Generic Model for Software Architecture Evolution

Abdelkrim Amirat

Computer Science Department
University Mohamed Cherif Messaadia
Souk-Ahras, Algeria
abdelkrim.amirat@yahoo.com

Abstract — As software architecture evolution has become an
integral part of the automated software engineeringifecycle,
reuse, modularization and composition of evolutionrules
becomes more important. This paper aims to generak the
architecture evolution model by defining evolutionrules and
propagation strategies on graphs describing softwar
architectures. We aim to define a user-definable nams to
manage software architecture evolution model.

Keywords- Architecture evolution, Component evolution,
Evolution rules, Propagation strategies, Graph, Semantic
relations.

l. INTRODUCTION

Architecture evolution plays a central role in s@fte
development and has become an integral
automated software engineering lifecycle. In ortiekeep
this automated lifecycle maintainable, evolutiomesuwill
have to be reusable, modular and composable [4][6].

It is natural that we can represent a softwareitature
by a graph of nodes. However, for genericity reasare can
reduce the problem of evolution of architectureaigraph
evolution problem where evolution rules and propiaga
strategies can be applied easily on the graph [7].

In this work we are essentially interested in thelation
of a graph of elements as long as software ard¢hitecan
be described by graphs. We consider a graph amansie
graph composed of nodes and edges. Where nodeseepr
architectural elements cgmponent, connector,

and

Mourad Oussalah

Computer Science Department
LINA Laboratory, University of Nantes
Nantes, France2

mourad.oussalah@univ-nantes.fr

be primitive or composite. Composite nodes or edges
defined by other graphs. So, we deal with an hibiaal
graph where each node or edge can be describeceagsm
of another graph and so on.

Evolution is described by the changes of the stinecbf
the graph describing the architecture or by itssieging
process. To summarise these definitions we intredie
following equations:

Evolution = {propagation strategy} + {evolution rules} (1)
Evolution without trace (changes within the architecture) (2)

Evolution with trace (versioning the architecture) (3)

The idea that we want to introduce through thisknias

part of thi@ developing an approach to evolve systems witagkup

track (versioning) [2]. So we want that our appfoadll be
as generic as possible with the aim of applyindoitall
modelling levels (M3, M2, M1 and MO0) defined by OMG
As consequence the mechanical operations devetopiis
purpose can be applied at all modelling levelssTdoal is
possible because the approach is focused aroungdrapé
concept which is generic too.

The remainder of the paper is organized as follows.
Some motivations of our work are summarized inisadt.
The necessary basic concepts required in this vewek
outlined in section lll. Section IV introduces tpeoposed
approach to deal with architecture evolution. SectV
proposes the evolution mechanisms used in our appré

configuratio) and edges represent the semantic relationgnort case study is presented in section VI. Kregiction

among these elements like inheritance, composi
association relations, which themselves (nodes ettges)
can be described as graph of elements and so on [3]
The evolution consists either in allowing the chesgf
the structure of the graph or permitting its vemgig. In the
first case; the evolution concerns the changesowtttrace
(changes within the architecture) where as in theosd
case;
architecture (change with trace) [1].

tiom] VIl concludes and provides some future work.

Il MOTIVATIONS

The mean motivation is to maintain in a uniform viag
consistency of the evolution of a graph by permigtihe
changes of its structure and its versioning in eespf its
semantic. This consistency is achieved via a peation

the evolution concerns the versioning of thenodel: starting from a graph which is initially cistent, an

element of this graph evolves (node, semantic ioglat

The principal motivation factor is to maintain in a attribute ...) and the task of the system is to fiagk a new

uniform way the consistency of the evolution ofragh of
elements by permitting the changes of its structuré its
versioning while respecting its semantic.

In our context a graph is defined by a set of naués a

set of edges among them, where each node or ancadge

consistent graph.

Many applications require the use of graphs and the
evolution. So we have defined some objectives to be
reached for our graph element evolution model:

« An abstraction level of the evolution must be associated with the processed node. For the retativese
provided in order to allow evolutions process to berules can be propagated in four directions and reaog to

reusable and more generic.

» Evolution must be managed outside the entities

two modes [7].
The propagation direction of a relation evolutiafercan

concerned by the evolutions; indeed merging thde Forward, Backward Bidirectional or None Forward,
evolution behaviour and the methods which describéor example, means that the propagation takes fare
the behaviour specific to each element runs againghe source of the relation to its destination. Phepagation

the behaviour abstraction of evolution model.

mode can bdéRestrictedor Extended If it is Restricted the

« The evolution model must be open to the addition opperation propagates from the extremity on whichisit

new external methods of evolution.

triggered to the relation element. If it Bxtended the

« The evolution model must be able to take intoOPeration propagates from the extremity on whichisit
account the semantics of various types of relation triggered to both the relation element and the rothe
a graph element and not impose fixed evolutior€Xtremity of the relation. The use of propagatitrategies

police.

containing evolution rules allows a more flexikilibecause

« The management of the evolution must be easy an@les can be defined and carried out accordinbéabntext

flexible.

