness” i.e. the compactness

of the shaped computed as the ratio of the perimeter squared to the area. In their work,

people are assumed to have a dispersedness value smaller than vehicles, however shape

metrics can vary depending on image size and distance from camera.

Wang [55] surveyed two types of different features used for people detection in surveil-

lance systems: shape-based and motion-based cues. The first type relies on the shape

of human silhouettes such as dispersedness [77], aspect ratio of the bounding box, or

just simple shape parameters. For the motion-based features, the periodicity of human

motion is considered as a strong cue for people detection. Cutler [28] described a real

time method for measuring motion periodicity based on self-similarity, which is used

to distinguish walking people from other moving objects. On the other hand, Javed

et al [62] proposed a different motion-based feature which is based on the rigidity and

self-articulation nature of moving objects. The motion measurement named Recurrent

Motion Image (RMI) computes the repeated internal motion to classify moving objects

into single person, vehicle or group of subjects.

2.3.2 Gait Analysis and Recognition

Much of the interest in the field of human gait analysis has originated from physical

therapy, orthopaedics and rehabilitation practitioners for the diagnosis and treatment of

patients with walking abnormalities. As gait has recently emerged as an attractive bio-

metric, gait analysis has become a challenging computer vision problem. Many research

studies have aimed to develop a system capable of overcoming the difficulties imposed by

the extraction and tracking of human motion features. Various methods were surveyed

in [43], [81], [124] and [3]. Aggarwal et al. [2] categorised the different vision-based meth-

ods used for human motion analysis into non-model based and model-based methods.

In what follows, both approaches with their related work are outlined.
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2.3.2.1 Non-Model Based Approach

In the non-model based approach, feature correspondence between successive frames is

based upon prediction, velocity, shape, texture and colour. Shio et al. [106] proposed a

method to describe the human body using moving blobs or 2D ribbons. The blobs are

grouped based on the magnitude and the direction of the pixel velocity. Kurakake and

Nevatia [73] worked on the extraction of joint locations by establishing correspondence

between extracted blobs. Small motion between consecutive frames is the main assump-

tion, whereby feature correspondence is conducted using various geometric constraints.

For the deployment of non-model based methods for gait recognition, Little et al. [78]

derived a gait signature using dense optical flow where they achieved a recognition rate

of 95% on a database of 6 subjects. Huang [56] proposed a new approach for automatic

gait recognition based on statistical analysis. The gait signature for every subject was

produced by combining the eigenspace transformation (EST) with the canonical space

transformation (CST) in order to reduce the dimensionality of the silhouette data and

optimise the class separability respectively.

2.3.2.2 Model-Based Approach

For the model-based approach, a prior shape model is established to match real images

to this predefined model, and thereby extracting the corresponding features once the

best match is obtained. The stick and volumetric models [139] are the most commonly

used methods. Akita [7] proposed a model consisting of six segments comprising of two

arms, two legs, the torso and the head. Guo et al [49] represented the human body

structure by a stick figure model which had ten articulated sticks connected with six

joints. Rohr [104] proposed a volumetric model for the analysis of human motion using

14 elliptical cylinders to model the human body. Recently, Karaulova et al. [67] used the

stick figure model to build a novel hierarchical model of human dynamics represented

using Hidden Markov Models. The model-based approach is the most popular method

for human motion analysis due to its various advantages [87]: it can extract detailed and

accurate motion data, and is capable of coping well with occlusion and self-occlusion.
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A few number of model-based methods has been proposed for gait recognition. Niyogi

et al [93] were perhaps the pioneers in deploying a model-based method for gait recog-

nition. Gait signature is derived from the spatio-temporal pattern of a walking subject

using a five stick model. Using a database of 26 sequences containing 5 different sub-

jects, a promising classification rate of 80% was achieved. Cunado [27] used the Velocity

Hough Transform to extract the hip angular motion via modelling human gait as mov-

ing pendulum. The gait signature is derived as the phase-weighted magnitudes of the

Fourier components. A recognition rate of 90% was achieved using the derived signature

on a database containing 10 subjects. Yam et al. [138] modelled the human gait as a

dynamic coupled oscillator which was used to extract the hip and knee angular motion

via evidence gathering. The method was evaluated on a database of 20 walking and

running subjects, achieving a recognition rate of 91% based on gait signature derived

from the Fourier analysis of the angular motion. In a more recent work, Wagg et al.

[122] proposed a new model-based method for gait recognition based on the biomechan-

ical analysis of walking subjects. Mean model templates are adopted to fit individual

subjects. Both the anatomical knowledge of human body and hierarchy of shapes are

used to reduce the computational costs. The gait feature vector is weighted using sta-

tistical analysis methods to measure the discriminatory potency of each feature. On

the evaluation of this method, a correct classification rate of 95% is achieved on a large

database of 2163 video sequences of 115 different subjects.

2.4 Conclusions

Gait is an emergent biometric and recent studies confirmed its potential use for surveil-

lance applications. As computer vision researchers approached the problem of gait anal-

ysis and recognition using different methodologies including model-based or model-free

methods, most of their contributions and research studies were limited to the use of a

silhouette-based approach or anatomical-based methods for gait recognition applied to

walking subjects recorded from the side view without examining the effects of every-

day factors including clothing, load carriage and footwear. We propose a model-based
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method for the recovery of joint trajectories. This is because the model-based approach

is more suited to general deployment. Furthermore, we have investigated the use of gait

motion for biometric applications and the effects of various factors on the performance

of gait recognition.



Chapter 3

Human Motion Analysis

The perception of human motion is one of the most important skills people pos-

sess, and our visual system provides particularly rich information in support of this skill.

Yet, attempts to understand the human visual system, or to design an artificial solu-

tion for visual perception, have proven difficult. Human motion analysis has received

much attention from researchers in the last decade due to its potential in a plethora of

applications. This field of research focuses on the perception and recognition of human

activities, including people identification. Human motion analysis is currently deployed

in a wide range of applications such as visual surveillance in sensitive areas like airports

and building lobbies. Moreover, the ability to analyse automatically the content of video

sequences will be a potential key in the development of digital libraries for storing and

retrieving data from video sequences using content-based queries [2]. This chapter is

devoted to human motion perception and gait analysis. The systems employed for mo-

tion analysis along with the different stages involved are discussed. Lastly, the basic

characteristics of human gait is described in more detail followed by a brief review of

the current gait databases.

16
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3.1 Automated Motion Analysis System

Motion capture systems for human motion analysis are dedicated to recording and mea-

suring the posture variation of the human body over time [96]. The extraction of body

parameters including positions and orientations with their temporal variation are used

to reconstruct the three dimensional representation of human motion [68]. Such systems

have received considerable interest due to their potential use in medical care, visual

surveillance, gait analysis and virtual reality. Currently, there are two types of systems

used to capture human motion: marker-based and marker-less systems. Marker-based

solutions rely primarily on markers or sensors attached to key locations of the human

body, whilst marker-less systems rely on computer vision techniques to extract motion

features from the video stream. The majority of systems used for motion analysis are

marker-based and are commercially available. This is mainly due to advance of technol-

ogy and their perceived accuracy.

3.1.1 Marker-based Motion Analysis Systems

Extraction of data in marker-based systems is usually performed in two consecutive

stages: sensing and processing [81]. In the first stage, the information about the joint

positions and orientations are either received from sensors mounted on the human body,

or extracted using special markers and high-speed pre-calibrated cameras. At the pro-

cessing phase, the trajectory data of the joints are processed to reconstruct the 3D

motion. Marker-based systems such as electro-mechanical, electro-magnetic and optical

systems, have proven efficient and as a result are being deployed in a plethora of fields,

particularly in clinical analysis and animation.

The electro-mechanical motion capture systems use an exoskeleton suit with sensors

to capture the joints’ angular motion [17]. Despite their accurate results, such systems

require expensive hardware and are complex to set up. Furthermore, the mechanical

suit might limit the human motion because of the cumbersome wiring around the human

body and consequently leading to the measurement of unnatural motion pattern. Figure
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(a) (b) (c)

Figure 3.1: Marker-Based Systems for Human Motion Analysis: (a) Electro-
Mechanical System1. (b) Electro-Magnetic System2. (c) Optical system3.

3.1(a) shows a subject wearing the Animazoo Gypsy5 electro-mechanical suit which costs

approximately £12,000.

Compared to their mechanical counterparts, electro-magnetic systems use lighter suits

and are more comfortable, therefore considerably increasing the range of human motion

that is possible to capture. The electro-magnetic sensors are attached at key locations

on the subject to record both the position and orientation of the sensors. Nevertheless,

the wiring attached to the magnetic sensors may constrain the motion of the performer

besides the difficulties encountered when changing the sensors’ positions. As an example

of the electro-magnetic capture system, the ShapeWrap II magnetic suit is depicted in

Figure 3.1(b).

Optical systems use special markers such as reflective spheres attached at key loca-

tions of the human body such as the joints. Optical motion capture systems are widely

used by the film industry as it is easy to setup and to change the markers’ configu-

ration compared to the electro-mechanical and electro-magnetic systems. In addition,

1http://www.animazoo.com
2http://www.measurand.com/products/ShapeWrap.html
3http://www.motionanalysis.com
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the accuracy of the extraction is reported to be satisfactory for different types of mo-

tion such as running and jumping [96]. Figure 3.1(c) demonstrates an example of the

use of optical motion capture in the film industry. The image was taken during the

production of the “I-Robot” film. The actor shown in the figure is wearing a suit with

reflective markers attached to it. The main drawback of using optical systems is their

prohibitively expensive cost which is in the range of £50,000 to £150,000 [96]. Such

systems require dedicated studios or laboratories with special lighting and multiple fast

cameras to extract the markers, in addition to the licensing cost of the software used for

the derivation of markers’ trajectories. One of the major technical obstacles to optical

systems lies in the difficulty to recover occluded markers, although this issue can be

mitigated at the cost of an increased number of cameras, sometimes reaching 24 [44].

Another major challenge for optical systems is marker identification and correspondence,

i.e, which marker is which. Unlike mechanical and magnetic systems where every sensor

has a unique identifier, optical capture systems must determine which marker corre-

sponds to a particular joint and establish a motion correspondence for markers across

consecutive frames.

3.1.2 Marker-less Motion Analysis Systems

Alternatively, marker-less vision systems can extract the joint trajectories without plac-

ing special markers or sensors on the human body. In fact, all that is required is a

set of video cameras with vision-based software. Marker-less motion capture systems

are suited for applications where mounting sensors or markers on the subject is not an

option, such as visual surveillance. Typically, the architecture of a marker-less system

for human motion analysis consists of three main subsystems: i) detection and track-

ing of the subject, ii) feature extraction and iii) classification of human motion. These

phases are explained in this section. Although this architecture is generic, the actual

structure of such systems depends on their purposes, input types and information being

processed. Figure 3.2 outlines the different subsystems involved in the process of an

automated motion analysis system used for pedestrian detection and recognition. The

same framework is being adopted in the course of this research.
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Figure 3.2: Structure of a Marker-less Motion Capture System.

3.1.2.1 Tracking of Moving Objects

The first step for an automated marker-less motion capture system is to detect moving

objects such as people or vehicles in the scene. Usually, moving blobs are extracted by

employing a variety of motion segmentation methods such as background subtraction

[111], optical flow [80] and temporal differencing [77]. Having extracted moving objects

in every frame from the video stream, tracking should be applied to establish a motion

correspondence between detected moving blobs across frames. The tracking process

involves matching moving objects in consecutive frames based on low-level features such

as velocity, shape, colour and other visual information [4]. The criteria for selecting the

best features are their robustness to noise, size changes and invariance to lighting and

other environmental conditions. There is a trade-off between feature complexity and

tracking efficiency. Low-level features such as points are easy to extract, but are more

difficult to track than high-level features such as blobs. The classification of moving
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objects and detection of people in the scene is performed either at the start or during

the tracking process depending on the type of features used for the classification of

moving obejcts. There are mainly two different types of features which are shape-based

and motion-based.

Feature correspondence is wherever possible established under well-defined constraints

to eliminate most of the tracking problems [2]. Tracking methods are supported by pre-

diction algorithms to estimate the parameters of moving objects in the next frame. This

is based on motion models which describe how parameters change over time [81]. The

most popular predictive method used for tracking is the Kalman filter [130], the Con-

densation algorithm [57], particle filtering [34] and the mean shift [24]. The Kalman

filter which is based on Gaussian distribution for state estimation, is limited to situ-

ations where the probability distribution is unimodal. There are other derivatives of

the Kalman filter such as the Extended Kalman Filter (EKF) [130] and the Unscented

Kalman Filter (UKF) [65]. The condensation algorithm is proposed to support multi-

model distributions by sampling the posterior distribution of the previous frame and

propagating such samples to create the posterior of the current frame [57].

3.1.2.2 High-Level Feature Extraction

Feature extraction is the most important stage for automated marker-less capture sys-

tems since the crucial data required for the classification phase are derived at this stage.

Feature extraction is the process of estimating the set of the measurements of high-level

features in this case the configuration of the whole body or the configuration of the

different body parts in a given scene and tracking them over a sequence of consecu-

tive frames. High-level features estimated at this level for the perception phase include

the joint angular measurements which are used for gait recognition [18], hands’ config-

uration for gesture-driven applications [23] or silhouette-based features for pedestrian

detection and recognition [41]. The methodologies used for feature extraction of human

motion can be broadly classified into various categories depending on either the use of

prior knowledge (model-based and model-free methods) or the type of features extracted
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(pose recovery and average silhouette). In this review, we categorise the feature extrac-

tion methods proposed for human motion perception into three main classes namely:

model-based, model-free and statistical-based methods.

In the model-based approach, an apriori model is used to match real images against a

predefined model, and thereby extracting the features once the best match is obtained.

The most commonly used model-based representations for feature extraction are the

stick and volumetric models [139]. The stick figure model represents the human body as

a combination of line segments that are connected at the joints. There are various ways

to approximate the stick figure model such as the means of medial axis transform and

distance transform [58]. Besides the stick model, the volumetric model is deployed to

obtain a better geometric representation of the human shape at the expense of additional

parameters. The volumetric model uses different 3-D shapes in its representation such

as elliptical cylinders, cones and spheres. Figure 3.3 depicts both examples of the stick

and volumetric models as examples of model-based methods.

(a) (b)

Figure 3.3: Model-Based Methods for Feature Extraction: (a) Stick Figure Model
[20]. (b) Volumetric Model [46].

For the model-free category, no prior model is used for pose reconstruction, instead

image features are mapped directly to trajectory data [81]. Feature estimation and
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correspondence between successive frames are based on prediction, velocity, shape and

texture. In [73], Kurakake et al worked on the extraction of joint locations by estab-

lishing correspondence between extracted blobs. The slight motion of objects between

consecutive frames is the main assumption, whereby feature correspondence is conducted

using various geometric constraints.

In the statistical-based approach, most of the methods are either silhouette-based or

contour-based [82]. The human motion is usually perceived without the need to extract

the body parts or joints. Instead, motion features are derived directly from video frames

by applying statistical methods on the silhouette or contour data. Wang et al [127]

derived binary silhouettes of walking subjects which are converted into a one-dimension

normalised distance signal by contour unwrapping with respect to the centroid position.

In the same way, Huang [56] and Foster [41] dealt with the problem of gait recognition

using human silhouettes to derive gait signatures for walking subjects. They applied

statistical methods on silhouette data including Principal Component Analysis (PCA)

and Fisher Discriminant Analysis.

3.1.2.3 Classification Phase

The perception process is mainly a pattern classification problem which involves match-

ing a test sequence with an unknown label against a group of labelled references consid-

ered as the training set [43]. At this stage, a high-level description is produced from the

features extracted from previous phases. This description includes activity or gesture

recognition, gender classification, medical assessment or gait recognition. The classifica-

tion process is normally preceded by pre-processing stages such as data normalisation,

feature selection and dimensionality reduction of the feature space. A variety of pattern

recognition methods is being used in vision-based systems for the perception of human

motion, including Neural Networks, Support Vector Machines (SVM) and K-Nearest

Neighbour method (KNN).
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3.2 Human Motion Perception

Although people can discern the state of the subject from a single static image, motion

pictures provide even richer and reliable information for the perception of the different

biological, social and psychological characteristics of the person [15] such as emotions,

actions and personality traits of the subject. Furthermore, this notion was also observed

by Darwin (1872) in his book ”The Expression of Emotions in Man and Animals” where

it was stated:

”Actions speak louder than pictures when it comes to understanding what

others are doing.”

The human visual system is very sensitive to motion as it tends to focus attention on

moving objects. In contrast, static or motionless objects are not as straightforward

to detect. Motion is a spatio-temporal event defined as the change of spatial location

over time. Given some visual input, the visual perception of motion is regarded as the

process by which the visual system acquires perceptual knowledge such as the speed and

direction of the moving object [33]. Whilst this process is spontaneous for the human

visual system, it has proven to be extraordinarily difficult to duplicate this capability

into computer vision systems.

