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This work concerns the tracking problem of uncertain Takagi-Sugeno fuzzy continuous systems with
unmeasurable premise variables and affected by unknown inputs. The aim is to synthesize a fault tolerant
controller (FTC) ensuring trajectory tracking of a desired reference model. To emit the original plant
system, a norm bounded parametric uncertainty is employed in building the T-S model. The control
scheme is based on a fuzzy observer to estimate both faults and faulty system states; a proportional
integer (PI) observer to estimate constant faults is then adopted. Using descriptor redundancy property
and £, optimization to attenuate the unknown inputs effect, a solution is proposed in terms of bilinear
matrix inequalities (BMlIs). The performances of the proposed approach are pointed out by accentuating
on a model of wastewater treatment plant (WWTP) through numerical results.
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1. Introduction

Design of robust control for uncertain nonlinear systems
is becoming necessary especially when systems are affected
by unknown inputs, such as disturbances, faults, or unmod-
eled dynamics. The well known classical control strategies have
reported their limits to take into account faults affecting a system.
Then, if a fault occurs in any component of the system, the stability
and the performances of the system cannot be ensured with such
control laws. For this reason, several new control system techniques
have been developed in order to guarantee the overall system sta-
bility and acceptable performances, despite the situation failure.
Recently, the adaptation of the control law on the basis of the esti-
mation of faults affecting the system is the new strategy of control
called fault tolerant control (FTC). The problem of FTC design has
been widely investigated and many significant results have been
proposed (see [1-8] and references therein).

Regrettably, in the literature the design of FT controllers for non-
linear systems remains more complicated [1]. Moreover, a large
class of nonlinear systems can be well approximated by T-S fuzzy
models [9,10]. This approach provides a representation of some
nonlinear systems by means of a collection of linear models which
are interconnected by nonlinear function as a convex combination.
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The interpolating functions depend either on measurable or
unmeasurable premise variables. In this context, FTC for several
kind of T-S fuzzy model has been strongly investigated and a lot of
works, involving various specifications, are now available. Among
this literature we find FTC for uncertain and disturbed models
[11,12], time delay models with and without uncertainties [13],
uncertain descriptor delay models [14,15]. Recall that stability con-
ditions are derived systematically and most of them depend on
Lyapunov theory relaying the feasibility of a derived system of
linear matrix inequalities (LMIs) [10,16].

Despite numerous works available, none of them seem able to
define an LMI formulation for the problem of trajectory tracking
FTC design for T-S uncertain and/or disturbed models subject to
actuators and/or sensor faults with unmeasurable premise vari-
ables. The only result available for T-S fuzzy uncertain model with
measurable premise variable subject to actuator constant fault has
been developed by [17]. Usually, the obtained conditions are only
expressed for T-S fuzzy models with measurable premise vari-
able [18,23,24,29]. In [28,29] an FT controller for T-S Models with
unmeasurable premise variables is proposed. The estimation of
the constant faults was obtained by using proportional integral
observers. Nevertheless, unknown inputs, parametric uncertainties
and external disturbances are not considered in this work. There-
fore the purpose of the proposed work is to integrate all of these
issues.

This paper is dedicated to the design of a fault tolerant control
strategy based on descriptor redundancy property. The main
idea is to ensure the trajectory tracking performance by means
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of a control scheme with a T-S observer and unknown inputs
attenuation based on £, optimization criterion. For that purpose, a
proportional integer (PI) observer is used to estimate jointly states
and constant faults. From a practical point of view, many works
reported that, even if the constant faults seem to be slow varying
(with regards the dynamics of the system), the proposed observer
provides good results. The main contribution of the paper consists
of the extraction of bilinear matrix inequality (BMI) formulations
using the well known descriptor redundancy property, in order to
derive the proposed fuzzy controllers’ laws related to the system
with unmeasurable premise variables. These conditions are easy
to solve using existing numerical tools.

To illustrate the proposed approach a wastewater treatment
plant (WWTP) is chosen as an application. Due to its nonlinear
dynamics, i.e., the variations of the wastewater flow rate and
composition, large uncertainty, multivariable structure, and mul-
tiple time scales in the internal process dynamics, the WWTP is
classified as a highly complex system. In addition, rather lim-
ited measurements are available during plant operation. Hence,
operating optimization and safety improvement has become an
interesting research area. For modeling the complex bio-chemical
process, several models are proposed [21,22]. Widespread use of
ASM1 (activated sludge process model no. 1) in many applications
has proven that it is adapted to describe and predict wastewater
treatment plant behavior. However, to deal with the complexity
of the ASM1 model, different versions of the reduced model are
proposed in the literature [19,20,25,26]. In this study, a nonlinear
reduced model with five states given by [34] is chosen, since lower
complexity is required for observer/controller design.