« The evolution model must be capable to take |,
object-oriented '

advantage of the features of

and needs of an information system.

OUR APPROACH TO ARCHITECTURE EVOLUTION

paradigm such as abstraction, polymorphism, and The basis for our approach to architecture evahutio
encapsulation. More precisely, the principle ofcenters on the concept of a graph evolution. Bigjaaur
reusability must be widely exploited. To begin with graph element evolution model is based on the begepts
an evolution can concern several distinct sets obf modeled graph element, evolution manager, praiagy

classes. Moreover, a new evolution can be definedtrategies and evolution

rules as illustrated by th

by combining evolutions which have already beenmetamodel depicted in figure 1.

defined wusing inheritance or/and

relations [8].

I1l. BASIC CONCEPTS

compoasition

In modeled graph element we use nodes to reprédsent
architectural elements and edges to representeimartgic
relations among these architectural elements. \lyeorean
object oriented modelling concepts (class diagram)

The concept of graph element, which is the suppbrt describe the metamodel of our approach.
our modeling, is a semantic graph composed of nodes The concept of architectural element represents any

“architectural elements” and edges “semantic refhedti like
inheritance, composition or association relatiofi$fiese
semantic relations specify the quality of existingractions
between nodes or graphs. In our model each kindasis
(graph, node or relation) is reified and then oWtsistructure
and its behavior and in this case its evolution.

In order to express this evolution, the designeahie to
attach evolution capabilities directly to his apptions
entities concerned by the evolution; of coursedrealso, by
default, keep the evolution police provided by Hystem.
Indeed, i our model, the evolution of an elemeriidsed on
two components: evolution rules and propagatioategries.
A propagation strategy groups together the setvofugion
rules which define the operations of creation, mesion,
modification, derivation, versioning applicable #ogiven
element (graph, node or relation).

A propagation strategy, if it exists is therefossaciated
with each element graph, node or relation; it carrdused
or redefined in the corresponding sub-element hihres.
An evolution rule defines declaratively the actiohat must
be triggered on the elements concerned by the toplu
The evolution rules are defined as active rulesreneified
so they can be hierarchical; they are based ofothgalism
of ECA rules EventConditiorfAction) and are hierarchical
via the inheritance mechanism. For example, theimer
creation or the version destruction rules of a neidean
Action part of its evolution rule will trigger the evoionh
rules of the corresponding afferent and efferetdtions

reified entity of the architecture to evolve. Wittach
architectural
strategies. A strategy consists of a set of evatutules of
an architectural element. An evolution rule desesilihe
application of an evolution operation on an architeal
element. A rule is triggered if the correspondingere
occurs under predefined conditions. A rule cargiigother
rules, if necessary, to spread the impact of theraifon it
describes. Thus, an action of a rule may corresgonah
event.Furthermore, rules have a name which is unique

in the namespace its grammar and can have a number

of super-rules.

Rules can be abstract, which means that they dse on
applied in combination with non abstract sub-rukesally,
rules have an execution mode, which can be eittzuid,
automatic single, or automatic recursive. Manuiginave
to be explicitly invoked. Automatic single ruleseanatched
once, and then applied once by the automatic nraichi
framework. Automatic recursive rules are matched an
applied by the automatic matching framework uidre are
no matches.

It is only possible to define super-rule relaticgtvieeen
rules of the same kind: manual, automatic, or r&ealy
automatic.

element are associated some evolution

MetaBEement

BwolutionManager

Node Graphe Relation PropagationStrategy|
Bvent
BEwolutionRule Condition
e
4& \ Action
NodeBEwlRule GraphBwlRule RelationEwolRule

/\

ChangeBEwol

Identification Definition Derivation

VersionningEvol

Figure 1. Evolution metamodel for software architee.

V. EVOLUTION MECHANISM

The operating mechanism describes the execution

process of the evolution model. It is defined byamese of
four steps.

A. Interception of the event
An event can be intercepted in two different ways:

After a user request, indeed, the user selects thath
element (graph, node, relation) concerned by tlwugon
and the rule to apply on it (deletion, modification
versioning ...etc.). The evolution manager intetsefhe
message representing the user choice.

After the execution of an evolution rule (actionrtha
Indeed, the execution of an action of an evolutidie can
involve the call of another, and so on, until thegagation
is over. So, the evolution manager is responsilflehe
interception of any new event.