Psychological studies carried out by the Swedish psychologist Johansson [63] in 1973,

revealed that people are able to perceive human motion from Moving Lights Display

(MLD). An MLD is a two-dimensional video of a collection of bright dots attached to

the human body taken against a dark background where only the bright dots are visible

in the scene. An observer can recognise different types of human motion such as walking,

jumping, dancing and so on. Moreover, the observer can make a judgement about the

gender of the performer [70], and even further identify the person if they are already

familiar with their gait [45]. Although the different parts of the human body are not seen

in the points and no links exist between the bright dots to show the skeleton structure

of the human body, the observer can recover the full structure of the moving object.

Thereby, the motion of the joints contains sufficient information for the perception of
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human motion [14, 36]. Figure (3.4) shows a series of frames used for the MLD. The

joint positions of walking subjects are shown in every frame.

Figure 3.4: Frames taken from a Moving Light Displays video.

There is a wealth of research which strives to document the capability of the human

visual system to perceive the human motion from a small number of moving point. Nev-

ertheless, the underlying perceptual process is poorly understood and there is still a lack

of research which explains the underlying principles for representing and retrieving the

biological motion [117]. Two main theories have been put forward for the perception

of human motion from the MLD: structure-based and motion-based [21]. The former

theory claims that the initial step is recovering the 3D structure from the motion infor-

mation in MLDs, and then use the recovered structure for the purpose of recognition.

In the latter approach, recognition is based directly on the motion information without

recovering the skeleton structure of the human body from the MLD; instead the motion

information is extracted from a sequence of frames.

The motion of the human body is a form of non-rigid and articulated motion [3].

Hence, detecting and tracking is a very difficult task as the non-rigid motion encompasses

a wide range of possible motion transformations due to the highly flexible structure and

the opportunity for self-occlusion [139]. On the other hand, during walking and running,

people share the same global gait pattern, as they swing their legs the in order to move.

This constrains the allowable motion transformation. Therefore, gait motion can be

considered as an ideal starting point for motion analysis due to its global and cyclic

nature.



Chapter 3 Human Motion Analysis 26

3.3 Gait for Human Motion Analysis

3.3.1 Gait Analysis

Gait analysis is the systematic study of human walking [131] aimed at the quantification

and understanding of the locomotion process. This study involves the observation of

body movements, mechanics and muscle activities. Gait analysis is carried out for two

main purposes [131]: firstly, the treatment of patients with gait abnormalities, secondly

to enhance the knowledge and understanding of human gait. The study of human

gait dates back to the ancient times. Aristotle (384-322 BC) might be considered the

first person to study and describe gait in his book “De Motu Animalium“ (on the

movement/motion of animals). Aristotle wrote about the difference between human

and animals, and his observations of human gait were concluded as follows:

”If a man were to walk on the ground alongside a wall with a reed dipped in

ink attached to his head, the line traced by the reed would not be straight but

zigzag, because it goes lower when he bends and higher when he stands

upright”

Leonardo da Vinci (1452-1519) described the principles of walking and observed the com-

plexity and symmetric nature of human gait in his famous anatomic paintings. During

the 18th century, the Weber brothers in Germany conducted the first formal biome-

chanical experiment, giving clear description about the timing of gait cycle. In 1892,

Muybridge devised an apparatus with multiple trip wires attached to the camera shut-

ters which was employed to record the locomotion process [86]. Gait analysis evolved

greatly in the 20th century with the invention of many tools and instruments needed for

the measurement and quantification of gait motion [92].

3.3.2 Human Gait Characteristics

Gait is defined as the manner of locomotion characterised by consecutive periods of load-

ing and unloading the limbs. Gait includes running, walking and hopping. However the
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term gait is most frequently used to describe walking. The rhythmic pattern of human

gait is performed in a repeatable and characteristic way [132]. The locomotion process

involves the interaction of many body systems working together to yield the most effi-

cient walking pattern [40]. The locomotion system consists of four main subtasks that

are fulfilled at the same time to produce the walking pattern [135]. These four functions

are: (i) initiation and termination of locomotor movements (ii) the generation of contin-

uous movement to progress toward a destination (iii) adaptability to meet any changes

in the environment or other concurrent tasks (iv) maintenance of the equilibrium during

progression. Compared with quadrupeds, the maintenance of stability and balance for

humans during walking is a particularly difficult task for the postural control system.

This is mainly because for most of the gait cycle, the human body is supported by only

a single leg with the centre of mass passing outside the base of support provided by the

foot in contact with the floor [134].

Early medical investigations conducted by Murray et al. [85] produced a standard gait

pattern for normal walking people aimed at studying the gait patterns for pathologically

abnormal patients. The experiments were performed on sixty people aged between 20

and 65 years old. Each subject was instructed to walk for a repeated number of trials.

For the collection of gait data, special markers were attached on every subject. Murray

suggested that gait is unique for every subject if all gait movements are considered. It

was reported that the motion patterns of the pelvic and thorax regions are highly variable

from one subject to another. However, the extraction of such patterns is complex using

computer vision methods. In [84], Murray observed that the ankle rotation, pelvic

motion and spatial displacements of the trunk embed the subject individuality due to

their consistency at different trials. Although, there is a wealth of gait studies in the

literature aimed for medical use, none is concerned for the use of gait for biometrics and

recognizing people. The gait measurements and results introduced by Murray prove to

be of benefit to the use of gait recognition using computer vision methods to be shown

later.
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3.3.3 Human Gait Cycle

A gait cycle is defined as the time interval between successive instances of initial foot-

to-floor contact for the same foot [27], and the way a human walks is marked by the

movement of each leg. Each one possesses two distinct phases. When the foot is in

contact with the floor the leg is at the stance phase. The time when the foot is off the

floor to the next step is defined as the swing phase. Each phase is marked by a start

and an end; the stance phase begins with the heel strike of one foot when the leg strikes

the ground.

Figure 3.5: Human Gait cycle [131].

Considering the motion of the left foot, its heel strike starts its stance phase, which is

characterised by a sequence of events. To bring the left foot onto the ground the ankle

flexes, and as a result, the body weight is transferred onto it. The right leg then swings

through in front of the left leg as the left heel lifts off the ground; this is referred to ”heel

off”. As the body weight moves onto the right foot, the supporting left knee flexes, the

stance phase ends, when the remainder of the left foot, which is now behind, lifts off the

ground. This is referred to as ”toe-off” and it occurs before the swing phase. As a result
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of the toe off, the weight is transferred onto the right leg and the left leg swings forward

to strike the ground in front of the right foot. The swing phase ends with the heel strike

of the left foot. A stance and a swing phase form a cycle referred to as the gait cycle

which is illustrated in Figure (3.5). Stride length is considered the linear distance in the

plane of progression between successive points of contact of the same foot. Step length

is the distance between successive contact points of opposite feet. A step is the motion

between successive heel strikes of opposite feet [27].

(a) (b)

(c) (d)

Figure 3.6: Gait Angular Motion: (a) Gait Angles. (b) Hip Angular Motion. (c)
Knee Angular Motion. (d) Ankle Angular Motion.
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3.3.4 Gait Angular kinematics

The gait angular kinematics of the hip, knee and ankle angles are illustrated in Figure

(3.6). The hip initially bends or flexes by approximately 20◦ throughout the terminal

stance phase, then it extends until it reaches approximately 10 degrees during the stance

phase. During the pre-swing and throughout most of swing phase, the hip flexes to

nearly 20◦ , and then starts to extend just before the next initial contact. The knee

angular motion illustrated in Figure (3.6(c)), shows the knee is almost fully extended

then during the first part of the midstance, it gradually begins to flex to its support

phase peak which is about 20 degrees. The knee extends again almost fully and then

flexes to approximately 40◦ during the pre-swing phase. After toe-off, the knee flexes

to reach a peak of 60 to 70 degrees (measured relative to the thigh) at mid-swing, then

extends again in preparation for the next initial contact. The angular pattern of the

ankle described in Figure (3.6(d)) shows that the ankle extends to about a maximum

of 7◦ (measured relative to the horizontal plane) from an initial angle. During the

mid-stance phase, it flexes to a maximum of 15 degrees as the lower leg rotates over

the supporting foot. Then the ankle extends to approximately 20◦ during the terminal

stance and pre-swing. After toe-off , the ankle rapidly flexes to the start position.

3.3.5 Analysis of Joint Spatial motion

To analyse the spatial displacement of the joint motion, the joint positions from 30

video sequences with people walking normal to the viewing plane of the camera, have

been manually labelled. The videos were taken from the SOTON database described in

Section (3.4.1) recorded at frame rate of 30 frames/seconds. For every frame of the video

sequence, the positions of the right ankle, right knee and hip were manually labelled. The

data for the ankle between two consecutive heel strikes of the same leg are normalized

between the range [0, 1] as shown in Figure 3.7(a). Whilst, we have normalized the data

for the knee and hip extracted between two consecutive stances of the same leg as shown

in Figures 3.7(c) and 3.7(e). The corresponding horizontal displacement for each joint

is plotted against the motion graph of the joint in Figure (3.7).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Spatial Motion Analysis of the Joints:(a), (c), (e) Angular Motion Graphs
for Ankle, Hip, Knee respectively. (b), (d), (f) Horizontal Displacement for Ankle, Hip,

Knee respectively.
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It can be observed that people have more or less the same ankle motion pattern.

Another graph 3.7(b) is plotted showing the horizontal displacement of the ankle, where

it is noted that the graphs for all subjects nearly coincide, leading to the suggestion that

for a normalized data set, subjects move their ankles forward with the same velocity.

Figures 3.7(c) and 3.7(e) show the hip and knee motions respectively for the normalized

extracted data. In contrast to the smooth graphs of the ankle, there is noise in the data

for the hip and knee due the difficulties encountered during the manual labelling. Never-

theless, it can be observed that walking people largely share the same global pattern for

the hip and knee motions. The horizontal displacement for the hip and knee are shown

in Figures 3.7(d) and 3.7(f). The hip forward velocity is approximated to be constant

for all subjects, in contrast to the knee velocity, which varies for all subjects. However,

with the data normalized, people have more or less the same knee horizontal velocity.

3.4 Gait Databases

As gait analysis has gained an increasing interest in different research areas, along

with the recent scientific developments of using gait as a potential biometric, the es-

tablishment of gait databases has become vital for the evaluation and assessment of

research theories and systems proposed for gait analysis, automated marker-less extrac-

tion and gait recognition. There were two early gait databases which are the UCSD

and Southampton database. The first database was collected by the Visual Computing

Group at the University of California San Diego. There are 6 subjects in the database

filmed outdoors. The Southampton database is recorded indoors and consists of 16 video

sequences for 4 subjects wearing special trousers [92].

Recently, several gait databases were developed primarily for the HumanID at a

Distance program [98] sponsored by the Defence Advanced Research Projects Agency

(DARPA). The program was aimed to improve technologies for facial and gait recogni-

tion as well as new technologies for people identification. The HumanID project included

the following research institutions: University of Southampton [107], University of Mary-

land, Georgia Institute of Technology and Massachusetts Institute of Technology. In this
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research, we used the SOTON gait database developed by the Information: Signals, Im-

ages, Systems (ISIS) Research Group at the University of Southampton [107] for the

analysis and evaluation of automated extraction of gait features as well as gait recog-

nition. Table (3.1) surveys the different gait databases developed under the DARPA

program.

Database Sub1 Seq2 Scene Description Covariate Factors

Covariate
SOTON

12 12,730 Indoor conditions Footwear, clothing, walking
speed, viewpoint and carrying
conditions

Large
SOTON

118 10,442 Indoor, Outdoor
and Treadmill

Viewpoint

Gait Chal-
lenge

122 1,870 Outdoor environ-
ment

Viewpoint, surface, footwear,
time and carrying conditions

CMU 25 600 Indoor and
Treadmill

Walking speed, viewpoint,
surface and carrying condi-
tions

GATECH 15 168 Outdoor Viewpoint

MIT 24 194 Indoors

Table 3.1: Human Gait Databases.

3.4.1 Southampton (Inter-Subjects) Large database

The SOTON database is the largest database [19] containing more than 10,000 video

sequences of walking subjects. The database is aimed to investigate the potential of

gait as a biometric as well as to assess the capabilities of computer vision methods for

automated extraction of gait features. There are 118 different subjects in the database

with more than 40 video sequences for every person, henceforth it is considered the

largest database for the analysis of between-subject variation [92]. Subjects were filmed

in indoor and outdoor environments using high quality progressive and interlaced digital

video at resolution of 720 by 576 pixels. For the indoor data, people walked on a special

track inside a laboratory with controlled lighting and chroma-key background.

For the data recorded outdoors, there is no control over the background and lighting

conditions. Subjects were filmed walking in both directions for indoors and outdoors.

To account for viewpoint invariance of gait analysis, two digital camcorders are used
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for the recording of video sequences in indoor and outdoor environments. In order to

capture the sagittal view, one camera was placed normal to the walking direction whilst

the other camera was set to record from an oblique angle. The video cameras used for

sagittal and oblique views were set to progressive scan and interlaced respectively. Figure

(3.8(a)) depicts samples of the indoor database of two subjects recorded from sagittal

and oblique views. Examples of the outdoor database are shown in Figures (3.8(b)). In

addition to the indoor and outdoor data, the SOTON gait database comprises treadmill

data as depicted in Figure (3.8(c)). Subjects are recorded walking on the treadmill at

constant speed with similar laboratory conditions as the indoor data.

(a)

(b)

(c)

Figure 3.8: The Southampton Large Gait Database: (a) Indoor Sagittal and Oblique
View. (b) Outdoor Sagittal and Oblique View. (c) Treadmill Data.

1Number of subjects
2The total number of sequences in the database
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3.4.2 Southampton Covariate Database

The SOTON covariate database is constructed for the purpose of examining and assess-

ing the different covariate factors which may affect gait analysis and recognition. The

database consists of 12,730 video sequences for 12 different subjects who were also filmed

in the SOTON large database. Subjects were recorded walking on a special track inside

a laboratory with the same indoor conditions described earlier for the SOTON large

database. Each subject was recorded walking in 15 different scenarios with at least 10

trials for each case. The covariate database includes cases where subjects wear a variety

of footwear ( flip flop, boots, trainer, socks, shoes), cloths ( trench coat, rain coat, nor-

mal clothing) and carrying various bags ( hand bag, barrel bag). Besides, people were

filmed walking at different speeds (normal, slow and quick). Four different viewpoints

were used for the database including sagittal, frontal, and two oblique views. Figure

(3.9) shows the different covariate factors of the database.

3.5 Conclusions

Human motion analysis is one of the most active and attractive research areas in com-

puter vision due to the wide vistas that it opens for a plethora of fields ranging from

visual surveillance to medical assessment. Studies conducted by psychologists revealed

that joints’ trajectories possess sufficient information to recognise the subject identity.

Nevertheless, the extraction of motion features has proved to be a difficult task, to say

the least, due to the complex nature of human motion. As the human gait pattern

is global and periodic, such rhythmic motion is considered as an ideal and attractive

starting point for people detection and recognition. The main thrust behind the recent

development of gait as a recognition method, is the complementary studies from psy-

chology and various other disciplines which supported the founding concept that gait

is unique for every person and people can recognise each other by the way they walk.

This information will be used in our model-based analysis. The evaluation of proposed

methods will use the data that has been described here.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.9: The Southampton Covariate Gait Database: (a) Normal Walking. (b)
Barefeet. (c) Boots. (d) Flip Flops. (e) Trainer. (f) Hand Bag. (g) Barrel Bag. (h)

Coat. (i) Trench Coat. (j) Quick Walking. (k) Oblique View. (l) Frontal View.



Chapter 4

Gait for People Detection

As discussed in the previous chapter, the first stage in an automated visual surveil-

lance system is the tracking and detection of subjects from the video stream. Tracking

and classifying moving objects is of prime importance for most applications dealing with

human motion. This is because it lays the foundation for the subsequent stages to ex-

tract and derive features required for the perception phase. As most of the methods

proposed for people detection are largely motion-based, the use of gait for pedestrian

detection from real-world video surveillance is investigated in this research as a first

step for a biometric system. In this chapter, the proposed method for tracking multiple

moving regions in an unconstrained environment is described. The rhythmic pattern of

gait motion is utilised as the main cue to distinguish walking subjects from other moving

objects. The experimental results for tracking and classification of moving objects are

drawn at the end of the chapter.

37
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4.1 Foreground Segmentation

4.1.1 Background Subtraction

The first stage for an automated surveillance system is the detection of moving objects

from the scene. This is often performed via background subtraction. Moving objects are

detected by taking the difference between the current image and the background image

in a pixel-by-pixel fashion for the case when the background is static. The approach

employed for the segmentation of moving objects in this study is the adaptive background

subtraction proposed by Stauffer and Grimson [111]. A mixture of K ( from 3 to 5 )

Gaussian distributions is used to model the RGB colour changes. The probability of a

pixel to have intensity xt at time t is given by:

P (xt) =

K
∑

j=1

wjη (xt, µj ,Σj) (4.1)

where wj , µj and Σj are the weights, mean, and covariance matrix for the jth distribution

respectively. η is the normal density function defined in (4.2):

η(x, µj , Σj) =
1

(2π)d/2 |Σj |1/2
e−

1
2
(x−µj)

T Σ−1
j (x−µj) (4.2)

d is the dimension of the colour model which is 3 for the RGB model. The distributions

are ranked according to the ratio of their weights over standard deviations. The back-

ground model is formed using the first B distributions such that B is estimated using

(4.3):

B = arg min
b





b
∑

j=1

wj > T



 (4.3)

where T ∈ [0, 1] is a threshold that defines the number of modes of variations in the

background. A small value of T would result a strict foreground segmentation with

only uni-modal background surfaces are considered and vice versa for larger values of

T. Background subtraction is performed by labelling any pixel that is more than 2.5
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standard deviations of any of the B distributions as a foreground pixel. The parameters

of the distribution µj and Σj are updated recursively [111].

