
Generic Model for Software Architecture Evolution

Abdelkrim Amirat1

Computer Science Department
University Mohamed Cherif Messaadia

Souk-Ahras, Algeria
abdelkrim.amirat@yahoo.com

Mourad Oussalah

Computer Science Department
LINA Laboratory, University of Nantes

Nantes, France2
mourad.oussalah@univ-nantes.fr

Abstract — As software architecture evolution has become an
integral part of the automated software engineering lifecycle,
reuse, modularization and composition of evolution rules
becomes more important. This paper aims to generalize the
architecture evolution model by defining evolution rules and
propagation strategies on graphs describing software
architectures. We aim to define a user-definable means to
manage software architecture evolution model.

Keywords- Architecture evolution, Component evolution,
Evolution rules, Propagation strategies, Graph, Semantic
relations.

I. INTRODUCTION

Architecture evolution plays a central role in software
development and has become an integral part of the
automated software engineering lifecycle. In order to keep
this automated lifecycle maintainable, evolution rules will
have to be reusable, modular and composable [4][6].

It is natural that we can represent a software architecture
by a graph of nodes. However, for genericity reasons, we can
reduce the problem of evolution of architecture in a graph
evolution problem where evolution rules and propagation
strategies can be applied easily on the graph [7].

In this work we are essentially interested in the evolution
of a graph of elements as long as software architecture can
be described by graphs. We consider a graph as a semantic
graph composed of nodes and edges. Where nodes represent
architectural elements (component, connector, and
configuration) and edges represent the semantic relations
among these elements like inheritance, composition, and
association relations, which themselves (nodes and edges)
can be described as graph of elements and so on [3].

The evolution consists either in allowing the changes of
the structure of the graph or permitting its versioning. In the
first case; the evolution concerns the changes without trace
(changes within the architecture) where as in the second
case; the evolution concerns the versioning of the
architecture (change with trace) [1].

The principal motivation factor is to maintain in a
uniform way the consistency of the evolution of a graph of
elements by permitting the changes of its structure and its
versioning while respecting its semantic.

In our context a graph is defined by a set of nodes with a
set of edges among them, where each node or an edge can

be primitive or composite. Composite nodes or edges are
defined by other graphs. So, we deal with an hierarchical
graph where each node or edge can be described by means
of another graph and so on.

Evolution is described by the changes of the structure of
the graph describing the architecture or by its versioning
process. To summarise these definitions we introduce the
following equations:

Evolution = {propagation strategy} + {evolution rules} (1)

Evolution without trace (changes within the architecture) (2)

Evolution with trace (versioning the architecture) (3)

The idea that we want to introduce through this work lies
in developing an approach to evolve systems with a backup
track (versioning) [2]. So we want that our approach will be
as generic as possible with the aim of applying it to all
modelling levels (M3, M2, M1 and M0) defined by OMG.
As consequence the mechanical operations developed to this
purpose can be applied at all modelling levels. This goal is
possible because the approach is focused around the graph
concept which is generic too.

The remainder of the paper is organized as follows.
Some motivations of our work are summarized in section II.
The necessary basic concepts required in this work are
outlined in section III. Section IV introduces the proposed
approach to deal with architecture evolution. Section V
proposes the evolution mechanisms used in our approach. A
short case study is presented in section VI. Finally section
VII concludes and provides some future work.

II. MOTIVATIONS

The mean motivation is to maintain in a uniform way the
consistency of the evolution of a graph by permitting the
changes of its structure and its versioning in respect of its
semantic. This consistency is achieved via a perturbation
model: starting from a graph which is initially consistent, an
element of this graph evolves (node, semantic relation,
attribute …) and the task of the system is to find back a new
consistent graph.

Many applications require the use of graphs and their
evolution. So we have defined some objectives to be
reached for our graph element evolution model:

• An abstraction level of the evolution must be
provided in order to allow evolutions process to be
reusable and more generic.

• Evolution must be managed outside the entities
concerned by the evolutions; indeed merging the
evolution behaviour and the methods which describe
the behaviour specific to each element runs against
the behaviour abstraction of evolution model.

• The evolution model must be open to the addition of
new external methods of evolution.

• The evolution model must be able to take into
account the semantics of various types of relation of
a graph element and not impose fixed evolution
police.

• The management of the evolution must be easy and
flexible.

• The evolution model must be capable to take
advantage of the features of object-oriented
paradigm such as abstraction, polymorphism, and
encapsulation. More precisely, the principle of
reusability must be widely exploited. To begin with,
an evolution can concern several distinct sets of
classes. Moreover, a new evolution can be defined
by combining evolutions which have already been
defined using inheritance or/and composition
relations [8].