1) Research of the propagation strategy

The evolution manager having received a requestnof
evolution of an element, then looks for the coroesfing

propagation strategy (if it exists) and then amplibis
strategy to the element and triggers the correspgnd
evolution rules.

2) Execution of the evolution rules

Rules are identified by the event type to exective (
example for a node evolution the corresponding ei&n
delete-node, create-node-version, delete-attribatee ...)
and are applied after the condition are checkedioAs of
these rules cans be a program code or eventudilt af
events to be executed on other elements.

3) Propagation

The triggering of evolution rules in the executwfrtheir
action part. This execution raise new events thiit e
executed in the same way, and recursively propaofier
evolution rules.

In order to avoid cycles in the execution of rultde
evolution manager stores the names of elementshthat
been treated during a given propagation. This prsve
messages concerning the same element from beirg tak
into account more than once.

VI. CASE STUDY The propagation strategies are presented in thanfiolg
The example of the Figure 2 illustrates a propagegph @Ple:
Gry to be evolved.
Propagation Strategy S1: Graph |S2: Node [S3: Graph
Grg
TheDefaultStrategyForElement | GRO C1,C2,C3 | RC1, H2
RCG H, HasAsCreationRules R9 R7 R1, R8
> > HasAsDescructionRules R2 R4
HasAsModificationRules R3,R5 R6
Strategies Table

Figure 2. Gg element before evolution.

We propose the following evolution scenario: trseru
selects the C2 element and decides first to déleted then
create a version of the C1 and C3 elements. Thetsesf
this evolution scenario (illustrated by Figure ¥pdnd on
the different evolutions described below by theigiee.

The different rules defined to deal with the eviot

process of a graph are presented as follows:

R1: Relation evolution rule

R2: Node evolution rule

Event: Event:

addRelation(R,N1,N2,G) deleteNode(N)
VGry RC, Condition: Condition:

Belong (N1, G) Not (Shared (N))
Belong (N2, G) G < Graph(N)

Actions: Actions:

InstantiateRelation(R,N1,N2,G modifyGraph(G, N, ())

executeDeleteNode(N)

R3: Graph evolution rule

Event: modifyGraph(G,N,())
Condition: Belong(N,G); R1& N.afferent; R N.efferent
Actions: deleteRelation(R1)
Figure 3. Gg element before evolution. modifNode(R1.source, efféy&i)
deleteRelation(R2)

modifNode(R2.destinatiorfeaént, R2)

The different elements acting in this evolution rexéo G.Relatiors G.Relations — {R1, R2}

are presented in the following first tree tables.

addRelation(R1.name, R1.seuR1.destination, G)
G.Nod€- G.Node — {N}
G.Relatior’s G.relations + R1

Grp : Graph
Nodes: C1,C2, C3 R4: Relation evolution rule | R5: Graph evolution rule
Relations : RC1, H2 Direction : forward Event: modifyGraph(G,R,())

Srath Tk Mode: extented Condition: Belong (R, G)

raph fable Event: deleteRelation(R) N1< R.source
C1: Node C2: Node C3: Node Condition: G < Graph (R) Acti%ii R.destination
—— e T Actions: :

Aff. relation : - Aff. relation : RC1 | Aff. relation : H2 modifyGraph(G,R,()) modifyNode(N1, efferent, R)
Eff. relation: RC1 Eff. relation: H2 Eff. relation: - executeDeleteRelation(R) modifyNode(N2, afferent, R)
Structure: Structure: Structure:
Behavior: Behavior: Behavior:

Nodes Table R6: Node evolution rule R7: Node evolution rule
RC1: Relation H2: Relation Event: Event: _
Type : Composition Type : Inheritence moq]nyode (N, type, R) cre.a.teVersmnNode(N)
Source: C1 Source: C2 Condition: Condlthn.
Target: C2 Target : C3 (Belong (R, N.afferentpr _Versuonable (N)
Exclusive : true Exclusive : true (Belong (R, N.efferent)) Actions:
Dependent : false Dependent : false Actions: Casetypeof V(N) € executeCreateVersion(N)
Predominent : false Predominent : false AfferentN.afferent-N.afferent-R | G ¢ Graph(N)
Card: 1 Card: 1 Efferent: N.efferenéN.efferent-R createVersionGraph(G, N)

Reverse_card :1

Reverse_card :1

Relations Table

R8: Relation evolution rule | R9: Graph evolution rule o Strategy S1, rule R9 on graph GRO

Direction: forward Event: By default, the new creating elements (VRC1, VC1,
'I\E"Odet: &tended ggﬁé‘;ggﬁ'o”Gra‘)h(G'N) VC3 and VGRO) are associated to a predefined siieste
vent: . .
CreateVersionRelation(R,N.N1) BelongN,G) and rules of elgments types Wh|ch_ they depe.nd on.
Condition: Exists(V(N)) Let R(N,N1)and However, the deS|gner_|s f_ree to redefine or tocihiee

Actions: R.relationOperationRule.mode= them for a targeted application.