4.1.2 Shadow and Noise Suppression

Since the adaptive background subtraction lacks capability to remove shadows, we used

the approach described by Cucchiara et al [25] to evaluate whether a foreground pixel

corresponds to cast shadow based on the Hue Saturation Value (HSV) colour informa-

tion. The chromaticity and luminosity of the foreground pixels are separated using the

HSV colour space which is proved to match the human perception of colour more closely

than the RGB model [52]. The proposed method [25] assumes that shadows reduce

surface brightness and saturation while maintaining chromaticity properties in the HSV

colour space. In [25], shadow mask is defined for every foreground segmented pixel (x, y)

with the following conditions.

SPk(x, y) =































1 ifα ≤
Iv
k
(x,y)

Bv
k
(x,y) ≤ β

∧(Is
k(x, y)−Bs

k(x, y)) ≤ τ s

∧(Ih
k (x, y)−Bh

k (x, y)) ≤ τh

0 otherwise

(4.4)

such that Ih
k (x, y), Is

k(x, y) and Iv
k (x, y) are the intensity values for the three HSV compo-

nents at coordinate (x, y) in the frame k. B is the background image. The α parameters

defines how the strong the light source, whereas β is set to avoid detection of pixels

where background changed slightly by noise as shadows. The choice for the threshold

parameters τ s and τh is set experimentally to 0.1 and 0.5, respectively.

Figure (4.1) shows the results of adaptive background subtraction followed by shadow

suppression. Morphological operators including erosion and dilution are employed to

remove noise from the foreground image produced from the background subtraction

process. Finally, Connected Component Analysis is utilised to extract the different

blobs from the foreground binary silhouettes.
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Figure 4.1: Foreground Segmentation

4.2 Tracking Moving Objects

Having detected moving regions using the foreground segmentation algorithm described

in the earlier section, the next step is to track moving objects over a sequence of frames.

Tracking multiple objects simultaneously is a fundamental component in surveillance

applications and not surprisingly a challenging task as well. During this process, typi-

cal complications encountered in real world surveillance video need to be meticulously

considered such as occlusion, shape and lighting variations, background clutter ( such as

moving tree leaves.) and overlap of moving objects; for which a robust region correspon-

dence algorithm is required. Tracking systems must be able to track objects which are

partially occluded and capable of recovering objects which were fully occluded for a short

time. Furthermore, the entry of new objects into the scene must be handled correctly

such as when a new walking subject enters the scene, or an existing object splits from

moving region as for the case when a subject leaves a group of people walking together.

Moreover, the exit of moving objects must be taken into consideration along with the
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case where moving objects become stationary (e.g. a moving vehicle stops) as well as

the situation where separate moving objects merge into one moving region.

Existing tracking methods use various cues such as size, compactness and colour in-

tensity. The proposed approach in this research models moving objects as temporal

templates characterised by a combination of three basic features namely: the size, the

centroid position, and the aspect ratio of height to width of the object bounding box.

Furthermore, the colour information could be used for tracking by taking the major or

dominant colour components derived using statistical methods such as Principal Com-

ponent Analysis (PCA). In this study, only the shape-based features are considered

because they involve low-complexity computation and yet they enjoy robust charac-

teristics which are highly sought after in the design and implementation of a tracking

system suitable for real-time applications. The size, which is a shape-based feature that

provides information about the shape of the moving region, is measured as the number

of pixels contained within the object. In general, moving objects tend to keep a similar

size to the one in the previous frame. Since moving objects move slightly from frame

to frame, the centroid position is considered a strong feature for tracking. The centroid

position is computed as the average position of all pixels within a region R of N pixels

as expressed by the following equation:

(x̄, ȳ) =





1

N

∑

P(x,y)∈R

x,
1

N

∑

P(x,y)∈R

y



 (4.5)

Furthermore, combining features would overcome the challenges encountered during

the tracking phase such as shape variation, lighting and segmentation errors. A key ele-

ment to successful tracking is to maintain the state of moving objects over the sequence

of frames consistently. For this reason, moving objects are assigned to different virtual

layers such that moving regions which correspond to the same object are allocated to

the same layer. The layer can be viewed as a virtual container proposed to ease the

tracking process. Layers are defined by the following parameters Li < si, hi, wi, xi, yi >

where i is the layer index. si, wi and hi are the values of the size, width and height

parameters for objects belonging to the ith layer. xi and yi are the predicted centroid
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position of the object in the next frame. The computation method of these variables is

described in the next section.

4.2.1 Region Correspondence Algorithm

At the initial frame, detected moving objects are allocated to new layers whereby we

update the parameters for every layer. In the following frames, we create a list which

contains all the existing active layers. As most blobs with smaller size are noise and

the size is an important cue for tracking, newly detected moving regions are ordered

according to their size. Then, starting from the larger blobs we take every object and

search for the ideal layer in the list to assign this object to. The allocation criteria

is discussed in the following sections. If an allocation is made, the parameters for the

selected layer are updated accordingly and we remove this layer from the list. If an object

is not assigned to one of the existing layers, a new layer is created for this new object.

It is possible that some active layers remain in the list if no corresponding candidate

objects have been allocated to them. This may occur in two cases: either because of full

occlusion or the total disappearance of the object from the scene. In such situations,

the centroid parameters for these layers are updated based on the priori knowledge from

the previous frames.

In order to maintain the state of moving objects consistently during the tracking

phase, the layer parameters are updated using different update functions. As objects

move relatively slowly with respect to the video frame rate ( which is usually 25 to 30

frames/second for the set of video data being used for pedestrian detection and gait

analysis), the centroid position is estimated linearly by computing the velocity Vi as the

spatial difference of the last two previous positions. The Kalman filter method can also

be employed to predict the centroid position. The size, width and height variables are

updated using a linear model constructed in such a way that new information is added

slowly and old information is gradually forgotten. This allows the model to gradually

accommodate the changes of the object shape. For a feature ft of a layer with a new

candidate object whose measurement is mt at the tth frame, the new feature ft+1 at
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(t + 1)th frame is updated using the function defined in (4.6) where ε is a small number

typically set to 0.1.

ft+1 =
ft + (mt × ε)

1 + ε
(4.6)

Because the Euclidean distance metric allows dimensions with larger scales and vari-

ances to dominate the feature space, the cost function C for allocating moving objects

to their corresponding layers is based on the Mahalanobis metric measure using Equa-

tion (4.7). The use of the Mahalanobis metric alleviates most of the Euclidean metric

limitations, as it accounts automatically for the scaling of coordinate axes in the feature

space [140, 129]:

C =

√

(vl − vc)
T Σ−1 (vl − vc) (4.7)

where vl and vc are the feature vectors for the layer and the candidate object respectively.

Σ−1 is the inverse of the within-class covariance matrix of the training set [129] . The

proposed algorithm used for the tracking of moving objects is described in Figure (4.2).

The method employs a number of constraints and conditions which are explained in the

following sections.

4.2.2 Tracking Constraints

A number of constraints are imposed on the allocation criteria in order to handle oc-

clusion, entry and exit of moving objects into the scene as well as the split and merge

of moving regions. A candidate object will be allocated to layer Li only if (1) the layer

Li has the smallest distance C computed using the Mahalanobis metric measure and

(2) the size of the object is within the sizes of the objects allocated to this layer which

is expressed statistically as |si − S| < 2.5σi where S is the size of the detected moving

object, σi and si are the standard deviation and mean values of objects’ sizes belonging

to the ith layer. To cope with the appearance of uninteresting regions and noise such as

background clutter, two threshold values S and F are introduced. The threshold S is a

size filter such that regions with a size less than this threshold are considered noise and
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Figure 4.2: The Block Diagram for the Tracking Algorithm. D is the number of
consecutive frames such that a layer does not have a corresponding moving object.

therefore removed. The constant F is a life span threshold such that if a layer has a life

span of F frames or less, then this layer is ignored and deleted. The values of S and F

depend on the resolution and the frame rate of video data and usually are set to small

values such 10 pixels for S and 3 seconds for F .
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For the case when two moving regions merge together, the corresponding layers for

these regions will not be granted an allocation; instead a new layer is created for the new

region. If objects merge only for a short time, such as when two separate subjects walk

in different directions and pass by each other, the newly created layer during the merge

will have a lifespan usually less then the threshold value F . Henceforth, this layer will

be ignored. After the split, the tracking process continues normally and subjects are

allocated to their original layers. This is because the centroid parameters of the original

layers were updated during the merge. For the situation when objects split from one

moving block, new layers are created for every new region, unless the object is divided

due to partial occlusion by a thin structure such as a vehicle or walking person moving or

walking behind a lamppost. Figure (4.3) shows the results of tracking multiple moving

objects simultaneously. The video scene consists of two subjects walking separately,

and one moving vehicle. The three moving objects are tracked successfully during their

lifespan by the layering technique. For visualization purposes, moving regions of each

layer extracted from the video sequences are combined together into one image such that

each colour corresponds to a different frame.

4.2.3 Occlusion Handling

Occlusion when tracking moving objects occurs when part of the object or the object

itself is hidden by another static or moving object and therefore becomes invisible in the

scene. Tracking under occlusion is difficult as features like size and aspect ratio will be

largely affected. Therefore the allocation cannot be performed. Firstly, the case of full

occlusion where the object becomes totally invisible is handled by the centroid update

function; every time the layer does not have a match, the algorithm updates the centroid

parameters of the corresponding layer using the history data from the previous frames.

Another aspect to consider is determining the duration of the time to wait for the object

to reappear. A disappearance threshold D is defined such that if a layer does not obtain

a match after D frames (typically set to 120 frames), then the layer is closed and will

not accept further allocations. If the object reappears in the scene after the threshold

duration has passed, then a new layer will be created for it. For the case of partial
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(a) (b)

(c) (d)

Figure 4.3: Tracking Multiple Objects (a) Frame from the Video Sequence. (b) Layer
1: Moving Vehicle (c) Layer 2: Walking Person (d) Layer 3: Walking Person

occlusion, the matching allocation criteria described earlier is not robust for coping with

occlusion as low-level features for the candidate objects are usually characterised by

dramatic changes. The bounding box is used to handle partial occlusion including the

case when moving regions are split by occlusion. If an unallocated candidate is mostly

contained within the bounding box of a layer, then this object will be allocated to this

layer as it belongs to it.

4.3 Object Classification

The proposed method classifies moving objects into either single walking subject, a group

of people or undefined objects such as vehicles. The classification procedure is based on

the analysis of the rhythmic pattern of gait motion. Because gait is a symmetric and
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periodic motion, the distances between two close heel strikes, i.e., step lengths should be

the same during all gait cycles. This cue is considered as the main feature to distinguish

walking subjects from other moving non-people objects. Therefore, to detect walking

pedestrians, the heel strikes are extracted for the purpose of classifying moving objects.

4.3.1 Heel Strike Extraction

During the striking phase, the foot of the striking leg stays at the same position for

about half a gait cycle, whilst the rest of the human body moves forward as shown

in Figure (4.4(a)). Therefore, if we apply a low-level feature extraction method (such

as edge or corner operators) on every frame and then combine all the resulting frames

together into a single frame, we will observe that dense regions are produced at the

heel strike areas as depicted in Figure (4.4). Since the primary aim of this research is

(a) (b)

Figure 4.4: The Heel Strike Regions : (a) Position of the Right Leg during Walking
[131], (b) Corner Image for Walking subject

the perception of human motion, we have chosen to use corners because they maintain

sufficient information to analyse the human motion. Furthermore, a robust vision system

based on corner detection can work for low-resolution applications. We have applied the

Harris corner detector on every frame t. For every moving object belonging to the ith

layer, we take the corresponding corners for this object as the intersection of the object

blob with the resulting frame. Afterwards, corner images corresponding to the same
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object are combined together into a single image using the following expression (4.8):

Ci =
N
∑

t=1

( H(It) ∧ Li,t ) (4.8)

where H is the Harris corner detector, It is the original image at frame t, Li,t is ith layer.

The ∧ operator is the logical conjunction function which returns either 1 or 0 for the

logical values true or false consecutively. The expression H(It) ∧ Li,t is used to return

only the corner points belonging to the ith object at frame t. An example output of this

process is illustrated in Figure (4.4(b)).

4.3.1.1 Computation of Proximity Image

Because the striking foot is stabilised for half a gait cycle, a dense area of corners is

detected in the region where the foot strikes the ground. In order to locate these areas,

we have devised a measure for point proximity in an image to find where the crowded

region in a given image. The value of proximity at point p is dependent on the number

of points within the neighbourhood region Rp and their corresponding distances from

p. For simplicity, Rp is assumed to be a square area with the centre p, and width of

2r which can be determined as the ratio of the total image pixels to the total of corner

points in Ci.

In order to compute the proximity image, we initially compute the neighbourhood

proximity dp for the region Rp corresponding to the point p, such that dp is also a

square region with the same width as Rp. The computation is carried out in an iterative

process starting from the boundaries of Rp. It computes the nearness value of points

with respect to the centre p and then it iterates inside and accumulate the previous

computed values as expressed in the following equation:







dr
p = Nr

r

di
p = di+1

p + Ni

i

(4.9)
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where di
p is the proximity value for rings of distance i away from the centre p, and Ni is

the number of corners at distance i from the centre.

(a) (b)

Figure 4.5: Example Results for the Corner Proximity Measure: (a) Input Image, (b)
Corner Proximity Image

Afterwards, in order to produce the proximity image, we accumulate all the neigh-

bourhood proximity values dp for all points p into one image as described in the following

equation:

D =

X
∑

x=0

Y
∑

y=0

shift(d(x,y), x, y) (4.10)

where X and Y are the width and height of the image respectively. d(x,y) is the neigh-

bourhood proximity value for region R(x,y). The shift function places the proximity

value d(x,y) on a blank image of size X × Y at the position (x, y). An output of the

point proximity for a sample image is shown in Figure (4.5). The input image contains a

point cloud with a number of dense regions. The resulting image has darker areas which

correspond to the crowded regions in the input image. Because it is a challenging task

to formally determine which regions in a given image are crowded or dense as opposed

to using a simple 2D histogram function, the problem becomes a question of detecting

darker regions of the derived proximity image.

For the application context of this research, we have applied the point proximity

measure on different moving objects being captured using a surveillance camera. Moving

objects include a single walking individual, a group of two subjects walking together and



Chapter 4 Gait for People Detection 50

a vehicle. The results are presented in Figure (4.6). Clearly, the corner proximity image

depicted in Figure (4.6(a)) for the walking subject originally shown in Figure (4.3), has

a pattern of darker spots being detected at the bottom part of the image as the foot

strikes the ground. Moreover, these darker regions are observed to have mostly the

same level of darkness with consistent distance between two consecutive regions. On the

other hand, the proximity image of people walking together constitutes a noisy pattern

corresponding to the foot steps of subjects, however, the lower part of the proximity

image is darker than the upper part of the image. For vehicles, the proximity image

has almost a flat and consistent pattern with peaks located at random positions in the

image.

(a) (b) (c)

Figure 4.6: The corners proximity images for : (a) Single Walking Person, (b) Group
of People, (c) Moving Vehicle

4.3.1.2 Peak Detection

The extraction of the heel strike positions, i.e. the process of detecting darker regions in

the proximity image can be applied using the K-means unsupervised clustering method.

However, this technique requires the value of K to be known. Alternatively, we define

the function f as the vertical projection of a point proximity image:

f(x) =

H
∑

y=1

P (x, y) (4.11)

where P is the proximity image and H is the image height. For noise reduction, the

function f is smoothed using a low-pass filter. Afterwards, the local maxima points of
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the smoothed graph are derived as they reflect the heel strike positions on the horizontal

axis. This is performed by detecting the zero-crossings of the derivative function of f .

Having obtained the x coordinates of the heel strikes, the corresponding y coordinates

can easily be approximated as the centroid of points along the vertical line which crosses

the horizontal axis at the coordinate x. Figure (4.7) presents the results of heel strike

extraction applied to the point proximity image shown in Figure(4.6(a)). The projection

function f is plotted in Figure (4.7(a)). Figure (4.7(b)) shows the detection of local

maxima from the smoothed function. The results of the extraction are shown in Figure

(4.7(c)). Following this approach, the stride parameters of the walking people (i.e., the

distance between two strikes of the same leg) and the gait step can be measured from

the obtained results.