III. BASIC CONCEPTS

The concept of graph element, which is the support of
our modeling, is a semantic graph composed of nodes
“architectural elements” and edges “semantic relations” like
inheritance, composition or association relations. These
semantic relations specify the quality of existing interactions
between nodes or graphs. In our model each kind of class
(graph, node or relation) is reified and then owns its structure
and its behavior and in this case its evolution.

In order to express this evolution, the designer is able to
attach evolution capabilities directly to his applications
entities concerned by the evolution; of course he can also, by
default, keep the evolution police provided by the system.
Indeed, i our model, the evolution of an element is based on
two components: evolution rules and propagation strategies.
A propagation strategy groups together the set of evolution
rules which define the operations of creation, destruction,
modification, derivation, versioning applicable to a given
element (graph, node or relation).

A propagation strategy, if it exists is therefore associated
with each element graph, node or relation; it can be reused
or redefined in the corresponding sub-element hierarchies.
An evolution rule defines declaratively the actions that must
be triggered on the elements concerned by the evolution.
The evolution rules are defined as active rules and re reified
so they can be hierarchical; they are based on the formalism
of ECA rules (Event/Condition/Action) and are hierarchical
via the inheritance mechanism. For example, the version
creation or the version destruction rules of a node via an
Action part of its evolution rule will trigger the evolution
rules of the corresponding afferent and efferent relations

associated with the processed node. For the relations these
rules can be propagated in four directions and according to
two modes [7].

The propagation direction of a relation evolution rule can
be Forward, Backward, Bidirectional, or None. Forward,
for example, means that the propagation takes place from
the source of the relation to its destination. The propagation
mode can be Restricted or Extended. If it is Restricted, the
operation propagates from the extremity on which it is
triggered to the relation element. If it is Extended, the
operation propagates from the extremity on which it is
triggered to both the relation element and the other
extremity of the relation. The use of propagation strategies
containing evolution rules allows a more flexibility because
rules can be defined and carried out according to the context
and needs of an information system.

IV. OUR APPROACH TO ARCHITECTURE EVOLUTION

The basis for our approach to architecture evolution
centers on the concept of a graph evolution. Basically, our
graph element evolution model is based on the key concepts
of modeled graph element, evolution manager, propagation
strategies and evolution rules as illustrated by the
metamodel depicted in figure 1.

In modeled graph element we use nodes to represent the
architectural elements and edges to represent the semantic
relations among these architectural elements. We rely on an
object oriented modelling concepts (class diagram) to
describe the metamodel of our approach.

The concept of architectural element represents any
reified entity of the architecture to evolve. With each
architectural element are associated some evolution
strategies. A strategy consists of a set of evolution rules of
an architectural element. An evolution rule describes the
application of an evolution operation on an architectural
element. A rule is triggered if the corresponding event
occurs under predefined conditions. A rule can trigger other
rules, if necessary, to spread the impact of the operation it
describes. Thus, an action of a rule may correspond to an
event. Furthermore, rules have a name which is unique
in the namespace its grammar and can have a number
of super-rules.

Rules can be abstract, which means that they are only
applied in combination with non abstract sub-rules. Finally,
rules have an execution mode, which can be either manual,
automatic single, or automatic recursive. Manual rules have
to be explicitly invoked. Automatic single rules are matched
once, and then applied once by the automatic matching
framework. Automatic recursive rules are matched and
applied by the automatic matching framework until there are
no matches.

It is only possible to define super-rule relation between
rules of the same kind: manual, automatic, or recursively
automatic.

Figure 1. Evolution metamodel for software architecture.

V. EVOLUTION MECHANISM

The operating mechanism describes the execution
process of the evolution model. It is defined by means of
four steps.

A. Interception of the event

An event can be intercepted in two different ways:

After a user request, indeed, the user selects both the
element (graph, node, relation) concerned by the evolution
and the rule to apply on it (deletion, modification,
versioning ...etc.). The evolution manager intercepts the
message representing the user choice.

After the execution of an evolution rule (action part),
Indeed, the execution of an action of an evolution rule can
involve the call of another, and so on, until the propagation
is over. So, the evolution manager is responsible of the
interception of any new event.

1) Research of the propagation strategy

The evolution manager having received a request of an
evolution of an element, then looks for the corresponding

propagation strategy (if it exists) and then applies this
strategy to the element and triggers the corresponding
evolution rules.

2) Execution of the evolution rules

Rules are identified by the event type to execute (for
example for a node evolution the corresponding event is:
delete-node, create-node-version, delete-attribute-node …)
and are applied after the condition are checked. Actions of
these rules cans be a program code or eventually a list of
events to be executed on other elements.