The paper is presented as follows: in the next section, the prob-
lem of FT controller design for T-S models with unmeasurable
premise variables is formulated. The observer and T-S fuzzy uncer-
tain faulty model is then presented. In Section 3, the proposed FTC
conditions for the whole closed-loop system are derived in BMI
formulation. The effectiveness of the proposed approach is illus-
trated by an application to a model of wastewater treatment plants
(ASM1) in Section 4. Finally, Section 5 concludes the paper.

In the sequel, the time variable will be omitted for space conve-
nience. The following notations are considered: #(S) denotes the
Hermitian of the matrix S, i.e. H(S) = S + ST.

The symbol * indicates the transposed element in the symmetric
positions of a matrix and diag(/y, ..., ) is a block diagonal matrix
in which diagonal entries are defined by /4, ..., I.. The following
lemma is needed.

Lemma1 ([27]). Consider two real matrices X, Y and F(t) with appro-
priate dimensions, for any positive scalar 6, the following inequality is
verified:

XTFY + YTFTX < 8X™X + 67 1YTYs > 0 (1)

2. Problem statement

AT-S fuzzy model is a set of linear time invariant (LTI) systems,
blended together with nonlinear membership functions. Actually,
different ways to perform a T-S model from non linear models
existed. An interesting approach is the well known nonlinear sec-
tor transformation [10]. In fact, this technique allows obtaining an
exact T-S representation without information loss on a compact
set of the state space.

The faulty uncertain system is inferred as follows:

k= 15 (A + DA + (B + AByug + Blf + Tid)
i=1
Yr= CXf + Gd(t) + Df

(2)

where r is the number of submodels, w;(£(t)) are the weighting
functions depending on the vector of the scheduling variables &(t),
which can be measurable (as the input or the output of the sys-
tem) or unmeasurable (as the state of the system). These nonlinear
functions satisfy the convex sum property:

0<pui(§) <1

4 3
Z“"(f):] Vie(1,2,...,1} (3)
i=1

wherex;(t)eR", yr(t)eRP, us(t)eR™andd(t)e RY=" arerespec-
tively the faulty state, faulty measured output vectors, the fault
tolerant control signal, and the bounded unknown input vectors.
f(t)eRY represents the faults vector affecting the system. AA; and
AB; are the uncertainty matrices with appropriate dimensions, cor-
responding to the ith subsystem.

Assumption. The parameter uncertainties considered here are
norm-bounded, in the form: AZ; = MI.ZFI.ZNI.Z, where Z € {A, B, C, D},
M? and N? are known real constant matrices of appropriate dimen-
sion. F7 is a known Lebesgue measurable matrix which satisfy:

vt >0:FI(t)FA(t) <1 (4)

inwhichTis the identity matrix of appropriate dimension. The aim is
to design a fault tolerant controller ensuring the tracking trajectory
performance of the faulty uncertain system to the reference one.
The FTC law is given by the following structure:

up = wiE)Ki(x - &) + u ~ KI) (5)

i=1

where K; e R™*", Kif € R™*4 are the state feedback gain matrices
to be determined. In order to derive the FTC law an additional PI
observer is added and has the usual form:

% = > wilE AR + By + B + H] (v — 9p))
i=1

i (6)
F = mi&)H2 s —37)
i=1

95 = C& +Df

where H,.l e R™P and H,? € R™*P are the observer’s gain matrices to
be determined in order to estimate f{t) and x(t). For simplification
we assume that:

Ai = (Ai+ AA;), B;=(B;+ ABy) (7)

The FT controller design methodology is illustrated by the fol-
lowing scheme (Fig. 1).

With this controller structure, one can remark that fault detec-
tion and isolation are performed since an estimate of the fault
affecting the system is available.

Fault Tolerant Tracking Controller

! »  Controller System

i Reference | x(t) f(t)
E model

Observer

R ()

Fig. 1. Tracking fault tolerant controller design methodology.
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3. Fault tolerant controller design

To specify the desired trajectory, let us consider the following
T-S structure corresponding to the reference model:

X=) &) Aix + Bu)
i=1

y==Cx

(8)

where x(t) e R", y(t)eRP,andu(t) e R™ represent respectively the
reference state, the measured output and the bounded input vec-
tors. {A;, B;} are the submodels asymptotically stable matrices. For
the simplicity of the notation, the computation is presented for the
case when measurement matrices are common for all the rules, i.e.
C1=CG=---=C

Let us respectively define the state and fault estimation errors,
state tracking error, and the output estimation error as:

et X —Xf
o (9)
er f-f
ey Y =5

Adding and subtracting K;x; and K{f. Eq. (5) can be rewritten as:

.
uf = Zui(gf)(x,-et +Kies + Kl e +u—K/f) (10)
i=1

Let us quote that two cases are distinguished: (i) the scheduling
vector &(t) does not depend on the estimation states, i.e., éf(t) =
&¢(t) and (ii) &(t) depends on completely or partially on estimated
states. In the following, we assume that the scheduling vector
depends on the estimated states. It is important to note that for the
FTC problem of T-S systems with actuator faults, it is more interest-
ing to use the output of the system as a premise variable. However,
in the simultaneously occurring actuator and sensor faults, better
results are obtained by using the state of the system as a premise
variable. In this case, the dynamics of e; and e are given by Eqs. (11)
and (12). To take the advantage of a descriptor redundancy formu-
lation, a “virtual dynamics” is introduced in the output error ey to
avoid the crossing terms resulting from the observer’s gains Hil and
system matrices (C; and D;) multiplication [32,33]. The latter can be
expressed as given by Eq. (13), where 0 € RP*P is a zero matrix.

r r
o= ) pilEmEpI(A; - Bikje — Bikjes — Bkl
i=1 j=1

— AAX; — ABju—Tid + (Binf - B]f ¥l+o (11)

r r
= > wilEmEpiByker + (A4 + Bykyes + (B + Bkl ey

i=1 j=1

—H}'ey +Ayx; + Byju + (B] — B — By)f + Tid] (12)

Al—Aj:A,‘j, BI_Bj:Bl] (11&)
r

o= (ni(§) — mi(5r))Ax + Bju) (11b)

i=1

0éy = Ces + Dey — ey +Gd (13)

In this work the faults affecting the system are supposed to be
constanti.e. f(t) = 0, the dynamics of the fault estimation error can
be written as:

ér=) > w5 ) ~H?Ces - H2Dey — HAGd) (14)
i=1 j=1

The concatenation of the previous derived dynamic errors
(11)-(14) allow the descriptor formulation of the dynamics by
considering the extended state vector X! = [ecesereyxs]. Thus, the
closed loop dynamics can be expressed as:

r r

. ~ v ~
EX =) > uilspmy(E Ak + ByY) (15)
i=1 j=1
withE=diag[I I | On I], Y'=[u d [ ¢] (16)
and
[(Ai—BK)  —BiK ~Bi! 0 —AAT
A\
Aj = 0 —~H2C ~H?D 0 o |.
0 C D -1 0
| BK; BiK; l_-}iK]f 0o A |
[—AB; -T; (Binf - ij ) I
By T (B -B-Byk) o
Bj=| 0 -H¥ 0 0 (17)
0 G 0 0
| B T, B —1'3,-1<jf 0]

Consequently, Eq. (2) is stabilized via the control law (10),
if Eq. (15) is stable guaranteeing the tracking performance for
all Bij. A straightforward result is summarized in the following
theorem.

Theorem 1. If there exist symmetric and positive definite matrices
X, Py =1, P3, P5, matrices P4, H, I:Ijz, K;, and K]fjointly with pos-
itive scalars 81, 83, 83, 84, )5, k=1,...,14,and J¢, k=1,...,3
that minimize the scalar i such that the following BMI constraints
i,j=1,...,r are satisfied, then the system (15) is stable guarantying
the tracking performance under the L;-gain norm:

/\~/lij <0 (18)

where

Zy ) ] (19)

Mj is defined by: M;= [;('2,0 2.2
:

with
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AE}'l) * * * *
(2,1) (2,2)
Aii Aij * * *
—I(Jfl Bl’[‘ A([S,Z) AJ(‘3,3) % " (*)
(4,2) (4,4)
0 A P{D A *
ﬂ?’l) = (5.2) (5,5)
0 A 0 0 A
0 (B - B)'P, 0 0 B[ Ps
-1 TP, -G"H" G"P, T/ Ps L
k/"Bf —B/" (B[ +B/" —K/"Bl +K/"BI)P, 0 o (B/"—k/"BI)P
L I 0 0 0 0
with
-1
ALY = HAX) - HBKX) + () MEMET
: X NPK;
b\~ NPT ND b pngbpgbT
+Ue) NN+ MM NPKX MPTP, NPK!
]
b
M= | NK |, 2= |MVTPs |, By= MPTP; |
2, NbKd MaTPp B!
APV = —KTB] + Po(B; — B)K;X + Jo,MPMET i i i
BiK;X BiK;
"D
T
AE}?J) = H(P,A;) + H(P2(B; — B)K;) + 1 M{" Ps
Ps
. e}
ZSU = Mi PS N l811 = buf
_ NbK!
AC? :BJf.sz +I<JfT(Bi - B))'P, —HC Ps s
NbK!
L
LPs |

AE4’2) = —I:Ij]T -‘,—PZC; AEJS’Z) = (A; —Aj)sz

AP = —H(HZD)+ 1+ JoMEMET; AP = —3(Py) +1
AP = H(PsA) + (8 + J5, + JSINATNG
and

£ = —diaglitlm +JEMM{T + U5y + I3 NTTND - il + J5,MPMPT

g i, ]

FED = —diag [I (3 +J5+8) J5 U5 +0%) 81 UPo +Jg)
(Jf2i+-l?1i+(]§i)_]+U§i)_1> Isi T3 82 Ugi)_] s
8 (07 g 027 (T UGB T) 0B

" G0 8 (Uh "+ 0 )]

FPV=diag[ny 25 By 0 B5; 0 0 8]

The observer gains are obtained by:

~1,71.T
4] - [
H; (Ph A?