(a) (b) (c)

Figure 4.7: Extraction of Heel Strike Positions : (a) Vertical Projection of the Prox-
imity Image. (b) Local Maxima Detection on the Smoothed function f . (c) Extraction

Results

4.3.2 Derivation of Feature Vector

Clearly, the point proximity images for walking subjects show larger peaks at the bottom

as legs have static periods. Furthermore, since gait is periodic, the stride length should be

the same for different gait cycles, therefore the standard deviation of distances between

two close strikes, i.e. peaks tend to zero. For the classification of moving objects, we

define the feature vector < σ, b, α > where σ is the standard deviation value of distances

between two successive peaks extracted from the point proximity image. The value of

σ should tend to zero for walking subjects and becomes larger for moving vehicles. b is
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the proportion of the lower part of the proximity image computed using the following

equation (4.12):

b =

∑

p∈B
∑

p∈C

(4.12)

where C is the proximity image and B is the lower half of the non-blank part of the

proximity image C. The value of b should be larger for both single subject and a group

of people as most peaks are located at the lower side of the proximity image. The feature

α is the aspect ratio of height to width of the bounding box. This value is mainly used

as a discriminative feature between a single subject and a group of people. To account

for the scaling of the different dimensions, the data are normalised using:

fn =
f − µf

σf
(4.13)

where such that fn is the normalized feature. µf and σf are the mean and standard

deviation of the feature f . The k-nearest neighbour rule is employed for the classification

of moving objects based on the derived feature vectors.

4.4 Results and Analysis

To demonstrate the efficacy of our approach for the use of automated visual surveillance,

the proposed methods for tracking moving objects and detecting walking pedestrians

have been evaluated on publicly available data which contains a variety of scenarios and

conditions. The evaluation experiments are applied on a set of four video sequences

provided by PETS 20011, compressed in JPEG format. The videos are recorded at real-

time frame rate (25 frames/second) and they are filmed in an unconstrained outdoor

environment with walking people and moving vehicles. The size of the video frames is

reduced to 384x288.

1Available from the University of Reading at : http://ftp.cs.rdg.ac.uk/PETS2001/
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4.4.1 Tracking and Occlusion Analysis

The presented algorithm for tracking multiple moving objects is tested on the set of video

sequences. Moving objects are tracked successfully during their life span in the monitored

scene. However, it is observed that the foreground segmentation algorithm is detecting

many false regions due to background clutter (as moving tree leaves), JPEG artefacts

and other environmental conditions. This problem is handled efficiently by the use of

the size and lifespan threshold filters as most of the false regions have shorter lifespans

or smaller sizes, henceforth they are ignored by the tracking algorithm. Figure (4.8)

presents an example of tracking multiple moving objects. At the initial frame shown in

(4.8(a)), there are two moving objects in the scene shown inside yellow bounding boxes,

but the foreground segmentation algorithm has detected five different moving blobs of

which three are false regions. The algorithm tracks successfully the moving regions as

shown in Figure (4.8(b)) and ignores false regions due to either their short lifespan or

small size. False candidate moving objects are shown inside red bounding boxes.

(a) (b)

Figure 4.8: Results of Tracking Multiple Moving Objects: (a) Initial Frame. (b)
Tracking Results after 150 Frames

Furthermore, the tracking algorithm is capable of handling occlusion efficiently, and

reallocating the occluded object to the correct layer when occlusion vanishes. Figure

(4.9) shows a walking person partially occluded by a street light pole. The subject is

detected as multiple separate moving regions by the foreground segmentation process

as shown in Figure (4.9). The algorithm successfully allocates the detected blobs to the
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layer corresponding to the subject because they are not allocated to existing layers and

are mostly contained within the predicted bounding box of the walking subject. After

occlusion, tracking is carried out successfully as shown in Figure (4.9(f)).

(a) (b) (c)

(d) (e) (f)

Figure 4.9: Experimental Results for Handling Occlusion : (a) Walking subject being
occluded. (b) Foreground segmentation. (c) Allocation of moving regions into their lay-
ers.(d) Walking subject after occlusion. (e) Foreground segmentation of d. (f) Tracking

recovery of the walking subject after occlusion.

4.4.2 Classification Results

To verify the effectiveness of our approach to classify moving objects using their gait

pattern, we have carried out a number of experiments on the PETS video data containing

a total of 27 moving objects from the set of four video sequences. The leave-one-out

validation rule is used to assess the performance of the classification using the k-nearest

neighbour classifier. The system is able to discriminate between a single walking subject,

a group of people and vehicles efficiently using the proposed features, achieving a Correct

Detection Rate of %100. The results of the classification are detailed in Table (4.1). The

feature vectors of moving objects are projected into the feature space shown in Figure

(4.10). It is clearly revealed that the standard deviation feature of the stride parameters,
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is a strong cue to distinguish between walking people and vehicles. This is consistent

with the findings of BenAbdelkader et al. [12] where the stride parameters are utilised

for people identification.

Table 4.1: Moving Objects Classification Results

Type of Object Number of instances Instances Correctly Classified

Single Person 15 15

Group of People 5 5

Moving Vehicles 7 7

Figure 4.10: Feature Space for Moving Object Classification

4.4.3 Performance Analysis for Heel Strike Detection

Although the classification results of moving objects are promising, further experiments

are conducted to confirm the robustness of the proposed method for extracting the heel

strikes. The algorithm is applied on a set of 100 different subjects from the SOTON

database. All subjects are filmed in an indoor environment with controlled conditions.

A total of 510 strikes are extracted successfully from a total of 514 strikes with only

four strikes being missed by the algorithm. The mean error for the positions of the

strikes extracted by the algorithm compared to strikes manually labelled is %0.52 of

the person’s height. The error is measured using the only available and consistent error
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metric by normalising the Euclidean distance between the manual and the extracted

data to subject’s height. The height is measured by taking the average height of the

silhouettes across the video sequences. Figure (4.11) shows the results of heel strike

extraction by the described method compared with the data labelled manually for one

video sequence and it can be observed that the match is indeed close.

(a) (b)

Figure 4.11: Experimental Results for Heel Strikes Extraction: (a) Walking subject.
(b) Extracted strikes compared with data manually labelled

The performance of the heel strike detection algorithm is investigated on different

situations including low-resolution images as well as video sequences with low frame

rates. Figure (4.12(a)) presents the performance error of the algorithm for deriving

the heel strikes from varying image resolutions. The error is measured as the sum of

false detected and missed strikes. The size of the video sequences are reduced gradually

from an original size of 576x720 pixels such that the aspect ratio is kept constant. The

graph shows that the algorithm is still able to derive the heel strikes at a resolution of

72x90 with an acceptable error rate. However, the algorithm fails when the resolution

is reduced to 36x45 pixels where the algorithm misses the extraction of most strikes.

Figure (4.13) shows examples of the heel strike detection algorithm at various resolutions.

Furthermore, the performance error is also evaluated by decreasing the frame rates of

the video stream resized at resolution of 288x360 pixels as depicted in Figure (4.12(b)).

This is performed by dropping a number of frames. It is observed that the algorithm
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performance is not much affected even when dropping 60% of the frames (i.e., frame

rate at 10 frames/second).

(a) (b)

Figure 4.12: Performance Analysis for Heel Strikes Detection.

4.5 Conclusions

We have proposed a new method to classify moving objects for automated visual surveil-

lance. Multiple objects are tracked successfully through the use of shape-based param-

eters to allocate them to different layers. Problems encountered during tracking such as

background clutter, appearance of uninteresting objects and entry and exit of objects

are handled efficiently. Finally, moving regions are classified into either a single walk-

ing person, a group of people or an undefined object such as a vehicle. In contrast to

approaches that employ shape-based parameters for classification, we have explored an

alternative technique for walking people detection based their gait motion.
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(a) 72 × 90 (b) 144 × 180

(c) 288 × 360

Figure 4.13: Heel Strike Detection at Various Resolutions.



Chapter 5

Feature Extraction via

Model-Based Method

Psychological experiments confirmed that joint motions embed sufficient infor-

mation for the perception of human behaviour, gender classification as well as identity

recognition. Nevertheless, the extraction of the joint trajectories has proved challenging

using marker-less methods. This chapter describes the proposed model-based method

deployed to derive the positions of the joints of walking subjects. Motion models de-

scribing the gait motion are produced via gait analysis performed on data collected from

manual labelling. We present the recursive evidence gathering algorithm which is utilised

for the localisation of the joints. Elliptic Fourier Descriptors are used to represent the

motion models in a parametric form. Experimental results for people recognition using

gait are drawn at the end of the chapter.

59
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5.1 Gait Periodicity Estimation

Periodicity is one of the significant characteristics of the gait pattern. The computation

of gait period and cycle partitioning are crucially important steps for gait recognition

algorithms. Several methods have been proposed to estimate gait periodicity as it pro-

vides essential information for the extraction of gait features. Typically, gait cycles are

detected using either the periodic variation of the width for the silhouette bounding box

or auto-correlation methods. Cutler et al. [28] proposed a real-time method for measur-

ing gait periodicity based on self-similarity. BenAbdelkader [13] used the variation of the

bounding box width for the subject silhouette to measure the gait periodicity. In [113],

Chellappa et al. proposed an adaptive filter used to filter the foreground sum signal

prior to the measurement of the gait cycles using the minima of the signal. However,

most of the gait cycle detection algorithms suffer from accuracy problems due to the

varying walking speed as well as badly segmented silhouettes.

In order to avoid the foreground segmentation problems, the estimation of gait peri-

odicity is based on the derived heel strike data. The gait cycles are partitioned at the

start of the striking and terminal stance phases for each leg. Henceforth, the gait peri-

odicity can be estimated as the absolute difference between the frame numbers of two

consecutive heel strikes of the same leg. Based on gait analysis, it is observed that during

the start of the terminal stance phase, most of the human body is vertically projected

into the striking region as shown in Figure (5.1(a)). We introduce the rectangular-based

region Ri such that its width is set to the side-view width of subject experimentally

estimated as a quarter of the distance between two consecutive strikes {ith, (i + 1)th},

and it is positioned at the striking point ith. The height of Ri is defined as the height

of the walking subject.

Based on the observation of gait motion discussed in this section, a histogram-based

function P is derived for the partitioning of gait cycles. The value of P at a given frame,

is defined as maximum values of the proportions of corners detected inside the different

regions Ri,i+1,... to the number of corner points detected within the frame. The function
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(a) (b)

Figure 5.1: Gait Periodicity Detection : (a) The Start of the Terminal Stance Phase,
(b) The smoothing of the Histogram function P (t).

P is expressed in the following equation:

P (t) = arg max
i∈strikes

(

∑

p∈Ri
H(t, p)

∑

p∈I H(t, p)

)

(5.1)

where the function H(t, p) returns 1 if the point p at the tth frame is a corner and returns

0 otherwise. I is the the intensity image. Since we have used corners as the low-level

feature operator, it happens that at the start of the terminal stance phase, the number

of corner points of the segmented walking subject detected inside the regions Ri will

become larger as the whole human body is almost contained within one of the regions

Ri. Henceforth, the local maxima of the function P should reflect the frame numbers

(timing) of the corresponding terminal stance phases. A low-pass filter is applied to the

function P for noise reduction. The zero crossing is applied to the derivative of P to

extract the local maxima and minima. Figure (5.1(b)) shows the smoothed function P .

Indeed, human gait is a periodic motion as the function P has the form of a sinusoid

function. The minimum points on the graph indicate the start of the striking phases.
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5.2 Shape Extraction via Evidence Gathering

5.2.1 The Hough Transform

The Hough transform [54] was originally proposed to detect straight lines in an image

using the slope-intercept parametrisation of a line. The transform was extended by

Duda et al [38] to use a bounded parametrisation of a line instead, as the slope-intercept

parameters have an infinite range causing the algorithm to be impractical for most cases.

The main concept of the algorithm is that at a given point in the image, there is a finite

number of potential lines that pass through the point. Each of these lines which is

uniquely defined by its two polar parameters will be given a vote. The aim of the

transform is to determine which of these potential lines pass through most points in the

image, i.e., the line which has the greatest number of votes accumulated.

Furthermore, Duda and Hart [38] described how the Hough Transform can be used to

detect any analytically defined shape, giving an example of the algorithm being used to

detect circles. The essence of the Hough transform is to determine the free parameters

defined in a multidimensional space where each dimension represents a parameter [6].

Feature points are matched to the parametric analytic representation of the shape to

find the mapping between the locus ( i.e., feature point or point of interest. ) and

the free parameters and hence, gather evidence by adding votes to the multidimensional

accumulator space for the corresponding parameters. The Hough Transform is proved an

efficient template matching algorithm providing optimal results even in noisy conditions

or where there are gaps in the boundary of the shape [6, 48].

Ballard [9] proposed the General Hough Transform (GHT) to detect arbitrary shapes

with scale and rotation invariance. The GHT replaces the analytic parametric con-

straints with a non-analytic tabular representation. The table describes the position of

feature points in the shape relative to a reference point and is indexed by the gradient

information at each feature point. However, the GHT suffers from aliasing and round-

ing errors when scaling and rotating the shape [5]. Alternatively, the Elliptic Fourier
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Descriptor was then used to mitigate the drawbacks of the GHT by giving a continuous

representation of the original shape [6].

5.2.2 Shape Parametrization using Fourier Descriptors

Fourier theory has been used for the analysis of curves and boundaries of shapes for

several years. Fourier analysis provides a means for extracting features or descriptors

from images which are useful characteristics for image understanding. These descriptors

are defined by expanding the parametric representation of a curve in Fourier series

providing a compact and accurate representation of the curve. The main motivations

for using the Fourier Descriptors are the flexibility, simplicity in computation as well as

the vectorial parametrization [6] which is explained further in this section.

Let f be the function for the boundary of a given shape; the function f can be

represented using the Elliptic Fourier Descriptors [6, 47], where the Fourier series is

based on a curve expressed by a complex parametric form as follows:

f(t) = x(t) + iy(t) (5.2)

where t ∈ [0, 2π] . x(t) and y(t) are approximated via the Fourier summation by n

terms:




x(t)

y(t)



 =





a0

b0



+





X(t)

Y (t)



 (5.3)

such that a0 and b0 define the position of the shape’s centre, and X(t) and Y (t) are

computed as:

X(t) =
n
∑

k=1

axk
cos(kt) + bxk

sin(kt)

Y (t) =
n
∑

k=1

ayk
cos(kt) + byk

sin(kt)
(5.4)
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where axk
,ayk

, bxk
and byk

are the set of the elliptic coefficients which can be computed

by a Riemann summation [6] shown as follows:.
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
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m )
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m

m
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xs sin(ks

2π
m )

byk = 2
m

m
∑

s=1
ys sin(ks

2π
m )

(5.5)

such that m is the number of points (xs, ys) in the shape model shape. The value of k

represents the number of ellipses that formulate the shape. According to the Nyquist

sampling theorm, k ranges between 1 to m/2. The larger values of k, the more accurate

representation is reconstructed for the shape model.

For a representation invariant to rotation and scaling, we need to represent f in a

parametrized form to cover all the possible graphs or shapes which can be derived by

applying appearance transformation to the function f including rotation and scaling.

Henceforth, the x and y components of function f can be rewritten in the following

parametric form:





x(t)

y(t)



 =





a0

b0



+





cos(α) −sin(α)

sin(α) cos(α)









X(t) ∗ sx

Y (t) ∗ sy



 (5.6)

where α is the rotation angle, sx and sy are the scaling factors across the horizontal and

vertical axes respectively. Equation (5.6) leads to a concise complex notation for f :



















f = T + Rα (sxX(t) + syY (t)i)

T = a0 + b0i

Rα = cos(α) + sin(α)i

(5.7)

Based on the final parametric form of f shown in Equation (5.7), given the values

of X and Y of an enclosed shape or contours defined as F that are pre-computed using

equation (5.4), the derivative shapes of F that are produced via scaling, translation
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as well as rotation, can be represented using six parameters: a0, b0, α, sx, sy and

t ∈ [0, 2π]. In fact, the number of free parameters needed for the Hough Transform is

totally independent of the complexity of the shape which is defined using the elliptic

Fourier Descriptors. This is because the defined parameters are related to the appearance

transformations which define all the shapes that can be derived form the original shape

[6]. Figure (5.2) shows a shape represented using the parametrised form described in

equation (5.7) where we have applied a number of transformations including rotation

and scaling.

(a) (b)

(c) (d)

Figure 5.2: Parametric Representation of shapes using Elliptic Fourier Descriptors
(EFD): (a) Original Shape. (b) Shape produced using the EFD. (c) Rotated Shape.

(d) Rotated and Scaled Shape

5.2.3 Recursive Evidence Gathering Algorithm

The recursive evidence gathering algorithm is proposed for the purpose of obtaining ac-

curate localisation of the joint trajectories. The evidence gathering process used for the
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extraction of articulated objects is applied in conjunction with the Hough Transform con-

sisting of two phases: i) global pattern extraction, and ii) local feature extraction. The

former phase is aimed to find the overall motion pattern based on a predefined model.