V(R) € derive (R) extended

V(N1)4createVersionNode(N1 ACt'Otn\Sli onRelation(RNNL) VII. CONCLUSION

V(R).source& V(N) createVersionRelation(R,N, .

V(R).destination& V(N1) V(G) € executeCreateVersion(G) _Th.e proposed evollutlon model reSpeCt.S most of the

objectives we determined before the design prochss.

Evolution rules Table addition to the mechanisms which are inherent ia th
representation of the evolution (propagation sgjiate and
A. Actions triggered evolgtic_)n _rules) by objgcts of thg fi_rst class, the
;) _ specialization of the evolution and applicationpfralasses
The deletion of the C2 element consists not only innay pe dealt with independently. The principal iordjty
deleting it, but also in propagation (using thepgagation f our model lies in the fact that different seniesiof graph

strategy) the deletion of the other elements whlighend on gjement evolution can be taken into account.
it, like the composition relation RC1 and the intarce

relation H2. Moreover, it differs from the existing models indw

points: 1- It proposes a uniform way to manage both
The propagation of this modification is managedtsy changes and versioning in a same objects basepetitiits
propagation strategy “S2” and more precisely by itsextensibility and the reusability of the differentles and
destruction rule R2. Indeed, the evolution manag®lies strategies of a graph of elements evolution.
the strategy S2 which consist in bringing baclkojeration

rule R2 dealing with the deletion of a node andttriggers REFERENCES

it. [1] M. Oussalah “Changes and Versioning in complex @bje
. . . International Workshop on Principles of Softwareokrion,

The description of the rule R2 consists, beforestited the IWPSE 2001, Sep. 10-11, Vienna University of Tedbgg,

node C2, to verify the conditions of this deleti¢tine Austria.

afferent and efferent relations of the node C2 muest 2] S. Chaki, A. Diaz-Pace, D. Garlan, A. Gurfinkel,dah
S’XCIU_S'Ve)- and then n executing the actions Ozkaya, “Towards engineered architecture evolution”
modifyGraph(G,N,()) and “executeDeleteNode(N) So, MIiSE, ICSE Workshop on Modeling in Software.
the evolution manager incepts the next event ctngign: Engineering, pp.1-6, 2009.

“deifyGraph(G,l\!,()) This event is §end to the graph [3] R.N. Taylor, N. Medvidovic and E. Dashofy, Software
entity GRO to which we have associated the stra®gy Architecture: Foundations, Theory, and Practice,leWi

which owns two modification rules R3 and R5. Irsthase, Blackwell, 2009.
the rulg R3f|s” sele;:ted by th(.a evolution managhe dther [4] O. Barais, A. Le Meur, L. Duchien, and J. LawaBoftware
operations follow these steps: architecture evolution”, Software evolution, Speng2008.
v Strategy S1, rule R3 on graph GRO [5] A. Amirat and M. Oussalah, “First-class connectados
o Strategy S3, rule R4 on relation RC1 support systematic construction of hierarchical tvgafe
« Strategy S1, rule R5 on graph GRO architecture”, Journal of Object Technology (JOFp, 107-
= Strategy S2, rule R6 on node C1 130, 2009.
* Strategy S2, rule R6 on node C2 [6] M. Jazayeri, “On architectural stability and evant,
0 Strategy S2, rule R6 on node Q1if needed Proceeding of Ada-Europe’02, 2002.

o Strategy S3, rule R4 on relation H2
« Strategy S1, rule R5 on graph GRO
« Strategy S2, rule R6 on node C# needed

[7] D. Tamzalit, N. Sadou, and M. Oussalah, “Evolution
problem within component-based software architefuin
Proceeding of International Conf. on Software Ergiing

« Strategy S2, rule R6 on node C3 . : \
0 Strategy S2, rule R6 on node €8 needed and Kn_owledge Englne§rlng (SEKE'06), 2006. .)
o Strategy S3, rule R1 on relation CR1 [8] A. Amirat, A. Menasria, and N. _Gasmallah,. Evolutio
Framework for Software Architecture using Graph
Concerning the creation of the version of the Ctleno Transformation Approach”, The 12th International al\r
the following rules are triggered: Conference on Information Technology (ACIT'2011),

December 11-14, Riyadh, Saudi Arabia, Pages 72@&D1.
v’ Strategy S2, rule R7 on node C1

o0 Strategy S1, rule R9 on graph GRO
« Strategy S3, rule R8 on relation RC1