Proof. See proofin Appendix A.

When the decision variables vector £ does not depend on the
estimated states, i.e., éf = &, new BMI conditions can be provided
from the ones given in Theorem 1. This result is given in Corollary
1.

(20)

Corollary 1. The system that generates tracking error e((t), fault e(t)
and the state es(t) estimation errors is stable and the £,-gain of transfer
from T(t) to X(t) is bounded by \f if there exists some symmet-

ric positive definite matrices X, Py, P3, P5, matrices Py, I:II? , I:Ijz, K;, I(Jf,

jointly with positive scalars 8, 85, 83, ]5{, k=1,...,14,andJ5, k =

1, ..., 3 thatminimize the scalar 1 under the following BMI constraints
iLj=1,...,r:

M;j <0 (21)

~(1L.1)

where Mj; is defined by M; = [2?21) 2.2) (22)
“ij7 Rl

—
2 %
~

—_

with
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ll)i(}.l’l) * * * *
—KjTBlT wi(}.z'z) * % *
-&TBl PP gl . * ()
(4,2) T (4,4)
SO 0 i B Wy )
i 0 0 0 0 &9
0 0 0 B P,
-1/ T'P, —GTH" G"P, T Ps L
(-B/"+k/"BI) 0 0 0 (B/"—k/"BI')Ps
I 0 0 0 0

— -1
Wy = HAX) — HBIKGX) + () MEMET + () NPTN?

+JPMPMPT; 1/11(].4~4) = —H(Ps)+]1

1
Y2 = H(PA) + 1+ S5 MEMPT; >
02 ./,(4.2) (1T T
:BfTPz—HjC,lpi :_Hj +P;C

(3.3) (72 b agbpbT . /(5.5
Y77 = —HH D) + 1+ MMy s

= H(PsA;) + (J§; +J5; + JSNTTN?
and
322 = —diag[l (2, +J5 +Jb) Jb (b +JB) 81 (D, +J2)
LN RN R R N LR (7 R I 3
€D L €2 R NSy L] LA Ry R W
@G Wb, 0N

~(2,1 :
S = diaglnny 25 By 0 By 0 0 NPK/]

The observer gains are obtained by Eq. (20).

Remark 1. The proposed approach concerns the uncertain T-S
systems also affected by unknown inputs and external distur-
bances. Based on descriptor redundancy property, the given
observer structure allows to estimate state variables, faults and
unknown inputs. Recall that, even if the constant faults seem to be
slow varying (with regards the dynamics of the system), the pro-
posed observer provides good results. The given conditions are in
BMI form because of the products B;K;X and Nl.bKjX in the elements

AE; D and 11 jj of the matrix (19). Notice that solving a BMI problem

is much harder than solving an LMI problem [41,42]. For nominal
T-S systems, the obtained design conditions are in LMI terms [40].

4. Application to a wastewater treatment plant model

In this section, we illustrate the proposed design approach on
a simulation model of a WWTP. The system under consideration
is the ASM1 model adopted from [31,35], and mainly treated as
a multi-model system in [36,37]. First the wastewater treatment
process and the reduced model used are detailed.

4.1. Process description and ASM1 model

In the search of the biodegradation processes, the ASM1 is one
of the widely used model to describe the wastewater treatment
processes, with assistance of microorganisms[31,35-39]. Standard
activated sludge processes consist of an aerated tank (bioreactor)

in closed-loop with a secondary settler (see the simplified diagram,
given in Fig. 2). The carbonated pollution is degraded by ventila-
tion in the aerobic tank, and a pollutant like ammoniacal nitrogen
is degraded into gaseous nitrogen following a two-step treatment
called nitrification—denitrification.

In this work, a reduced ASM1 model is considered. Simplifica-
tion assumptions with respect to components and hydrodynamics
are considered [34,35]. Only the components necessary for the
main reactions are kept and lead to 5 state variables: two types
of microorganisms: heterotrophic biomass (Xgy), autorotrophic
biomass (Xg4), and dissolved oxygen (Sp). X}, S;, Xp and Sy, have no
biological influence and are removed. The ammonia nitrogen frac-
tion (Syy) is relatively simple to measure which leads to remove
the Syp and Xpp fractions under constraint. At last, since Xs and Sg
are difficult to measure separately, a new variable: XSg = X + S is
created. Consequently, four processes are considered: the carbon
oxidation, the biomasses decays and nitrification.