3) Propagation

The triggering of evolution rules in the execution of their
action part. This execution raise new events that will be
executed in the same way, and recursively propagate other
evolution rules.

In order to avoid cycles in the execution of rules, the
evolution manager stores the names of elements that have
been treated during a given propagation. This prevents
messages concerning the same element from being taken
into account more than once.

EvolutionManagerMetaElement

Node Graphe Relation PropagationStrategy

EvolutionRule

Event

Condition

Action

NodeEvolRule GraphEvolRule RelationEvolRule

ChangeEvol
VersionningEvol

Identification Definition Derivation

VI. CASE STUDY

The example of the Figure 2 illustrates a proposed graph
Gr0 to be evolved.

Figure 2. Gr0 element before evolution.

We propose the following evolution scenario: the user
selects the C2 element and decides first to delete it and then
create a version of the C1 and C3 elements. The results of
this evolution scenario (illustrated by Figure 3) depend on
the different evolutions described below by the designer.

Figure 3. Gr0 element before evolution.

The different elements acting in this evolution scenario

are presented in the following first tree tables.

Gr0 : Graph

Nodes : C1, C2, C3

Relations : RC1, H2

Graph Table

C1 : Node C2 : Node C3 : Node

Aff. relation : -
Eff. relation: RC1
Structure: …..
Behavior: …..

Aff. relation : RC1
Eff. relation: H2
Structure: ……
Behavior: ……

Aff. relation : H2
Eff. relation: -
Structure: ……
Behavior: ……

Nodes Table

RC1 : Relation H2 : Relation
Type : Composition
Source: C1
Target : C2
Exclusive : true
Dependent : false
Predominent : false
Card : 1
Reverse_card :1

Type : Inheritence
Source: C2
Target : C3
Exclusive : true
Dependent : false
Predominent : false
Card : 1
Reverse_card :1

Relations Table

The propagation strategies are presented in the following
table:

Propagation Strategy S1 : Graph S2 : Node S3 : Graph

TheDefaultStrategyForElement

HasAsCreationRules

HasAsDescructionRules

HasAsModificationRules

GR0

R9

R3,R5

C1,C2,C3

R7

R2

R6

RC1, H2

R1, R8

R4

Strategies Table

The different rules defined to deal with the evolution

process of a graph are presented as follows:

R1: Relation evolution rule R2: Node evolution rule
Event:
 addRelation(R,N1,N2,G)
Condition:
 Belong (N1, G)
 Belong (N2, G)
Actions:
 InstantiateRelation(R,N1,N2,G)

Event:
 deleteNode(N)
Condition:
 Not (Shared (N))
 G � Graph(N)
Actions:
 modifyGraph(G, N, ())
 executeDeleteNode(N)

R3: Graph evolution rule

Event: modifyGraph(G,N,())
Condition: Belong(N,G); R1 � N.afferent; R2 � N.efferent
Actions: deleteRelation(R1)
 modifNode(R1.source, efferent, R1)
 deleteRelation(R2)
 modifNode(R2.destination, afferent, R2)
 G.Relations � G.Relations – {R1, R2}
 addRelation(R1.name, R1.source, R1.destination, G)
 G.Node � G.Node – {N}
 G.Relations � G.relations + R1

R4: Relation evolution rule R5: Graph evolution rule
Direction : forward
Mode: extented
Event: deleteRelation(R)
Condition: G � Graph (R)
Actions:
 modifyGraph(G,R,())
 executeDeleteRelation(R)

Event: modifyGraph(G,R,())
Condition: Belong (R, G)
 N1 � R.source
 N2 � R.destination
Actions:
 modifyNode(N1, efferent, R)
 modifyNode(N2, afferent, R)

R6: Node evolution rule R7: Node evolution rule
Event:
 modifyNode (N, type, R)
Condition:
 (Belong (R, N.afferent)) or
 (Belong (R, N.efferent))
Actions: Case type of
Afferent:N.afferent�N.afferent-R
Efferent: N.efferent�N.efferent-R

Event:
 createVersionNode(N)
Condition:
 Versionable (N)
Actions:
 V(N) � executeCreateVersion(N)
 G � Graph(N)
 createVersionGraph(G , N)

C2 C3
RC1 H2

VC1 VC3
VRC1

dl dl

VGr 0

dl

RC1

C1

C1 C2 C3
RC1 H2

Gr0

R8: Relation evolution rule R9: Graph evolution rule
Direction: forward
Mode: extended
Event:
CreateVersionRelation(R,N,N1)
Condition: Exists(V(N))
Actions:
V(R) � derive (R)
V(N1)�createVersionNode(N1)
V(R).source � V(N)
V(R).destination � V(N1)

Event:
CreateVersionGraph(G , N)
Condition:
Belong(N,G)
Let R(N,N1) and
R.relationOperationRule.mode=
extended
Actions:
 createVersionRelation(R,N,N1)
 V(G) � executeCreateVersion(G)

Evolution rules Table

A. Actions triggered

The deletion of the C2 element consists not only in
deleting it, but also in propagation (using the propagation
strategy) the deletion of the other elements which depend on
it, like the composition relation RC1 and the inheritance
relation H2.