In this case, the motion pattern is the spatial path of the joint positions over a sequence

of frames. In this study, Elliptic Fourier Descriptors are used for the parametrisation

of motion models. The Hough Transform is employed to determine the free parame-

ters through the matching process of feature points across the whole sequence to the

parametric function, and increase votes in the accumulator space accordingly. The pa-

rameters are then determined as the index or key of the accumulator space with the

largest value. In the latter phase of the evidence gathering process, an exhaustive lo-

cal search is performed within every frame to locate the features (i.e., joint positions)

whereby, the local search is guided by the motion pattern extracted during the first stage

to limit the search area.

Algorithm 5.2.1: RecursiveEvidenceGathering(model, points)

comment: Global Pattern Extraction

Acc← Array()

for each p ∈ points

do







parameters← HoughTransform(model, p)

Acc[parameters]← Acc[parameters] + 1

Best← indexOfMax(Acc)

comment: Local Feature Extraction

Traj ← Array()

for each r ∈ Frames

do
{

Traj[r]← SearchLocally(r, Best)

comment: Recursion

if Traj ≡ points

then return (Traj)

else







Traj = RecursiveEvidenceGathering(model, T raj)

return (Traj)
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For the recursive evidence gathering process, the algorithm initially derives the global

motion pattern using all the possible points. Afterwards, local feature extraction is

applied to every frame to locate possible candidate feature points (i.e., joint positions).

In the following iterations, the algorithm uses only the possible candidate points detected

in the previous iteration as the feature points for the extraction of a global pattern. The

recursion will continue until the extracted motion pattern reaches a constant state. A

pseudo-code for the recursive evidence gathering algorithm is detailed below with its

two different stages.

5.3 Extracting the Joints’ Positions

As discussed in Section (3.1.2.2), feature extraction is the core part of a marker-less

motion capture system. This is mainly because the crucial information required for

the perception of human motion are derived during this stage. Most of the model-

based methods proposed for extracting gait features rely on angular motion models from

medical studies describing the knee and hip angular movements. These methods derive

the angular measurements of walking subjects without extracting the joint positions

[122, 138, 27]. However, total reliance on angular models for feature extraction has a

number of drawbacks including clothing type and carrying conditions which certainly

affect the extraction accuracy. In this research, we focused on the extraction of the joints

(knee, hip and ankle) using spatial motion models derived from gait analysis describing

the displacement movement of the joints in the XY plane. The recursive evidence

gathering algorithm is employed to locate the joint positions of walking subject.

For the extraction of the global motion patterns for the hip, knee and ankle joints,

spatial models are derived as the mean pattern from manual analysis of gait described

in Section 3.3.5. Because only closed and continuous contours can be represented by

the Elliptic Fourier Descriptors [71], we have converted the model templates describing

the joints spatial motions into a closed cyclic contour by looping back along the curves.

Let F be the model template. The Hough Transform [54] is used to search for the best

parameters to obtain a shape that is similar to the model graph F and fits through most
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of the feature points in the video sequence. However, to use the Hough transform with

the spatial models represented via the parametric form described in Equation (5.7),

a five-dimensional space is required. Thus, the algorithm would be computationally

intensive and infeasible to implement for such application. In spite of the fact that

some methods were proposed to reduce the processing time of the Hough Transform

[75, 6], the computational load of these methods does not meet the requirements of most

applications [6]. Alternatively, the heel strike data could be incorporated to reduce the

complexity of the parameter space and therefore, dramatically reduce the computational

cost.

In order to search for the motion patterns of the different joints using the evidence

gathering approach, corner points are derived as the basic low-level features which are

matched against spatial templates to deduce the best parameters. To extract candidate

joint positions, a skeletonization process is performed on the silhouettes of walking sub-

jects. The Distance Transform [88] is applied to derive the skeleton from the silhouette

images. Afterwards, the Harris corner detector is applied to extract the feature points

as the points of high curvature on the skeleton of the subject. The feature points include

also junctions as well as the end points of the skeleton. Figure (5.3) shows the extraction

of the feature points from silhouette data using the skeletonization process and the Har-

ris corner detector. A number of corners points are detected along the skeleton because

of the changes of curvature. In order to improve the localisation of the motion patterns

as well as reduce the computational cost, anatomical knowledge of the body segment

properties [32, 97] are used to filter out the irrelevant candidate joints. For instance, the

points detected in the upper section of the silhouette are ignored as the hip, knee and

ankle joints are located in the lower section.

5.3.1 The Ankle Joint

The model template describing the spatial motion of the ankle joint is produced from

gait analysis of manually labelled data. The model template is taken as the mean of the

labelled data for one gait cycle starting from the striking phase. Figure (5.4) depicts
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(a) (b)

Figure 5.3: Extraction of Candidate Points using the Skeletonization Process: (a)
Walking Subject. (b) Extraction of Joint Candidate Points.

the spatial model and the horizontal displacement of the ankle. In order to extract

the ankle pattern across consecutive frames using the evidence gathering algorithm, the

five-dimensional space required for the parametrisation of the model template defined

in Equation (5.7), is reduced to only one parameter sy as expressed in Equation (5.8).

Because the heel strike points are known and lie on the ankle motion pattern as its two

end points, this knowledge is used to deduce the two parameters sx and α as the distance

and angle between the two strikes respectively. The parameter reduction procedure is

explained in Appendix A.

sy =
(y − ysn)− (X(t)− xe)sx sin(α)

(Y (t)− ye) cos(α)
(5.8)

(x, y), (xe, ye) and (xsn , ysn) are the coordinates of the locus point, left end point of

the model template and the nth strike respectively. The Hough Transform is applied to

search for the curve which resembles the ankle spatial template. The transform iterates

through the locus points detected by the Harris corner detector to compute the sy

parameter (the scale through the vertical axis) and to increment the voting accumulator

array for the corresponding index. The translation parameters are then computed after
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(a) (b)

Figure 5.4: Template model and horizontal displacement of the ankle motion: (a)
Template model for the ankle motion. (b) Horizontal displacement of the ankle.

determining the best value of sy using the following equation:

T = sn − (cos(α) + i sin(α))(xesx + i ∗ yesy) (5.9)

Figure (5.5) shows an output of the global pattern extraction of the ankle joints for both

the right and left legs for a walking subject.

Figure 5.5: Global Pattern Extraction of the Ankle Joint.

In the second stage of the evidence gathering algorithm, local search is performed
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within every frame to derive the precise position of the ankle. People more or less

have the same velocity pattern for the ankle horizontal displacement when walking as

concluded in Section 3.3.5. Therefore, a displacement model is produced and used

to estimate the distribution of the x values through the temporal data. Let N be

the number of frames between the two strikes of the same foot sn and sn+2. The x

coordinates of the ankle trajectories can be approximated as expressed by the following

equation:

xf = sxV

(

f

N

)

+ xsi (5.10)

where f is the frame number, sx is the horizontal scale parameter. xsi is the x coordinate

of the ith heel strike. V is the horizontal displacement model function of the ankle

joint derived from manually labelled data. Afterwards, the y coordinates of the joints

are approximated using the global motion pattern derived during the first stage. For

accurate localisation of the ankle joint at a given frame f , an exhaustive local search is

conducted in the area whose centre is the approximated location i.e. (xf , yf ) in order

to locate the ankle position as the nearest point to the motion pattern.

5.3.2 The Knee and Hip Joint

(a) (b)

Figure 5.6: Spatial Motion Templates: (a) Knee Joint. (b) Hip Joint.

For the extraction of the knee and hip trajectories, we apply the same methodology

used for the localisation of the ankle. The mean templates for the spatial motion and
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displacement of the knee and hip are derived for one gait cycle as shown in Figure

(5.6). The gait cycle is set to start from the terminal stance phase when the leg is

vertically straight such that the x coordinates of the knee and hip are almost the same

as the heel strike. In order to reduce the dimensionality of the parametric model, the x

coordinates of the heel strikes are exploited to deduce the horizontal scale and rotation

angle parameters. The global search for the joint pattern is represented using only two

parameters which are sy and ysn as expressed in the following equation:

sy =
(y − ysn)− (X(t)− xe)sx sin(α)

(Y (t)− ye) cos(α)
(5.11)

where ysn is the y coordinate of the point whose x coordinate is xsn . The procedure for

parameter reduction is described in Appendix (A). An output of the evidence gathering

algorithm showing the global extraction of the motion patterns for the knee and hip

joints is presented in Figure (5.7).

Figure 5.7: Global Pattern Extraction of the Knee and Hip Joint.

In order to obtain accurate results for the localisation of the knee and hip, additional

constraints are applied to filter false locus points. This is due to the hard nature of the

problem which is also faced even during manual extraction of the two joints. Besides the

use of displacement motion model to locally search for the joints, the knee angle and the
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mean x coordinate of the trunk are extracted from the skeletons of walking subjects and

employed to enforce the accuracy of the extraction process for the knee and hip joints

respectively. The x coordinate of the trunk is derived based on the use of anatomical

knowledge whereby only the points located at the upper part of the human body are

considered. The knee angle is approximated using linear regression of the skeleton points

detected in the region above the extracted ankle joint as follows:

θknee = tan−1

( ∑n
i=1 (xi − x̄)2

∑n
i=1 (yi − ȳ)(xi − x̄)

)

(5.12)

Where (x̄, ȳ) are the centroid point for the (x, y) points. n is the number of points.

5.4 Experimental Results and Analysis

5.4.1 Periodicity Detection

In order to evaluate the accuracy of the gait cycle partitioning approach proposed in

Section 5.1, we used 100 video sequences of walking subjects taken from the SOTON

gait database. The frame numbers corresponding to the start of the striking phases

which are extracted by the partitioning method are compared against ground truth data

that have been manually collected and stored in XML format. The extraction error is

computed as the average error of the absolute differences between the ground truth data

and the extracted frame numbers of the striking phases. The error is approximated to

±0.4 frames based on 420 comparisons. Figure 5.8(a) depicts the comparison results of

automatic and manual detection of gait periods as a distribution chart of the absolute

difference between automated and manual extraction. The gait period is estimated as

the difference between the frame numbers of two successive strikes of the same leg.

To assess the consistency of the results derived by the gait partitioning algorithm with

medical studies, the different gait phases including the terminal stance and the striking

phase which are detected by the partitioning algorithm are derived for one gait cycle

starting from the striking phase of the right leg. The results of the gait partitioning
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(a) (b)

Figure 5.8: Gait Periodicity Detection: (a) Automated vs Manual Extraction. (b)
Detection of Gait Phases

algorithm for 100 subjects are presented in Figure (5.8(b)). It is observed that the

average start of the striking phase of the left leg and terminal stance are 24.62% and

50.11% respectively. This is indeed consistent with the medical data [131] as depicted

in Figure (3.5).

5.4.2 Joint Extraction

For the evaluation of the model-based method proposed for the extraction of the joints

of walking subjects using spatial models, the algorithm is tested on a set of 120 video

sequences containing 20 different subjects with 6 sequences for every individual. The

videos are taken from the SOTON indoor gait database. The extraction results of

the ankle, knee and hip joints are satisfactory for the indoor video sequences with the

observation that the localisation of the ankle is more accurate than the hip and knee

due to the visibility nature of the ankle. This was also concluded for the case of manual

labelling described in Section 3.3.5. The angular measurements for the knee and ankle

angles1 are determined from the joints’ trajectories for the 120 video sequences as shown

in Figure (5.9). To compare the extracted angular data with the biomechanical data

provided by Winter [133], an eight-order polynomial fitting is applied to smooth the

angular measurements. Further, it was also confirmed experimentally by [27] to offer

1See Figure (3.6) for details of the angles
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the best fit for the gait data. The biomechanical data is shown in bold in Figure (5.9).

Since the angular motion models have not been used for the derivation of gait features,

it can be concluded that the results obtained via this approach are consistent with the

biomechanical data.

(a) (b)

Figure 5.9: Gait Angular Motion during one Gait Cycle: (a) Hip, (b) Knee

An example of the extraction results for indoor data is shown in Figure (5.10). Fur-

thermore, the model-based method is assessed on 20 different video sequences from the

outdoor data taken from the SOTON database. The feature extraction at outdoors is

almost as accurate as the indoor database. Figure (5.11) is showing an example of the

feature extraction applied on a video sequence from the outdoor database. The joints

positions for the knee, hip and ankle are extracted successfully with less accuracy as the

indoor data. This is mainly because of the difficulties encountered during the foreground

segmentation including shadow and background clutter. For example, at the mth frame,

the ankle joint of the right leg is not located correctly due to the shadow on the ground.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 5.10: Automated Extraction of the Joints’ Positions for Indoor Data
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 5.11: Automated Extraction of the Joints for Outdoor Data
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5.4.3 Performance Analysis

The performance of the model-based method proposed for recovering the joints’ positions

of walking subjects is assessed on video sequences with low resolution. A set of 10 video

sequences which are manually labelled, are taken from the SOTON gait database and

used for the evaluation process. Figure 5.12(a) presents the performance error of the

algorithm for the localisation of the joints at various resolutions. The Euclidean distances

between the extracted joints and manually labelled data (i.e., ground truth data) are

used to approximate the performance error which is estimated as the average of the

distances normalised to the subjects’ heights. The resolution of the video sequences are

reduced gradually from an original size of 720 × 576 pixels with the aspect ratio kept

constant. The algorithm is still able to derive most of the joints with good accuracy at

a resolution of 144×180 with a performance error of 7.7%. However, the algorithm fails

when the video resolution is reduced to 77×90 pixels.

(a) (b)

Figure 5.12: Performance Analysis for The Joint Extraction.

Furthermore, a number of experiments are carried out using the same video set to

investigate the algorithm potentials for handling occlusion. For the case of full occlusion,

the performance error is simulated by dropping a number of frames from every 30 frames

(30 is the original frame rate) of the video sequences which is equivalent to changing the

frame rates. Figure (5.12(b)) shows the performance error estimated by decreasing the

frame rates of the video stream resized at resolution of 360x288 pixels. It is observed that
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the algorithm performance is not much affected even when dropping 50% of the frames

as the algorithm predicts the joint positions for the missing frames using the temporal

and spatial models. This proves that one of the merit of model-based methods is their

capability of handling occlusion efficiently and recovering the occluded data. Moreover,

the algorithm is tested on a subject wearing baggy Indian clothes which covered the legs.

The joints positions are extracted successfully as shown in Figure (5.13) which reveals

the potentials of this approach to handle also self-occlusion.

5.5 Conclusions

We propose a model-based method to extract moving joints via a recursive evidence

gathering technique. Spatial model templates for human motion are derived from the

analysis of gait data collected from manual labelling. Model templates are represented in

a parametric form based on elliptic Fourier descriptors. Gait knowledge is exploited via

heel strike extraction to reduce the parameter space dimensionality and therefore reduce

the computational load of the Hough Transform being used in the extraction process.

The described method is proved to work for both indoor and outdoor environments with

potential to localize joint positions with better accuracy. In the next chapter, recognition

potency will be assessed using the data extracted via the described model-based method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 5.13: The Extraction of Joints for Indoor Data with self-occlusion



Chapter 6

Gait Recognition by Dynamic

Cues

The interest in gait as a biometric is strongly motivated by the need for automated

recognition systems for visual surveillance and monitoring applications. Most of the

methods proposed for gait recognition are model-free methods which rely primarily on

silhouette data and statistical methods. Despite the fact that model-free approaches have

achieved high recognition rates, these methods were unable to explore and analyse the

discriminative power of the different gait features. Since it is possible to extract the joint

trajectories using the model-based approach described in the previous chapter, intensive

research is conducted to investigate the potential of gait features for people identification

using computer vision methods. In this chapter, the different types of features used for

gait analysis and recognition are described. The recognition significance of the various

dynamic cues which are extracted from the joint angular motion of the lower limbs is

examined for constructing a gait signature derived purely from the gait kinematics.

81
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6.1 Static vs. Dynamic Gait Features

Gait features can be broadly classified into two categories, namely static and dynamic

cues. The static features reflect the geometry-based measurements of the anatomical

structure of the human body such as the person’s height and the length or width of

the different body segments. Static features can also be derived from the observed

gait such as the stride length. The dynamic features are the cues which describe the

kinematics of the locomotion process, such as the angular motion of the lower limbs

extracted from the joint trajectory data. As the static cues are less taxing to extract

and compute, it would seem straightforward to recognise people using static features

such as the stride and body height and so forth. Furthermore, recent research on gait

using static features for identification proved that a promising recognition rate can be

reached [16, 125]. BenAbdelkader et al. [13, 12] demonstrated that gait recognition

can be achieved using the subject height and the stride parameters (stride length and

cadence) as there is a linear relationship between the two stride variables which can be

exploited for recognition.

Some researchers have preferred to fuse both static and dynamic cues with a belief

that fusion would yield the optimal gait recognition rate. Wang et al. [125] extracted

both dynamic and static features of gait motion using a model-based method based on

the Condensation framework [57]. Both cues are fused at decision level using different

combination of rules such as product and summation. Similarly, Wagg [122] proposed a

model-based method for recovering the joint angular motion and the static parameters

of the human body such as the thigh width. The f-statistic scores are used as coefficients

to weight the discriminative features. Although a high recognition rate was reported, it

was clearly noted that the body-related parameters (i.e., static features) are not robust

[122] since they are highly dependent on the clothing of walking subjects. Table 6.1

surveys a number of methods which employed either static cues or fusion of static and

dynamic features for gait recognition. The symbols LOO and KNN used in the table

refer to the Leave-one-out cross-validation and K-nearest neighbour classifier rule.
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Method Name Feature
Type

Database Description and Recognition Method CCR
%

BenAbdelkader
[12]

Static 45 Subjects with 4 Sequences for every individ-
ual. Features include height and stride parame-
ters. LOO and KNN-1 are used for validation.