The following state vector is considered:

X = [XSs. So. Xg» Snt» Xga]" (23)
Reduced process rates expressions are:
rxss = UHP1XBH + (1 — fp)(buXpH + baXpa)
Xgy = MHP1XBH — buXpH
TXga = aP2Xpa — baXpa
. . 1
Tsyy = —ixsHP1XBH — {IXB + YTJ LaP2Xpa (24)
+ (ixg — fpixp (buXpH + baXpa)

1-Y, 475 -Y,
I's, =— { Vi H} MHP1XBH — {TA} LapP2Xpa
with

_ XSs So SNH
P = Ks + XSs Koy + So Kng + Sny (25)
_ Snu 0
P2 = Knu + Snu Ko,a + So
Airflow
9in Feed l } Effluent
—| Bioreactor Settler —
Q0 o
PR e
qr + qw
Sludge Recycle Ir Sludgc Wastage qw >

Fig. 2. Diagram of activated sludge wastewater treatment process.
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Remark 2. In conformity with the benchmark of European Pro-
gram COST 624, the inflow oxygen and autorotrophic biomass
concentrations Sy in, Xpa in are neglected [31,34].

Remark 3. In practice the concentration XSs iy, Sng,in, and Xppin
are not measured online. Hence, often approximation is used to
replace these concentrations with their respective daily mean val-
ues. Another option exists that is to consider these concentrations
as unknown inputs [38].

The reduced model of the ASM1 may be represented by the
following nonlinear system [34,35]:

XSs = A (XSs i — XS5) + xsg
So = qm (=So)+K-qa- (SO,sa[ —So) +Ts,
Xpy = qﬂ : |:XBH — XBH +fR —fw XBH:| +1x, (26)
V ,m f f BH
Snu = q# - (SNH,in — SNH) + Tsy
Y Gin 1 —fW :|
Xpa = — - | =X — X T
BA = Y [ BA+fRfR+fW BA| + TXpa

where q is the flow of effluent and g, the airflow. The indexes in and
out correspond respectively to the input and output of the reactor.
qr and qy are respectively the clarifier recycled and the rejected
flow representing fractions of the input flow gj, as:

=&1(t) puba(x) (1 —fp)bn
0 az; 0
A(§) = 0 unéa(x) as3
0 as;  (ixg —frixp)bn
0 paa(x) 0
qr =frqin, 1=fr=2 (27)
aw =fwdin, 0 <fw <1 (28)

The volume of reactor is assumed to be constant V= 1333 m3, and
thus: qour = qin + qg. The clarifier is supposed to be perfect i.e. with
no internal dynamic process and no biomass in the effluent. The
different coefficients involved in (24) and (26) are given in Table 1.

4.2. Takagi-Sugeno model identification
Since the derivation of a T-S model is not unique for a given non-
linear system, the subsequent steps are followed. Let us first define

the measurement vector, the control vector and the unknown

Table 1
Parameters for ASM1 model (in 20°C) [37].

inputs vector in order to build the T-S model of the biological pro-
cess that will be used to apply the proposed fault tolerant controller.
Indeed, the output vector is y = [XSs, So, Sny]T, the known input vec-
tor is u=[Xpyn, 4a]’, and the unknown input vector is d=[XSs i,
SninlT. Using the well-known sector nonlinearity approach [10],
a T-S model structure is obtained where the nonlinear entries of
the input and state matrices are considered as “premise variables”
and denoted &;(.)(j = .., q). For g premise variables, r=29 sub-
models will be obtained. The above model is constituted by three
nonlinearities:

é. ()= qin(t)
XSs 1 SNH
X Xp,
5= ¢ ¥ Ko 750 1<NH+SNH BH (29)
&)=

Kny + Snyg KO A+ So

Notice that several choices of these premise variables are pos-
sible, due to the existence of different equivalent quasi-LPV forms
[37]. For the premise variables choice (29), only & (t) is measurable.

The system (26) can be rewritten as:

x=A(&)x+B(&)u+T()d (30)
where E(t) = [&1(t) &(x) §3(x)]T and the matrices
A(&(t)), B(&(t)) and T(&(t)) are expressed as follows:
(1—fpba 0 0
0 0  KSo.sa
0 , B)= &) 0 (31)
(ixg — frixp)ba 0 0
dss 0 0
&) o0
0 0
TE)=| 0 0 (32)
0 &(t)
0 0
where
a2 = &0~ K o - [] ;Y”} M), az = - [‘myi’y"} HAES(X)
H A
ass = &(t) [Rfl,g:—};“:/ - 1] —by, as=-§(t)- |:1x3 + ! :| Has3(x) (33)
Az = —ixpunéa(x), ass =&(t) |: R j}v‘:/ - 1:| —ba