The propagation of this modification is managed by the
propagation strategy “S2” and more precisely by its
destruction rule R2. Indeed, the evolution manager applies
the strategy S2 which consist in bringing back its operation
rule R2 dealing with the deletion of a node and then triggers
it.

The description of the rule R2 consists, before deleting the
node C2, to verify the conditions of this deletion (the
afferent and efferent relations of the node C2 must be
exclusive), and then in executing the actions
“modifyGraph(G,N,())” and “executeDeleteNode(N)”. So,
the evolution manager incepts the next event consisting in:
“modifyGraph(G,N,())”. This event is send to the graph
entity GR0 to which we have associated the strategy S1
which owns two modification rules R3 and R5. In this case,
the rule R3 is selected by the evolution manager. The other
operations follow these steps:

� Strategy S1, rule R3 on graph GR0
o Strategy S3, rule R4 on relation RC1

• Strategy S1, rule R5 on graph GR0
� Strategy S2, rule R6 on node C1
� Strategy S2, rule R6 on node C2

o Strategy S2, rule R6 on node C1 // if needed
o Strategy S3, rule R4 on relation H2

• Strategy S1, rule R5 on graph GR0
• Strategy S2, rule R6 on node C2 // if needed
• Strategy S2, rule R6 on node C3

o Strategy S2, rule R6 on node C3 // if needed
o Strategy S3, rule R1 on relation CR1

Concerning the creation of the version of the C1 node,
the following rules are triggered:

� Strategy S2, rule R7 on node C1
o Strategy S1, rule R9 on graph GR0

• Strategy S3, rule R8 on relation RC1

o Strategy S1, rule R9 on graph GR0

By default, the new creating elements (VRC1, VC1,
VC3 and VGR0) are associated to a predefined strategies
and rules of elements types which they depend on.
However, the designer is free to redefine or to specialize
them for a targeted application.

VII. CONCLUSION

The proposed evolution model respects most of the
objectives we determined before the design process. In
addition to the mechanisms which are inherent in the
representation of the evolution (propagation strategies and
evolution rules) by objects of the first class, the
specialization of the evolution and application graph classes
may be dealt with independently. The principal originality
of our model lies in the fact that different semantics of graph
element evolution can be taken into account.

Moreover, it differs from the existing models in two
points: 1- It proposes a uniform way to manage both
changes and versioning in a same objects base. 2-It permits
extensibility and the reusability of the different rules and
strategies of a graph of elements evolution.

REFERENCES

[1] M. Oussalah “Changes and Versioning in complex Objects”,
International Workshop on Principles of Software Evolution,
IWPSE 2001, Sep. 10-11, Vienna University of Technology,
Austria.

[2] S. Chaki, A. Diaz-Pace, D. Garlan, A. Gurfinkel, and I.
Ozkaya, “Towards engineered architecture evolution”, in
MiSE, ICSE Workshop on Modeling in Software.
Engineering, pp.1-6, 2009.

[3] R.N. Taylor, N. Medvidovic, and E. Dashofy, Software
Architecture: Foundations, Theory, and Practice, Wiley-
Blackwell, 2009.

[4] O. Barais, A. Le Meur, L. Duchien, and J. Lawall, “Software
architecture evolution”, Software evolution, Springer, 2008.

[5] A. Amirat and M. Oussalah, “First-class connectors to
support systematic construction of hierarchical software
architecture”, Journal of Object Technology (JOT), pp. 107-
130, 2009.

[6] M. Jazayeri, “On architectural stability and evolution”,
Proceeding of Ada-Europe’02, 2002.

[7] D. Tamzalit, N. Sadou, and M. Oussalah, “Evolution
problem within component-based software architecture”, in
Proceeding of International Conf. on Software Engineering
and Knowledge Engineering (SEKE'06), 2006.

[8] A. Amirat, A. Menasria, and N. Gasmallah, “Evolution
Framework for Software Architecture using Graph
Transformation Approach”, The 12th International Arab
Conference on Information Technology (ACIT’2011),
December 11-14, Riyadh, Saudi Arabia, Pages 75-82, 2011.