40

Johnson [64] Static 54 Sequences for 18 Subjects recorded from the
near side view angle. Recognition is computed
using Maximum Likelihood

96

Wang [125] Fused 80 Video sequences for 20 different Subjects. Fu-
sion is applied via summation. Validation: LOO
with KNN-1

96

Wagg [122] Fused 2163 Gait sequences for 115 subjects from the
SOTON database [107]. Features are weighed
using f-statistics/ANOVA. Validation: LOO
with KNN-1

84

Table 6.1: Gait Recogntion using Static and Fusion of both Static and Dynamic
Features.

Despite the fact that static features were proved by recent experiments to achieve

promising gait recognition rates, their use for the development of a biometric system is

impractical. This is mainly because static features are dependent on clothing [122], bags,

and other factors [100, 119] which would certainly affect the recognition performance.

On the other hand, based on the visual cues observed from the lights affixed to the human

joints, Cutting et al. [29] argued that dynamic features contribute significantly more in

human recognition than static cues such as height. Cutting concluded that kinematic

information is important for gender classification and static features are insufficient to

reveal the gender of the walking subject. Moreover, Stevenage et al. [112] supported the

argument that gait-related cues are more important than body-related features for the

purpose of human identification. This conclusion was based on an experiment carried

out on 6 different walkers where it was reported that shape information has no effect on

the recognition performance.

The answers to the crucial questions of whether kinematic information offers better

discriminability than static features and how gait signature constructed purely from gait

dynamics is affected by the different covariate factors, will be addressed in this and the

following chapters after discussing the different types of gait features and reviewing the

recent results of gait recognition using static parameters, bearing in mind that there is
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no as yet convincing theoretical framework or theories identifying the motion parameters

playing a role in motion-based recognition.

6.2 Gait Identification System

The gait recognition system proposed in this research is a two-stage process consisting

of training and testing. In the training stage, the dynamic gait features are extracted

using the model-based method from the video sequences of walking people. In order to

derive a unique gait signature for every subject, feature selection is applied to search

for the best subset of discriminative features. Finally, classification is carried out on

the feature vectors of the training data using a supervised pattern recognition method.

The gait signatures derived in the classification space are saved in the system database.

In the testing or operational mode, new subjects are processed in the same way as in

the training stage. The new derived gait signatures are projected into the classification

space. In order to recognise or verify the subject’s identity using gait, the new signature

is compared against all the signatures stored in the system database to find the best

match. The training and the testing phases for the gait recognition system are illustrated

in the block diagram shown in Figure (6.1).

6.3 Derivation of Gait Signature

The processing and derivation of ultimately discriminative gait features from this trajectory-

based data is still an unsolved and challenging problem [126, 76] due to the complexity

of the human visual perception system as well as the compound nature of gait motion

inherent in the numerous variables associated with it including kinematics, kinetics and

anthropometrics [22]. Various different ways of extracting discriminative features from

gait sequences have been proposed [89, 90] for the purpose of people identification. An

important issue in gait recognition is the derivation of appropriate features that can

capture the discriminative individuality from the subject’s gait. Such features should

respond to crucial criteria such as robustness and invariance to weather conditions,
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Figure 6.1: Structure of Gait Identification System

clothing and operating conditions. They should also yield a good discriminability across

different subjects.

6.3.1 Extraction of Dynamic Features

As discussed in earlier sections, psychological studies gave a strong indication that people

can use joint angles to recognize human action, classify gender and even to identify

walking subjects. Therefore we attempt to develop a human identification system using

gait dynamics. The approach is based entirely on the joint angular data that describe

the dynamics of the locomotion process. In order to identify a subject by their gait, we

need to extract the angular measurements which describe the gait kinematics. The use

of angular motion is very common in gait analysis and recognition. The angles of the

joints including the hip and the knee are considered the most important kinematics of

the lower limbs.
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In these studies, the gait vector for each subject is constructed by taking the hip,

knee and ankle angular measurements of the right and left legs defined as θrh, θlh,

θrk θlk, θra and θla. The set of symbols: h, k, a, r and l refers to hip, knee, ankle,

right and left respectively. It was reported in the medical literature [84] that spatial

displacements of the trunk embed some of the discriminative features which reflect the

subject’s individuality. Therefore, the measurement vector is designed such that it

includes both the horizontal and vertical spatial displacements derived from the motion

of the hip joint. The displacement values are normalised to the subject height to account

for scale-free analysis. The angle and displacement measurements are taken from a single

full gait cycle. The gait features can be taken from the averaging over different gait cycles

but because of the database limitation, only a single gait cycle is considered.

Figure 6.2: Gait Angular Measurements.

In order to derive the gait features which embed the relationship of the angular motion

between the left and right limbs as well as to improve the recognition rates, additional

gait parameters are produced by fusing together the gait angles associated with the hip,

knee and ankle. The gait vector is composed by the angle between the thighs called θH

as the sum of the two hip angles. The vector also includes additional measures produced

by combining the right and left angles of the knee as well as the ankle. Combination of
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cues is achieved by applying simple rules including summation, product and difference

which are denoted as SUM , PRO and DIF producing the following angles: θsk, θpk,

θdk, θsa, θpa and θda. The size of the angular measurement vector varies from subject

to another depending on the length of the gait cycle, but it usually ranges between 24

and 311. To ensure a valid and consistent representation for all subjects in the database,

the angular vectors are all resampled to length 32 using cubic spline interpolation.

6.3.2 Fourier Description of Gait Features

In order to facilitate the study and the analysis of the locomotion process and derive

the characteristic dynamic features, gait data should be first represented by the basic

building blocks because of the complex nature of human gait [131]. One such simpli-

fication technique is the Fourier Transform (FT) which transforms complex data and

functions into summations of simple sine wave signals, hence greatly simplifying the

analysis of gait motion. The FT provides a very efficient and compact gait represen-

tation as most of the discriminative information is expected to be contained in a few

frequencies. Furthermore, the Fourier Transform enables us to analyse and consider all

features without ignoring some of the features as opposed to statistical methods such

as Principal Component Analysis (PCA). For each of the normalised gait measurement

vectors (θrh, θlh, θrk, θH , θlk, θsk, θpk, θdk) described in Section (6.3.1), we compute the

Discrete Fourier Transform (DFT) for the N/2 frequencies of interest in N points.

The gait signature of a walking subject is composed from the magnitude and phase

of the Fourier components for the angular data. The phase information has a certain

degree of importance in describing the dynamics of the gait pattern. This is because

the phase provides the information that describes when the gait dynamics occur. In

order to compare phase vectors for different subjects, all analyses are synchronized to

start from the same point. This point is chosen as the heel strike of the left leg. Since

the magnitude data has been shown to offer low discriminatory capability even though

it has the advantages of translation invariance property [26], the product of magnitude

1The gait cycle length is measured as the number of frames captured at rate of 25 frames/second.
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and phase is used. Hence, the gait signature is constructed as shown in Equation (6.1).

f = (Magnitudes Phases Magnitudes • Phases) (6.1)

Such that • denotes the element-wise multiplication of magnitude and phase vectors,

which weights phase by magnitude to retain proportionate discriminatory ability. The

total number of features in f is 675.

6.3.3 Normalisation of Gait Features

In classification, features with large values and high variance may have a greater influence

than features with small values. For example, the magnitudes of the Fourier components

are significantly larger than the phase values, and as a result the distance between

the phases will have little contribution to any magnitude based measure. Henceforth,

the efficiency of the classification algorithm will be degraded by the effect of different

dimension scaling [50]. This problem can be overcome either by using a different metric

measure which takes into consideration the scaling of the different dimensions in the

feature space such as the Mahalanobis metric measure, or instead by normalising all

the features prior to classification. The normalisation is applied in such a way that all

features are linearly scaled so that their values lie in a specific range such as [0, 1]:

f
′

n =
fn −minn

maxn−minn
(6.2)

such that minn and maxn are the minimum and maximum values of the features at

the nth dimension.f
′

n is the normalized feature. Alternatively, the feature space can be

normalised using the z-score [50] which is based on the mean and standard deviation:

f
′

n =
fn − f̄n

σfn

(6.3)

where f̄n and σfn
are the mean and standard deviation of the feature fn respectively.
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6.4 Feature Selection and Classification Metrics

Feature subset selection is the process of choosing the variables that are important for

the classification stage from the original feature space. Feature selection is an impor-

tant task for almost any pattern recognition problem [129]. This procedure is aimed

to derive as many discriminative cues as possible whilst removing the redundant and

irrelevant information which may degrade the recognition rate. Furthermore, feature

selection does not only reduce the cost of recognition by reducing the dimensionality

of the feature space, but also offers an improved classification performance through a

more stable and compact representation [60, 61]. It is practically infeasible to run an

exhaustive search for all the possible combinations of features in order to obtain the

optimal subset for recognition due to the high dimensionality of the feature space. For

this reason, we employed the Adaptive Sequential Forward Floating Selection (ASFFS)

search algorithm2 [109] which is based on [101]. The Sequential Forward Floating Se-

lection method is experimentally confirmed by Jain et al. [141] to perform better than

other feature selection algorithms based on experiments carried out for the classification

of handprinted characters. An alternative would be to use ANOVA, but this is less

favourite in machine learning.

The feature selection procedure fundamentally relies on an evaluation function that

determines the usefulness of each feature in order to derive the ideal subset of features

for the classification phase. For every feature or set of features generated by the feature

selection algorithm, an evaluation criterion is called to measure the discriminative ability

of the set of features to distinguish different subjects [30]. A number of methods [83,

138, 118] rely mainly on statistical metric measures which are based on the scatter

or distribution of the training samples in the feature space such as the Bhattacharyya

metric. These methods aim to find the features which minimize the overlap between the

different classes as well as the inner-class scatter.

Although statistical methods enjoy low-cost implementation they have been proved

to offer poor estimate of the recognition rate because of their independence from the

2The algorithm is implemented by D. Redpath from Heriot-Watt University
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final classifier [129, 72, 42]. In this research, the evaluation function is constructed using

two criteria: validation-based and statistical-based criteria. The first criterion filters the

subsets of features which achieve good recognition rates. The second criterion is applied

to the subsets of features chosen by the former function.

6.4.1 Validation-Based Feature Selection

The validation-based evaluation function is proposed to find the subset of features which

minimises the classification errors as well as ensure good separability between the dif-

ferent classes. This is achieved when, for every sample in the database, its siblings (i.e.,

instances of the same class) are the nearest neighbours of such sample. The K-nearest

neighbour (KNN) classifier can be employed to offer a good estimate of the classification

rate, but it does not ensure that different classes are well separated. Henceforth, a sim-

ilar measure to the KNN is applied to produce a probability that an instance belongs

to the claimed class label based on the nearest neighbours. In contrast to the voting

scheme used in the KNN, the scoring function uses different weights w to signify the

importance of most nearest neighbours. The probability score for a sample sc to belong

to class c is proposed as:

f(sc) =

∑Nc−1
i=1 ziwi
∑Nc−1

i=1 wi

(6.4)

where Nc is the number of instances in class c, and the weight wi for the ith ∈ [1, Nc−1]

nearest instance is related to proximity as:

wi = (Nc − i)2 (6.5)

The value of zi is defined as:

zi =







1 if nearest(sc, i) ∈ c

0 otherwise
(6.6)

such that the nearest(sc, i) function returns the ith nearest instance to the sample sc.

The Euclidean distance metric is employed to find the nearest neighbours. The subset
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significance based on the validation-based metric is estimated using the leave-one-out

cross-validation rule. In the leave-one-out validation, every instance from the original

sample is used for testing and is validated against the remaining observations. This is

repeated for all the observations in the dataset. The recognition rate is computed as the

average of all validations.

6.4.2 Statistical-Based Feature Selection

The statistical evaluation function is based on the scatter of instances in the feature

space. It aims to find the set of features which minimises the within-class spread while

maximising the between-class spread of data [35]. A number of statistical criteria were

proposed for achieving this aim such as in [35, 42]. The system implemented in this

research uses a variation of the Bhattacharyya distance measure. The Bhattacharyya

distance metric [42] is a measure of the separation score Si,j between class i and j given

by:

Si,j = (mi −mj)

(

Σi + Σj

2

)

−1

(mi −mj)
T (6.7)

such that mi and Σi are the mean and covariance of class i. For the case of N classes,

the separation score is computed using the following:

J =
1

N2

N
∑

a=1

N
∑

b=1

Sa,b (6.8)

The measure J is similar to the decidability measure proposed by Daugman [31] which

evaluates how well the within and between class distributions are separated. The decid-

ability value d′ is given by:

d′ =
|µw − µb|
√

σ2
w+σ2

b

2

(6.9)

such that µw and µb are the means for the within and between class distributions, whilst

σw and σb are their standard deviations. These measures are used later in the analysis.
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6.5 Gait Recognition and Performance Analysis

For the evaluation of dynamic gait features derived using the model-based method for

people identification, a set of 160 video sequences is taken from the SOTON indoor gait

database. The set consists of 20 different subjects walking from left to right with 8

sequence for every individual. There are 10 males and 10 females in the dataset. The

selected database serves as a gallery database and is utilised mainly for training the

classifier and selecting the optimal feature subset.

6.5.1 Classification Results

Feature selection is applied on the video sequences to search for the most discriminative

subset of features. Based on the validation criterion function, the feature selection

algorithm derived 34,261 different feature subsets which achieved a recognition rate of

82% based on the probability scores explained in Section (6.4.1). The statistical criteria

is applied to choose the best subset of features which offer higher separation between

classes. In order to further assess the recognition power of the selected features, the

Correct Classification Rate (CCR) is computed using the K-nearest neighbour (KNN)

classifier with the leave-one-out cross-validation rule.

The KNN rule is applied at the classification phase due to its low complexity and

hence fast computation besides the ease of comparison to other methods. The KNN

classifier uses the Euclidean distance measure to compute the distance between the test

and training samples in the feature space in order to find the k closest neighbours based

on the Euclidean distances. From the k closest instances, it deduces the class of the test

sample by determining the class of the closest neighbours with the highest occurrence

frequency. We have achieved a high recognition rate of 95.75% for the value of k = 5

using the set of 160 video sequences with 20 different classes. This is achieved using

solely features describing purely the dynamics of the locomotion process. The results of

the recognition performance are summarized in Table (6.2) with comparative results of

other methods which use dynamic parameters for gait recognition.
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Method Name Database and Validation CCR - Knn Rank

R=1 R=3 R=5

Wagg [122] 2163 video sequences for 110 subjects,
each with 4 sequences. Indoor data,
Leave-one-out cross validation is used.

78 - -

Our method 160 Sequences for 20 subjects from in-
doors, each with 8 sequences, Leave-one-
out cross validation is used.

92.15 93 95.75

Bobick [115] 106 walk sequences for 18 different peo-
ple. Marker-Based capture system. CCR
evaluated using Leave-one-out cross vali-
dation

73 - -

Yam [138] 20 subjects with 5 sequences for every in-
dividual. Treadmill Data. Leave-one-out
cross validation is used.

84 68 56

Wang [125] 80 video sequences for 20 subjects taken
from Indoor data, each with 4 sequences.
Leave-one-out cross validation is used.

87.5 - -

Cunado [27] 10 Test Samples are matched against a
database of 30 sequences for 10 subjects.
Subjects taken from the SOTON early
database

100 100 -

Table 6.2: Gait Recognition Results using Dynamic Cues

In order to further assess the classification performance of the proposed method for

gait recognition using dynamic-related features, a different dataset which had not been

used for feature selection, is taken from the SOTON gait database and matched against

the gallery dataset. The dataset is composed of 60 sequences for 20 subjects with 3

sequences for every individual. The first gait dataset (I) which is used for the training

and derivation of gait features, is regarded as the gallery such that every instance in the

gallery set has its associated class identifier. The second dataset (II) is considered as the

probe which consists of samples with unknown class labels. Every sample in the probe

database is matched against all the instances in the gallery dataset in order to find the

class label for the probe sample using the k-nearest neighbour classifier. For k = 5,

we have correctly classified 86.67% of the 60 walking sequences. The results achieved

using this evaluation are promising because the probe set has not been employed for

the derivation of the dynamic feature subset. Henceforth, the derived dynamic features

have a potential discriminative capability to identify people.
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Another useful evaluation measure is the Cumulative Match Score (CMS) which was

introduced by Phillips et al in the FERET protocol [99] for the evaluation of face recog-

nition algorithm. The measure assesses the ranking capabilities of the recognition system

by producing a list of scores that indicates the probabilities that the correct classifica-

tion for a given test sample is within the top n matched class labels. In other words,

The CMS curve provides a measure of the classification rate of data samples at different

ranks or trials to be correctly classified . The CMS curves for the first recognition ex-

periment performed on database (I) as well as the evaluation procedure of database (II)

probed against database (I) are depicted in Figure 6.3(a). The scoring function employs

the knn rule with the value of k = 5. It is worth noting that the CMS at rank R = 1 is

equivalent to the correct classification rate.