Parameétres Signification Valeurs par défaut

Ya Taux de conversion substrat/biomasse autotrophe 0.24

Yy Taux de conversion substrat/biomasse hétérotrophe 0.67

fr Taux de conversion biomasse/matiére organique inerte 0.08

ixp Fraction d’azote dans la matiére organique inerte 0.06 [g N in endogenous mass]
ixp Fraction d’azote dans la biomasse hétérotrophe 0.086[g N in biomass]
H Taux de croissance maximal de la biomasse hétérotrophe 3.733[1/24h]

Ha Taux de croissance maximal de la biomasse autotrophe 0.3 [1/24h]

by Coefficient de mortalité de la biomasse hétérotrophe 0.4 [1/24h]

ba Coefficient de mortalité de la biomasse autotrophe 0.05 [1/24h]

Ks Coefficient de demi-saturation en substrat rapidement biodégradable 20 [g/m3]

Koa Coefficient de demi-saturation de I'oxygéne pour la biomasse autotrophe 0.4 [g/m3]

So.sat Oxygen saturation concentration 10 [g/m3]

K Control gain of oxygen 2.3[1/m?]

fr Fraction of the input flow 1.1

fw Fraction of the input flow 0.04
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Under the assumptions:

EMIn < £(t) < EMax

£ < £r(x) < &5 (34)
E30 < &3(x) < &

The local weighting functions are defined by

min max
WO — ‘2:»:1_%‘1 1_ E] _El
1 max _ %-min > max _ &min
1 1 1 1
min max
0 _ ";:2 - Ez 1_ %‘2 - %_2
W2 max _ gmin’ 2 max _ gmin (35)
2 2 2 2
min max
WO — ‘?5_3_53 1_ %_3 _53
max _ &min max _ &min
3 ’ 3
3 3 3 3

Finally, the weighting functions of the derived T-S model are
given by (Fig. 4)

01/014/1
3 =WIW; Wy,

) H12(8)

w3(§) = WOWIWY | 1y(8) = wiwlwl
)=WIWIWY, " ue(§) = Wiwiwi,
( (

Hs(®) = Wiwiwl

(36)

Considering definitions (36), the reader should remark that
these functions respect the conditions (3).

The constant matrices A;,B; and T(i =1, ..., 23) defining the 8
submodels, are determined by replaycing the premise variables

Bl
&; in the matrices A(§), B(§1) and T(&§;) with the scalars éj’, i=
1,...,29%andj=1,...,q:

a2 33
Ai:A<€:1'7521»€3'> i:l7-'-78 (37)
3!
B=B(& ) i=1,...,8 (38)
o]
T,=T(& ) i=1,...,8 (39)
4
3.5X1O
3
1§‘2.5
2
E 2
1.5

0 0.5 1 15 2 2.5
time(day)

T

0.5 1 15 2 25
time(day)

In definitions (37)-(39), the indexes B{(i: 1,...,8 and j=
1,...,3) are equal to min or max, and indicate which partition
of the jth premise variable (W? or W}!) is involved in the ith

submodel. Consequently, the nonlinear model (26) affected by the
unknown inputs d(t), can be proposed as:

8

X(0) = " (EONAX(D) + Bu(t) + Tyd(t)) (40)
i=1

() = Cx(0)

with

100
c_lo 10
000

- OO

0
0 (41)
0

Recall that the activating functions ©; depend on the scheduling
vector &(t) including a dilution rate variable &;(t) = g;,(t)/V which
is measurable and the system state x(t) that is not available to the
measurement.

4.3. Faulty uncertain T-S model

In order to point up the proposed approach additional faults are
used with respect to time expressed in (day), and are injected to
the T-S model (40) representing the ASM1 as:

- A fault f; affected the first output y; =XSs and appears from 1.5

[day].
- A fault f, affected the second output y, =XS, and appears from 2

[day].

It is assumed that faults have constant amplitude, approxi-
mately equal to 10% of the maximum amplitude related to each
output. From another side, the structure of the T-S model (40) rep-
resenting the ASM1 model involved parameter uncertainties of by
and b, in some coefficient of the matrix A. The variation of these
parameters is 20% for by and 25% for b, of their nominal values [35].

0 0.5 1 15 2 2.5 3
time(day)

40 c - c - c
0 0.5 1 1.5 2 25 3
time(day)

Fig. 3. Real inputs of wastewater treatement process.
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1 v < v T T
0.8~
0.6
0.4
0.2

0 ?

0 0.5 1 1.5 2 25 3
Time (day)

Fig. 4. Membership function evolution.

The uncertain part AA separated from the perfectly known part A
is given by:

0 0 0.2Aby 0 0.25Ab,
00 O0 O 0

AA= |0 0 0.2Aby O 0 (42)
0 0 0.2Aby 0 0.25Ab,
00 0 0 025Ab,

Moreover the uncertainties structure AA is written under the
form AA=M*F*N® with the matrices:

— ()
er estimated f1(t)

-0.1

0 0.5 1 15 2 25
Time (day)

60 T T

11

00

wiol1 o 0.2Aby 0

_11’ B 0 0.25Ab, |’

0 1

, [oo100

N® = (43)
0000 1

where F(t) has the following property F(t)FeT(t) < I. Thus, the Eq.
(40) is modified as follows:

8
=Y 1ilEX(Ai + AAY + Byt + Byif + Tid) (44)
yf=5c1+Df
where
025 0
0 0.25}
f=1fi R\ Bu=| 0 0 |,
0 o0
0 o0
100
i=1,--,8 and D= |0 1 0 (45)
000

Let us see in the next section the system control response,
state and fault estimation results obtained by the proposed FTC
approach.

0.6

05

0.4 20
******* estimated f2(t)

03

02
0.1

0 N Pt

0 0.5 1 1.5 2 25 3
Time (day)

T T ul()

40

20

T ufi(t)

0 0.5 1

1.5 2 2.5 3
Time (day)

Fig. 5. Faults and their estimates (Top), nominal control and FTC (bottom).
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state estimation errors

state traking errors

. ) - - - 30 T T * - -
10 | 4
25 E
5K i
0 — =
v
-5 B
-10 B
0 0.5 1 15 2 25 3 0 0.5 1 1.5 2 25 3
Time (day) Time (day)

Fig. 6. State estimation errors (left), state tracking errors (right).

4.4. Fault tolerant control synthesis and simulation results

In this section, numerical simulations have been performed
to demonstrate the effectiveness and the applicability of the
proposed approach described in Section 2 on the ASM1 model (26).
The T-S model constructed in Sections 4.2 and 4.3 representing

1600 T = T

869

the ASM1 model with premise variables depend on unmeasurable

state variable is used to build the observer. In order to represent

1400

20N

T T T 1y

reference Xg,

—m esimated Xg,

—meee uncertain Xg, ||

1200
15
1000
. reference state X 10-
800~ ~uncertain state
T estimated state
600 L L L L L 5 L L L L L
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 2.5
Time (day) Time (day)
80 T T
the reference state Xs s
"""" -uncertain state
60

reference state S,

——————— uncertain state
N estimated state

o estimated state N

L L L L

1 1.5 2 2.5 3

Time (day)

G r ' . - - 0 r
0 05 1 15 2 25 8 ° >
Time (day)
25 T N j )
20
i reference state S,
———— uncertain state
s estimated state
10

0 0.5 1 15 2

Time (day)

Fig. 7. Comparison between reference model states, states of the uncertain faulty system with FTC and states of the estimated system.

a realistic behavior of a WWTP, the data used for simulation are
generated with the complete ASM1 model (n=13) [39]. Applying
Theorem 1, the observer (6) and the fault tolerant controller (5)
are designed by finding symmetric and positive definite matrices
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X, Py, P3, Ps, matrices P4, H!, H?, K;, and Kjf jointly with positive
scalars &1, 63, 03, 04, ]lk =1,...,14, and ]5{, k=1,...,3 that
are not given here-such that the convergence conditions given in
Theorem 1 hold. The value of the attenuation rate from the input
vector 7(t) to the state vector X(t) is i = 6.32. The applied input
evolutions are given in Fig. 3.

The top of the Fig. 5 shows the time evolution of the faults
with their estimate values, whereas the bottom part illustrates the
nominal control inputs together with the FT controllers. The state
estimation errors together with the state tracking errors are given
by Fig. 6. Fig. 7 allows the comparison of the reference model states,
to the faulty uncertain and estimated model states. From the lat-
ter, one can see that the synthesized observer and FTC controller
showed their effectiveness, since the fault and the system states are
estimated and the tracking between the faulty system states and
the reference model ones is ensured. One should note that concern-
ing the states XSg and Syy the tracking errors are essentially due to
the minimization of the unknown input effect although the two
states are highly affected by the substrate and ammonia nitrogen
input concentrations with a high sensitivity index [20].

5. Conclusion

In this paper, the problem of fault tolerant tracking control
has been considered for faulty T-S uncertain models subject to
unknown inputs. Both measurable and unmeasurable premise vari-
ables cases are considered. An efficient control law is then designed
in order to ensure, from one side, the tracking between the faulty
uncertain system and one healthy reference model, and from the
other side, the stability convergence of the closed loop system.
Using Lyapunov theory and £, optimization, BMI design conditions
are given. The proposed results are then applied to a real process
of a wastewater treatment plant subject to parameter uncertain-
ties, unknown inputs and faults. Simulation results show that the
proposed approach was able to cope with the system faults.

with

EP=P'E>0 (A2)

P =diag[Py P, P3 P4 Ps] (A.3)
According to (A.2) and (16), it follows that Py =PI >0, P, =