(a) (b)

Figure 6.3: Classification Results: (a) The Cumulative Match Score Curve. (b) The
Receiver Operating Characteristics Curve

Additionally, The Receiver Operating Characteristics (ROC) curves are plotted in

Figure 6.3(b) to express the verification results for the two gait recognition experiments.

In the verification process, the instances from database (I) are verified to check if they

belong to the claimed class labels based on the nearest neighbours. The probability

scoring function described in Section 6.4.1 is used to compute a discrete score based on

k = 5 nearest neighbours to express whether the sample belong to the claimed class. In

order to plot the False Acceptance Rate (FAR) versus the False Rejection Rate (FRR),
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different score thresholds are used. Using the gait signature derived from dynamics, the

system achieved equal error rates of 3% and 9% for the first and second experiments

respectively. To compare our results with other approaches, we have found only two

methods which have reported equal error rates. This is because of the lack of work in

verification. Bazin et al. [11] reported an error rate of 7.3% using fusion of gait features

whilst Wang et al. [125] achieved a classification error of 8.42% using dynamic gait

features.

6.5.2 Statistical Analysis

To investigate the discriminatory power of gait recognition using dynamic features, sta-

tistical analysis is performed on the gallery dataset (I). The correlation matrix shown in

Figure 6.4(a) which visualizes the separation values between the different classes from the

first database. The darker squares reflect higher separation score and therefore higher

discriminability. The white diagonal line reflects the zero distance between the same

class. The separation value between the different classes is estimated using the Bhat-

tacharyya distance metric. Furthermore, all subjects in the database are cross-correlated

using the Euclidean metric to produce the correlation matrix of size 160× 160 depicted

in Figure 6.4(b). The lighter diagonal line represents the comparisons of subjects from

the same class.

The distributions of the inter-class and intra-class correlations are shown in Figure

(6.5). The intra-class distribution is obtained by comparing all the possible pairings

(560 pairs) of the same class. The comparison is based on the Euclidean metric measure

and excludes pairs with duplicate items. In the same way, the inter-class distribution

is derived by comparing instances which are from different classes (12160 comparisons).

The mean and standard deviations for both distributions are summarized in Table 6.3.

In order to compare the intra-class and inter-class distributions, two curves are derived

from the distributions by fitting 10-order polynomials as shown in Figure (6.5). The

distribution representation provides an approximation of how reliably decisions can be

made using the chosen distance metric ( i.e., Euclidean distance), as the classification
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(a) (b)

Figure 6.4: Correlation Matrices: (a) Class-Correlation Matrix. (b) Subject-
Correlation Matrix

(a) (b) (c)

Figure 6.5: Correlation Distributions: (a) Intra-Class Distribution. (b) Inter-Class
Distribution. (c) Intra and Inter Class Distributions.

performance is degraded by the overlap of the two distributions [31]. The decidability

index described in Section 6.4.2 is estimated from these results as i = 2.54.

Distribution Mean Standard Deviation

Intra-Class 0.68 0.18

Inter-Class 1.25 0.26

Table 6.3: Mean and Standard deviation of Intra and Inter class distributions.

In the evaluation of the recognition performance for dynamic gait features, the k-

nearest neighbour rule is used for its simplicity. The KNN is considered as a simple
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Figure 6.6: Projection of Database I using Generalized Discriminant Analysis. The
axes are the first two features in the projection space. Every symbol refers to a different

subject.

classifier. Therefore, to assess the potential of dynamic-related features, a more sophisti-

cated classifier is employed. The Generalized Discriminant Analysis3 (GDA) method [10]

is applied to optimise the class separability of the first dataset in order to increase the

recognition performance. The GDA analysis is a supervised machine learning algorithm

derive more discriminative and compact features from the raw features of the training

data by applying statistical methods to generation a projection transform. Figure (6.6)

shows the projection results of the gait dataset using the GDA Transform. To assess the

classification of the projected data in the new space, the leave-one-out cross-validation

is used with the KNN rule. For the value of k = 5, the system achieved a recognition

rate of 100%. The boundaries shown in Figure (6.6) are the boundaries produced by the

KNN classifier for every class.

3The GDA algorithm used in this research is provided with the Statistical Pattern Recognition Matlab
Toolbox implemented by V. Franc from Czech Technical University
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6.5.3 Gait Feature Analysis

In order to determine what dynamic features are important for the identification of

people, the different gait-related features are analysed separately to estimate their con-

tribution and significance for gait recognition. To produce accurate and unbiased results,

we have derived a number of 493 subsets using the validation-based criteria described

in Section 6.4.1 for feature analysis. The feature subsets which, are of length between

22 and 54, achieved a Correct Recognition Rate of 92.15% or over using the KNN clas-

sifier of k = 5. The distributions of the different types of features are illustrated in

the pie chart Figure (6.7). The pie-chart provides an indication whether such type of

feature is important for the recognition process but it does not provide a measure of

its discriminatory potency. Instead, the discriminative significance of dynamic features

is approximated using the correct recognition rate based on the KNN classifier and

leave-one-out cross validation rule.

Based on the results shown in the distribution Figure 6.7(a) and Figure 6.7(c), it

is observed that the angular measurements possess most of the discriminative features

with an average proportion of 77% of the gait signature, whilst only a few features are

embedded in the displacement motion. the gait angular features are derived from the

knee , ankle and hip angles with proportions of 27%, 29% and 21% respectively. The

classification results for the dynamic features are plotted in Figure 6.7(b) to measure the

discriminatory power of each type of features separately. The knee and ankle angular

features are observed to be the most discriminative features with an achieved recognition

rate of 52% and 52.5% respectively.

Furthermore, the discriminatory power of the angular measurements versus the dis-

placement features are plotted in Figure (6.7(c)) where it is shown that the combined

angular features achieved a recognition rate of 85% whilst only 38.75% is achieved us-

ing the displacement features. These analytical results are consistent with the medical

reports in [84, 85] whereby Murray observed that the ankle rotation, pelvic tipping and

spatial displacements of the trunk embed the subject individuality due to their con-

sistency at different trials. In [121], Wagg has recently confirmed the importance of
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the angular features for gait recognition with a reported recognition rate of 77% using

dynamic gait features.

(a) (b)

(c) (d)

Figure 6.7: Dynamic Feature Analysis for Gait Recognition: (a, c) Distribution of
Dynamic Features. (b,d) Recognition Performance of Dynamic Features.

The distribution of gait features derived using the Fourier Transform is shown in

Figure (6.8(a)). The magnitude of the frequency components is the prominent part of the

gait signature with a proportion of 73%. Only a few number of discriminative features are

taken from the phase information. The recognition performance of the magnitude versus

the phase is plotted in Figure (6.8(b)). A recognition rate of 76.25% is achieved using

only the magnitude data, whilst the phase information and Phase Weighted Magnitude

(PWM) achieved poor recognition rates of 10% and 37.5% respectively. However with the

inclusion of the phase and PWM information into the gait signature, the discriminatory
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potency improves to reach 95.75%. This suggests that the phase information is important

for the recognition process. The same results are also confirmed by [138, 27, 78].

(a) (b)

Figure 6.8: Analysis of Fourier Components for Gait Recognitions: (a) Feature Dis-
tribution. (a) Gait Recognition Performance.

Figure (6.8) shows the distribution and discriminatory performance of fused features

for gait recognition. Most of the gait signature components produced using the Feature

Selection algorithm are derived via fusion of dynamic features with a proportion of 59%.

For the recognition performance, the fused feature set achieves a correct classification

rate of 81%, whilst a non-fused features has a CCR of 77%. This is to conclude that

fusion of dynamic features yields more discriminative features which would boost the

recognition performance. The same conclusion is confirmed by the work of Bobick et al

[115] using maker-based solutions for feature extraction.

6.6 Conclusions

In this chapter, results have been reported confirming the early psychological theories

claiming that the discriminative features for motion perception and people recognition

are embedded in gait kinematics. Dynamic versus static features are reviewed and

discussed with their potentials for people identification using gait. We have shown that

the gait angular measurements derived from the joint motions mainly the ankle, knee

and hip angles, posses most of the discriminatory potency for gait recognition with an
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(a) (b)

Figure 6.9: Fusion Analysis for Gait Recognition: (a) Feature Distribution. (a) Gait
Recognition Performance.

achieved correct classification rate of 95% and an equal error rate (EER) of 3% for

verification of people using gait. We have confirmed the usefulness of phase information

to improve the classification results of gait recognition as well as the importance role for

feature fusion of dynamic features.



Chapter 7

Exploratory Factor Analysis of

Gait Recognition

The psychological theories suggesting that people are able recognise each other

from the dynamics derived from the joints have been confirmed by the experimental re-

sults reported in the previous chapter whereby acceptable recognition rates are achieved

using kinematic-related features including angular measures. Nevertheless, such results

cannot be generalised to real-world situations due to the fact that subjects are instructed

to cooperate with the system without considering the different factors which may af-

fect the performance of gait recognition. Therefore, studying the gait covariate factors

becomes a crucial step to translate gait recognition to real-world applications. In this

chapter, we review the factors which affect gait recognition using dynamic features in-

cluding footwear, clothing, carrying conditions and walking speed.

102
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7.1 Covariate Factors in Gait

A non-invasive biometric system for visual surveillance or other security applications,

subjects are not required to behave naturally, instructed to walk in a specific way or

recorded in a particular environment. For instance, subjects should not be instructed to

face the camera ( for facial recognition ) or walk at normal speed without baggy clothing

( for gait identification systems ). In fact, there are many variations in the measured

data for any biometric type. These variations are called covariate data because they are

not a fundamental part of the measured property but are a result of human behaviour

[92]. The covariate factors can be related either to the subject as for the case when a

subject smiles for face recognition, or related to the environmental conditions such as

lighting, nature of the ground or camera-setup.

It has been reported by different researchers that one of the main benefit of gait recog-

nition over other biometrics is its non-intrusive nature [123, 12, 53, 89, 92] . Henceforth,

the analysis of the covariate factors becomes essential to the understanding of the unique-

ness of gait recognition. This will be the focus of this chapter. In fact, the effects of the

different covariates for gait analysis and recognition have not been investigated much

[92], This is mainly due to the lack of availability of databases, as well as the availability

of automated systems which would help for with extraction of gait features. Moreover,

the complexity of earlier model-based approaches has precluded their deployment for this

analysis. Gait is also affected by different covariate factors including footwear, clothing,

injuries, age, walking speed, and much more akin with other biometrics.

The effects of covariate factors on the performance of gait recognition using com-

puter vision methods have been investigated by only one recent major research study

by Sarkar et al. [105]. Sarker described a baseline algorithm for gait recognition based

on the temporal correlation of silhouette data. The algorithm is evaluated on a set of

twelve experiments in order to examine the effects of the different covariates including

viewpoint, footwear, walking surface, time and carrying conditions. However, their work

lacks exploratory analysis of the different gait features under covariate data due to the
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use of the silhouette approach. In this research, a full investigation is carried out to ex-

plore the covariate effects on gait recognition using dynamic-related features derived via

model-based method. The covariate factors includes footwear, clothing, carrying con-

ditions and walking speed. Furthermore, we assess the contribution and discriminatory

significance of the different dynamic ( gait-related ) features used for gait recognition.

7.2 Data Acquisition for Covariate Analysis

7.2.1 Data Acquisition

In order to study the exploratory effects of covariate factors on gait recognition , we have

collected a dataset of 440 video sequence from the Southampton Covariate Database

described in Section 3.4.2. The dataset consists of ten different walking subjects with

eight males and two females. Each subject is recorded from the sagittal view walking at

eleven different scenarios, including normal walking. Four video sequences are taken for

each situation. The different recorded scenarios are aimed to investigate the influence

of the following factors:

• Footwear: flip-flop, trainer, bare-feet, boots.

• Clothing: coat, trench coat.

• Carrying Conditions: barrel bag, handbag.

• Walking Speed: normal, quick and slow walking.

7.2.2 Gait Feature Extraction

In order to extract the gait features of walking subjects from the covariate dataset,

the new model-based method described in Section (5.3) is applied to automate the

extraction process of the joint trajectories. Because the main objective of this chapter

is to investigate the effects of the different gait covariate factors rather than assess the
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power of the extraction algorithm, the extracted results from all the video sequences are

checked and corrected manually where needed to ensure valid and consistent analysis of

the covariate effects. The gait signature is composed from the kinematic-related features

derived from the measurements of the angular motion and walking displacement. The

same methodology described in the previous chapter is used to construct the feature

vectors using the optimal discriminative subset of features as well as the classification

of gait signatures.

7.3 Covariate Analysis for Gait Recognition

In order to quantity the covariate effects on the performance of gait recognition, feature

subset selection is performed to derive a gait signature based on the covariate data as

well as the normal gait data. The feature selection process described in the previous

gait recognition chapter is purely based on the covariate-free data and therefore may not

provide the optimal results for the analysis of the different gait factors. The same gallery

dataset of 160 video sequences taken from the SOTON is employed for this study. The

gallery consists of 20 different walking subjects with 8 sequences for every individual

recorded without covariate effects. The feature subsets which are derived using the

validation-based criteria described in Section 6.4.1 are used for covariate-based feature

selection. Each of the feature subsets achieved a classification rate of at least 92.15%

using leave-one-out validation and KNN classifier applied on the gallery dataset. To

derive the optimal subset of features, we use the CCR value computed by probing 440

samples of the covariate data which includes 40 sequences from the normal gait data

against the gallery database.

A recognition rate of 73.4% is achieved by validating all the covariate data against

the gallery dataset. The covariate factors include footwear, clothing, load carriage and

walking speed. The achieved classification rate is higher when compared to the low

recognition rates reported by Phillips et al. [105] using the silhouette-based method. The

Cumulative Match Score curves showing the comparative results are shown in Figure

(7.1(a)). The receiver operating characteristic is plotted in Figure (7.1(b)) showing
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the verification results for the covariate data with an achieved equal error rate of 13%.

Phillips reported a CCR of 57% for data with load carriage and footwear covariates whilst

a CCR of 3% is achieved for the following covariates : time, footwear, and clothing. Time

changes has been shown [105, 119] to play a major part in reducing recognition capability

by gait. Using a silhouette-based approach. Veres showed that this could be redressed

by fusing those parts of the gait signature which are invariant with time. In this way the

overall CCR could be improved from 23 to 27% [120]. By modelling the feature changes

(by using linear interpolation), the recognition rate with variation in time was improved

from 23% to 65% [119]. Both of these are considerably improved over the 3% achieved

by Sarkar et al [105]. Given the limited data on time, Veres’ study and the depth of her

results, the time factor is included implicitly and not considered further analysis in this

research.

(a) (b)

Figure 7.1: Classification Results: (a) The Cumulative Match Score Curve. (b) The
Receiver Operating Characteristics Curve

7.3.1 The Footwear Effects

The gait pattern is affected by the different footwear as people are observed to walk

differently when wearing trainers as to when wearing flip flops. This has been confirmed

by research carried out by Dobbs et al. [37]. Based on their experimental results, it
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was reported that the stride and cadence parameters of the walking pattern are affected

by footwear as opposed to walking with barefeet. Moreover, recent studies [94] showed

that changing the footwear texture causes changes in the gait pattern. This is due to

the changes in sensory feedback from the surface of the foot [94]. In the studies carried

out by Phillips et al. [105] to investigate the footwear effects on the performance of gait

recognition, a high recognition rate of 78% is reported using a silhouette-based method.

This is because of the fact that body-related or silhouette-based features are almost

invariant to the different footwear.

(a) (b) (c) (d)

Figure 7.2: Footwear Covariate Factors: (a) Boots (b) Trainer (c) Flip Flops (d)
Barefeet

In order to explore the effects of footwear on the performance of people identification

using dynamic gait features, a number of experiments are carried out for subjects wear-

ing a variety of different footwear as shown in Figure (7.3.1) including flip flop, boots and

normal shoes. In addition, subjects are also recorded walking with barefeet. For each of

the footwear-related factors, 40 video sequences are processed to derive gait signatures

based on the dynamic gait features. The signatures are taken for 10 different subjects

with almost 4 sequences for every individual. To assess the classification performance,

subjects are validated against the gallery dataset which consists of 160 gait signatures

for 20 different subjects recorded with no covariate effects. The gait signature is com-

posed from the kinematic-related features derived from the measurements of the angular

motion and walking displacement. The same approaches described in the Chapters 5

and 6 are used to derive the feature vectors using the optimal discriminative subset of

dynamic features.
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Figure 7.3: Classification Results for the Footwear Covariates.