PI'>0, P3 =PI >0, Ps =PI > 0, and P4 is a free slack matrix. The
derivative of the Lyapunov function (A.1) is expressed as:

V) = S5 il (E R HPT AR + HE PET)

i=1 j=1

(A4)

The objective is to find the gains K;, H!, H? from A; that mini-
mize the £,-gain from 7 to the tracking error and to the state and
fault estimation errors. It is well known that the £,-gain from 7" to
X is bounded if:

VER)+xTox — (wTu+d'd+fTf + ¢Tp) < 0 (A.5)

where Q@ =diag[l I I [ O0]. This condition is negative definite
if

ZZM,(sfm,(sf)l ! AU+Q () 1 0

(A.6)
i=1 j=1 _nzl

By considering the bijective variable changes (H}L)TPzz
H},. PsHZ = HZ, multiplying inequality (A.6) left and right by
diag(X I I I I I I I I), with X=P;', and isolating the
time varying entries AA,, AB;, inequalities (A 6), becomes:

e o rx17 E‘ilj'l * A)_‘,‘}j‘l () % o
S wtemi| 1] B R i ME

=1 j=1

(A7)
Appendix A. Proof of Theorem 1 where
. . . . FI x . *
Proof. Considering the following candidate quadratic Lyapunov j(’z N e
function i i * * %
Zpt= _1<]!T BI yé 2 g x * (A7a)
V(X) = XTEPX (A1) 0 j“‘ 2 PID  —H(P)+1
g jS 2 psBik! 0 H(PsA;)
0 (Bi—B))'P, 0 0 BIPs
_ —TT 7P, —GTH?T GTp, TTPs
321 _ ! ! ! ! (A.7b)
v KI8T — B (B +B] — k"Bl +K'BI)P, 0 o B -KBPs
I 0 0 0 0
222 = —diag [ n’lm n?lny 7lg 7Pl A7
MmNy N7lg N7, ] (A.7¢)
with
‘75.].1’1) = H(AX) — H(BiK;X) + XX; jl.jz’” = —KTB + Po(B; — B)K;X; jf.j“) = PsBiKX;
J3?) = HPA) + H(Py(B; — BKG) +1; 7> = BT Py + KI' (B; — B) P, — B2C; 7% = —AIT + PC

75 = (A - A))' Py + PsBiK

. A433) _
;A5 =

fH(I:Isz) + H(I:I].3) +1
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and
I\/}Ejl’l) * * * * i
T T T
Jen g . . . ~AB] ABTP, 0 0  ABIPs
O ; ?32) . 0 0 00 0
AXe = | _kITABT > 0 . AXS = (A.7d)
i §AB] ¥ * i : KI"AB] —KI"ABIP, 0 0 —KI"ABIPs
0 0 0 0 * 0 0 0 0 0
Jfg]?’“ 17;5}5'2) PSAB,-K]f 0 H(PsAA))
with
YD = M ABKX); Y5 = —KT AB] + Py ABKiX; Y1 = — AAT + Ps ABKiX
{2 %) = H(P, ABiK;); w(3 D = kl! ABTPZ Yo = AATPZ +PsABK;
Using the uncertainties structure defined in (4) and the well
known Lemma 1, A X; can be bounded as follows:
AXy <diag[ M1y 25 I3; [4; [15; I16; 0 18] (A.8)
with
by~1 by! by! bT \yb by~! bT \yb by~1 by~ I\ fT NbT b ief
my =) +03)  +Usy) )XK]'TNiTNi KX +U3) KjTNi TNPK; +(U5) " +U3) )K; NYTN] K;
+(J9) " MIMAT 4 ugq” INDTND 4 1o MPMET
-1 -1 -1
m2; =(U3,) +Ug) )KTNbTNbK MM + (5 +g; + U7) +UDy) IPIMPMYTP,

-1 _
+05) PIMPMYTPs + 13 PIMEMITP,

-1
T3y = J5,MPMPET + J5KITNSTNDKS + (jby) ™ PTMEMYT P

-1 -1
M55 = (f; +J5; +J5NITNG + U5) 1PTMGMGTP5+05:+]101+U14x) +(Ubs) PIMPMPTPs

+b,, KT NITNE K]
1165 = JGMIMPT + Uy + 14NN
1‘17,1 = Jb MbMPET
1T BT Nb !
8 = Uy, +1151)K NYTNPK

Finally, applying Schur complement [30] on the BMI terms of
(A.8), terms in ‘751_1,1)7 jf,f’]), \755’2), ‘75_15,3) and defining 7 = 1?2, the
inequality (A.6) becomes:

ZZMi(Sf)Mj(éf)Mv <0

i=1 j=1

(A.9)

It follows that (A
achieves the proof.

.9) is satisfied if the BMI (18) holds, which
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