The classification results for the footwear covariates are expressed using the cumula-

tive match score as shown in Figure (7.3). The normal shoe case serves as a reference

for other covariate factors. The recognition rates for the trainer and boots cases are

observed as high as the normal case with achieved rates of 78%, 83.33% and 86.67%

for the boots, trainer and normal shoe cases respectively. When subjects are assessed

walking with barefeet, the same gait recognition rate is achieved as the other footwear

factors including trainers, boots and normal shoes with a reported CCR of 83.33%. This

suggests that the dynamic gait features for people identification are not affected largely

with the different footwear. However, the human gait is observed to vary much when

people walk with flip flops as the recognition rate drops largely to 46%. The gait features

are extracted correctly but the drop of the CCR is likely due to the fact that subjects

are not used to wearing flip-flops. Further, there is no rear part of the shoe so this must

be compensated when walking.

7.3.2 The Clothing Effects

The clothing effects on human gait as well as the posture and balance can be considerably

important. In [102], Punakallio et al. showed that suits worn by fire-fighters have

significantly impaired their postural and functional balance. In another study by Egan
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et al [39], it was revealed that clothing properties such as weight can be another factor

which have effects on balance and gait of people. Furthermore, Rahmatalla et al. [103]

concluded that restrictive clothing can impose constraints on the relative joint angle

limits of the walking subject and therefore affect their gait pattern. In the study carried

out by Phillips et al. [105] for gait recognition using the silhouette-based approach, the

recognition rate dropped sharply to 3% for the combined covariate factors time, footwear

and clothing.

(a) (b) (c)

Figure 7.4: Footwear Covariate Factors: (a) Normal Clothing (b) Coat (c) Trench
Coat

In order to investigate the effects of clothing on the human gait and people iden-

tification using gait, we have performed a number of experiments on people wearing

different clothing including coat, trench coat and their normal clothing as depicted in

Figure 7.3.2. For each of the clothing-related factors, the gait signature is derived from

the dynamic features for 10 subjects with 4 sequences for every individual. The classi-

fication performance is assessed in the same way as the footwear case by matching the

probe set against the gallery dataset of 20 subjects with 160 instances recorded with

no covariate effects. Figure 7.5 shows the cumulative match score curves for the gait

classification experiments. The correct classification rate for the coat is almost the same

as the normal case with reported rates of 83.33% and 86.67% respectively. However for

the case of the trench coat, the recognition decreases largely to 60%. This is mainly due
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to nature of the clothing which is distracting the gait dynamics as well as the occlusion

of the knee and hip joints faced during the extraction of gait features. This does not

occur with the trousers which adhere to the front of the leg, but could equally occur

with the female clothing (e.g., a chardor ).

Figure 7.5: Classification Results for the Clothing Covariates.

7.3.3 Load Carriage

The impact of load carried on human gait and body posture has been extensively in-

vestigated for different purposes including medical, training and military [69] use but

rarely for the purpose of gait recognition. In [95], Pascoe et al. carried out a number of

experiments to examine the effects of carrying bags on gait kinematics for youth people.

Pascoe reported that the stride length decreases whilst the gait cadence increases in

response to the weight of the load. The same results were also confirmed by the work

of Attwells et al. [8] and Wang [128]. Attwells observed from experiments carried out

on military personnel that the gait angular data including the knee and femur angles

are significantly affected with the increase of carriage load. For the effects of carrying

conditions on the performance of gait recognition, Phillips et al. [105] reported a correct

classification rate of 61% using KNN for k = 1 employing a silhouette-based method

for people carrying a briefcase.
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(a) (b) (c)

Figure 7.6: Footwear Covariate Factors: (a) Normal Clothing (b) Coat (c) Trench
Coat

To investigate the impact of load carriage on the performance of gait recognition

using the model-based method for the extraction of dynamic gait features, three different

covariate cases related to carrying conditions are used to construct the probe dataset.

The cases include people carrying handbags and barrel bags besides the normal walking

without carriage as illustrated in Figure (7.6). The probe set consists of 120 video

sequences for 10 different subjects with 4 trials for every case. People in the probe set

are matched against the same gallery dataset which is used for the evaluation of previous

covariate factors. The classification results for gait recognition are detailed using the

CMS curves shown in Figure (7.8).

The achieved recognition rate for people carrying a handbag is almost the same as

the normal case with a reported CCR of 80%. This is because the handbag was not

sufficiently heavy to affect the posture. For the case of the barrel bag which is covering

the mid part of the human body and occasionally the legs, the recognition rate drops

slightly to 77%. This is because of the occlusion encountered due to the size of the bag

and therefore affecting the gait measurements. However, such results may not express

the real impact of the carriage load on the performance of gait recognition. This is

because the duration of load carriage was brief, as the responses and effects of load may
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Figure 7.7: Classification Results for the Load Carriage.

change with the duration of carriage as a result of fatigue. This was not possible to

study in this research due to the limitation of the gait database.

7.3.4 The Speed Effects

There is currently not much work that investigates the effects of speed on the perfor-

mance of gait recognition methods and the relationship between the gait features and

the varying walking speed [116]. Based on a model-based method for feature extraction,

Yam [137] reported the possible existence of an individual mapping between the walk-

ing and running gait patterns. In [114], Bobick et al. observed that appearance-based

features derived from silhouette of walking people are speed-dependent and therefore, a

preprocessing stage for feature adjustment is suggested to improve the recognition per-

formance. To study the impact of speed variation on gait recognition, a probe dataset is

constructed consisting of 10 subjects recorded at different walking speed: slow, normal

and quick with 4 trials for every case. The recognition rate for both slow and quick

walking drops largely to 60% and 50% respectively compared to the achieved CCR of

%86 for the normal walking case.
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Figure 7.8: Classification Results for the Walking Speed Covariates.

7.4 Covariate Factor Analysis of Gait Features

Feature analysis is performed to quantify the footwear effects on the different dynamic

gait components employed for recognition. For each of the gait angular signature com-

ponents ( i.e., knee, ankle and hip), the correct recognition rate is computed using

leave-one-out validation and a KNN classifier with k = 5 for the different covariate

factors. The overall results are summarised in Table 7.1 which shows the means and

standard deviations of the recognition rates for the various gait dynamic features. The

knee is observed to have the highest average CCR whilst it is the most susceptible com-

ponent to the different covariates with a standard deviation of 14.1%. The ankle has the

lowest standard deviation among the angular features. The vertical tipping motion of

the trunk ( Y displacement ) is observed as the most stable features with high average

CCR and almost low standard deviation.

Table 7.1: Statistical Analysis of Gait Features.

Hip Knee Ankle X disp Y disp

Mean 25 27.9 24.1 15.9 23.3

Std. Deviation 12.1 14.1 9.6 7.2 7.3

Figure (7.9) and (7.10) show the results of the angular and displacement feature
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analysis respectively for the different covariate factors. The knee and hip angles are

less affected when changing the footwear with average CCRs of 34.75% and 31.25%

compared the normal case of 37% and 37% respectively. The ankle is observed to have

the most impact when changing footwear with an average CCR of 17.25% compared to

37% for the normal case. Interestingly, the ankle angle has almost the same CCR for the

other covariate factors including clothing, load carriage and walking speed, whilst the

CCR for the knee angle drops largely for the clothing covariates. The features derived

from the horizontal and vertical displacement of the trunk are shown to have less impact

from the covariate factors in contrast to the angular components of the gait signature.

Performance analysis on the effects of the covariates combined together could not be

done in this research due to the limitation of the database.

Figure 7.9: Angular Feature Analysis for Covariate Gait Recognition.

7.5 Conclusions

In this chapter, we have investigated the impact of the different covariate factors on

the performance of gait recognition using kinematic-related features. Four different

covariates are analysed including footwear, load carriage, clothing and walking speed.
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Figure 7.10: Displacement Feature Analysis for Covariate Gait Recognition.

Based on a covariate-based probe dataset of 440 samples, a high recognition rate of

73.4% is achieved using the KNN classifier with k = 5. This is to conclude that people

identification using dynamic gait features is still perceivable with better recognition rate

even under the different covariate factors. The footwear, clothing and load carriage

covariates are observed to have almost no effects on the performance of gait recognition

with similar results when walking with barefeet or without carrying bags. However,

the gait recognition drops largely when walking with flip flops or wearing a trench coat

due the difficulties encountered during the extraction of dynamic gait features using the

model-based method. The difficulty of extracting obscured features pervades computer

vision; if the features are completely obscured, it is unlikely that an algorithm can be

designed to successfully extract them.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis has investigated the use of kinematic-related gait features for people detection

and identification as well as the possibility of translating the use of gait recognition

to visual surveillance applications. We have proposed a model-based method for the

recovery of the joint trajectories. This is because the model-based approach is more

suited to general deployment including cases where subjects are captured walking from

different viewpoints. The main thrust behind this research is the complementary studies

from psychology and various other disciplines which supported the founding concept that

gait is unique for every person and people can be recognised by the way they walk.

A new approach was described to classify moving objects and detect walking people.

Multiple objects are tracked successfully through the use of shape-based parameters

to allocate them to different layers. Problems encountered during tracking such as

background clutter, appearance of uninteresting objects and entry and exit of objects

are handled efficiently. In contrast to approaches that employ shape-based parameters

for classification, we have explored an alternative technique for walking people detection

based on their gait motion. The rhythmic pattern of the gait motion derived from

the heel strike pattern is utilised as the main cue to distinguish walking subjects from

116
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other moving objects. The experimental results confirm the robustness of our method

to discriminate between a single walking person, a group of people and a vehicle with

a detection rate of 100%. Furthermore, the algorithm proposed for the detection of the

heel strikes is proven to derive the strikes with high accuracy for different type of video

streams including low resolution of 72×90.

We have proposed a new model-based method to extract moving joints via a recursive

evidence gathering technique. The method is based on the spatial model templates

describing the human motion. The motion models are derived from the analysis of gait

data collected from manual labelling and are represented in a parametric form based on

Elliptic Fourier Descriptors. Because the parametric representation of the motion models

requires 5 parameters and henceforth it is computationally infeasible to implement, the

gait knowledge is exploited via heel strike extraction to reduce the parameter space

dimensionality and reduce the computational load of the Hough Transform being used

in the extraction process. The described method is shown to work for both indoor and

outdoor environments with potential to localize joint positions with better accuracy.

We have carried out experiments to confirm psychological claims that the discrim-

inative features for motion perception and people recognition are embedded in gait

kinematics. The gait signature for people identification is constructed using a validation

and statistical-based feature selection process. Based on features describing the pure

dynamics of gait which are derived from the angular measurements of the lower limbs

as well as displacement of the trunk, a high correct classification rate of 95% and an

equal error rate (EER) of 3% for verification of people using gait are reported with the

possibility of improving these rates using sophisticated classifiers. We have confirmed

using computer vision methods, that the ankle, knee and hip rotation possess most of

the discriminatory potency for gait recognition as reported in the medical literature.

We have also confirmed the usefulness of phase information to improve the classification

results of gait recognition as well as the importance role for feature fusion of dynamic

features.

We have investigated the impact of the different covariate factors on the performance
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of gait recognition using kinematic-related features. The covariates include footwear,

load carriage, clothing and walking speed. Based on a covariate-based probe dataset

of 440 samples, a high recognition rate of 73% is achieved using the KNN classifier

compared to a CCR of 57% using a silhouette-based method by Sarkar et al. [105] applied

on data with footwear, clothing and time covariates. This is to conclude that people

identification using dynamic gait features is still perceivable even under the different

covariate factors.

8.2 Future Work

Although the marker-less model-based method presented for the extraction of gait fea-

tures has shown its effectiveness for different types of walking scenarios, the method has

been tested only on data of walking people recorded from the sagittal view. Therefore,

further work is required to address the different viewpoint angles for gait recognition.

For the recovery of the angular measurements and deriving view-invariant gait signa-

ture from the different viewing planes into the sagittal plane, the approach described

by Spencer et al. [110] should be considered for this research. Furthermore, the per-

formance of the bottom-up model-based approach which is satisfactory for extracting

the most important dynamic gait features for people recognition, needs to be assessed

further and compared with other top-down model-based approaches [27, 138, 122].

In addition, as the importance of the dynamic gait features for people identification

is confirmed in this study, further research should be carried out to investigate the

discriminatory power and analyse the kinematic characteristics of gait motion using

more advanced statistical methods in order to derive more discriminative and efficient

features from the gait dynamics. Although the achieved results for gait recognition are

encouraging using only the angular and displacement measurements, the classification

performance could be improved further by using more features either derived from the

anthropometric measurements of the human body ( static features such as height and

leg width ) or derived using more advanced fusion techniques.
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Last but not least, due to the limitation of the gait database, we have only investigated

the impact of four covariates on the performance of gait recognition including footwear,

load carriage, walking speed and clothing. We could extend this analytical studies to

assess the effects of other covariate factors including walking surface, viewpoint and

more importantly analyse the impact of time factor on the model-based approach. In

addition, further research is needed to classify and detect the different covariates or

walking modes based on the derived features as well as developing a mapping algorithm

to tune or adjust the gait features according to the detected covariate factor or walking

mode. Henceforth, the gait recognition rate could be improved significantly by exploiting

such mapping between the gait features and covariate factors. As such a program of

research has addressed many of the powerful factors in automatic analysis of surveillance

video, the abstraction and analysis of human movement from within surveillance video

remained to be performed and we look forward to the contribution of the techniques

developed during this thesis to those developments.



Appendix A

Parameters Reduction

Let H the curve we are searching for using the recursive evidence gathering algorithm

and, si is the ith heel strike point. Intuitively, H is derived from model template F by

applying appearance transformations. By incorporating gait knowledge, The curve H is

enclosed between the two consecutive strikes of the same leg (i.e. si and si+2). If e1 and

e2 are the end points of the the ankle joint for the model template F as shown in Figure

(5.4(a)), then e1 and e2 are mapped to si and si+2 on the curve H respectively for the

case of the ankle, whilst mapped to different points whose x coordinates are the same as

the striking points si and si+2 for the case of the knee and hip joints, the y coordinates

are approximated to be the same as shown in Figure (5.4(a)). The points e1 and e2 are

expressed in their complex form:







e1 = xe1 + iye1

e2 = xe2 + iye1

(A.1)

Then by scaling the template F by sx and sy through the horizontal and vertical axis

respectively, both points e1 and e2 will be shifted to e
′

1 and e
′

2 which are defined as:







e
′

1 = sxxe1 + syye1i

e
′

2 = sxxe2 + syye2i
(A.2)
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For proper scaling, the length of the vector
−→

e
′

1e
′

2 should have the same length as the

vector
−→

sisi+2 i.e. distance between the two strike points si and si+2. This is illustrated

in equation (A.3):

|
−→

e
′

1e
′

2 | = |
−→

sisi+2 | (A.3)

Which is equivalent to:

|
−→

e
′

1e
′

2 | =
√

s2
x(xe2 − xe1))2 (A.4)

Therefore the value of the parameter sx can be computed using the following equation:

sx =
|

−→

sisi+2 |
√

(xe2 − xe1)2
(A.5)

The rotation transform of angle α is then applied to the points e
′

1 and e
′

2 to derive

new mapping points e
′′

1 and e
′′

2 defined in the following equation (A.6):







e
′′

1 = (cos(α) + i sin(α))(sxxe1 + syye1i)

e
′′

2 = (cos(α) + i sin(α))(sxxe2 + syye2i)
(A.6)

The angle of the vector
−→

e
′′

1e
′′

2 must be equal to the angle value of
−→

sisi+2 as expressed in

equation (A.7):

angle(
−→

sisi+2) = angle(
−→

e
′′

1e
′′

2) (A.7)

By substituting:

angle(
−→

sisi+2) = angle((cos(α) + sin(α))isx(xe2 − xe1)) (A.8)

Which is equivalent to:

angle(
−→

sisi+2) = angle(sx(xe2 − xe1) cos(α) + i sin(α)) (A.9)

Because:

α = angle(sx(xe2 − xe1) cos(α) + i sin(α)) (A.10)
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Hencefore, the value the parameter α can be deduced as presented in equation (A.11)

α = angle(
−→

sisi+2) (A.11)

By simplifying the parameter equation (5.6), then for a given point p of coordinates

(x, y) from the motion pattern H, there exists t ∈ [0, 2π] value such that:







x = x0 + X(t)sx cos(α)− syY (t) sin(α)

y = y0 + syY (t) cos(α) + sxX(t) sin(α)
(A.12)

Let the point m(xm, ym) the mapping of the end point e1 from the model template, then

the point m is defined as::







xm = x0 + xe1sx cos(α)− syye1 sin(α)

ym = y0 + ye1sy cos(α) + sxxe1 sin(α)
(A.13)

By subtracting equation (A.13) from (A.13):

(y − ym) = sy(Y (t)− ye1) cos(α) + sx(X(t)− xe1) sin(α) (A.14)

Therefore, the parameter sy can rewritten as:

sy =
(y − ym)− sx(X(t)− xe1) sin(α)

(Y (t)− ye1) cos(α)
(A.15)

For the global search of the ankle motion pattern, the point m is the striking point si.

Thus, the dimensionality of parameter space is reduced to one parameter sy as ym is

equal to y coordinate of si. For the case of the knee and hip joints, the two parameters

sy and ym are used during the search.The translation parameters x0 and y0 are then

computed after determining the best value of sy and ym using equation (A.13):



Appendix B

Anthrometric Measurements of

the Human Body

Figure B.1: Body segment properties [132].
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