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Abstract. The Hestenes-Stiefel (HS) conjugate gradient algorithm is a useful tool of unconstrained
numerical optimization, which has good numerical performance but no global convergence result un-
der traditional line searches. This paper proposes a line search technique that guarantee the global
convergence of the Hestenes-Stiefel (HS) conjugate gradient method. Numerical tests are presented to
validate the different approaches.
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1. Introduction

Consider the following unconstrained optimiza-
tion problem:

min f(x), x ∈ R
n, (1)

where f is continuously differentiable and its gra-
dient g (x) = ∇f (x) is available. Iterative meth-
ods are widely used for solving (1) and the itera-
tive formula is given by

xk+1 = xk + αkdk (2)

where xk ∈ R
nis the k th approximation to the

solution, αk is a steplength obtained by carrying
out a line search, and dk is a search direction.

There are many kinds of iterative methods
that include the Newton method, the steepest
descent method and nonlinear conjugate gradi-
ent methods, for example. The conjugate gra-
dient methods are the most famous methods for
solving unstrained optimization (1), especially in

case of large scale optimization problems in sci-
entific and engineering computation due to the
simplicity of their iteration and low memory re-
quirements. The search direction dk is defined
by

dk =

{

−gk si k = 0
−gk + βkdk−1 si k ≥ 1

(3)

where βk is a scalar and gk = g (xk). The original
nonlinear conjugate gradient method proposed
by Hestenes and Stiefel (HS conjugate gradient
method) [15], in which βk is defined by

βHS
k =

gTk (gk − gk−1)

dTk−1(gk − gk−1)
(4)

There are at least six formulas for βk, which are
given below:

βFR
k =

gTk gk

gTk−1gk−1
Fletcher-Reeves [9] (5)
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βPRP
k =

gTk (gk − gk−1)

gTk−1gk−1
Polak-Ribière [19,20]

(6)

βCD
k = −

gTk gk

dTk−1gk−1
Conjugate-Descent [8] (7)

βLS
k = −

gTk (gk − gk−1)

dTk−1gk−1
Liu-Storey [17] (8)

βDY
k =

gTk gk

dTk−1(gk − gk−1)
Dai-Yuan [6] (9)

Considerable attentions have been made on
the global convergence for the above methods.
Zoutendijk [31] proved that the FR method with
exact line search is globally convergent. Al-Baali
[2] extended this result to the strong Wolfe-
Powell line search. Powell [21] proved that the se-
quence of gradient norms ‖gk‖ could be bounded
away from zero only when

∑

k≥0

1

‖dk‖
< +∞ (10)

So one can prove that the FR method is glob-
ally convergent for general functions by using
(10). However, the global convergence has not
been established for the PRP method with the
strong Wolfe-Powell line search conditions. In
fact, Powell proved that even if the steplength
was chosen to be the least positive minimizer of
the one variable function (Φk (α) = f(xk + αdk),
α ∈ R), the PRP method could cycle infinitely
without approaching a solution.

Some convergent versions were proposed by
using some new complicated line searches or
through restricting the parameter βk to a non-
negative number [12,13,25,26,27]. The CD
method was proved to have global convergence
property under strong Wolfe line search with
a strong restriction on the parameters [5] and
DY method has global convergence under weak
Wolfe line search [6]. Some impressive literature
on conjugate gradient methods can be found in
[4,5,7,10,11,16,17,22,23,30].

However, to the best of our knowledge, the
global convergence of the original LS and HS
methods has not been proved under all the men-
tioned line searches. In this paper, we propose
a new line search procedure and investigate the
global convergence of the original HS method.

Under the sufficient descent condition

gTk dk < −c ‖gk‖
2 (11)

for some constant c ∈ ]0, 1[
Once the descent direction dk is determined

at the k-th iteration, we should seek a step size
along the descent direction and complete one it-
eration.

There are many approaches for finding an
available step size. Among them the exact line
search is an ideal one, but is cost-consuming or
even impossible to use to find the step size. Some
inexact line searches are sometimes useful and ef-
fective in practical computation, such as Armijo
line search [1], Goldstein and Wolfe line search
[8,14,28,29]. The Armijo line search is com-
monly used and easy to implement in practical
computation.

Armijo line search

Let s > 0 be a constant, ρ ∈ (0, 1) and
µ ∈ (0, 1). Choose αk to be the largest α in
{s, sρ, sρ2, ..., } such that

fk − f(xk + αdk) ≥ −αgTk dk.

The drawback of the Armijo line search is how
to choose the initial step size s. If s is too large
then the procedure needs to call much more func-
tion evaluations. If s is too small then the ef-
ficiency of related algorithm will be decreased.
Thereby, we should choose an adequate initial
step size s at each iteration so as to find the step
size αk easily.

In this paper we propose a new Armijo-
modified line search in which an appropriate ini-
tial step size s is defined and varies at each iter-
ation.

The new Armijo-modified line search enables
us to find the step size αk easily at each iter-
ation and guarantees the global convergence of
the original HS conjugate gradient method un-
der some mild conditions.

The global convergence and linear convergence
rate are analyzed and numerical results show that
HS method with the new Armijo-modified line
search is more effective, than other similar meth-
ods in solving large scale minimization problems.

2. New Armijo-Modified Line Search

We first assume that
Asumption A. The objective function f(x) is
continuously differentiable and has a lower bound
on R

n

Asumption B. The gradient g (x) = ∇f (x) of
f(x) is Lipschitz continuous on an open convex
set Γ that contains the level set L(x0) = {x ∈ R

n

|f(x) ≤ f(x0)} with x0 given, i.e., there exists an
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L > 0 such that

‖g(x)− g(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Γ.

New Armijo-modified line search

Given µ ∈
]

0, 12
[

, ρ ∈ ]0, 1[ and c ∈
[

1
2 , 1
]

, set

sk = 1−c
Lk

dTK(gk+1−gk)

‖dk‖
2 and αk is the largest α in

{s, sρsρ2, ..., } such that

fk − f(xk + αdk) ≥ −αµgTk dk.

g (xk + αdk)
T d(xk+αdk) ≤ −c ‖g (xk + αdk)‖

2

and ‖gk+1‖ ≤ c ‖dk‖ where

d(xk + αdk) = −g (xk + αdk)

+
g (xk + αdk)

T [g (xk + αdk)− g (xk)]

dTk [g (xk + αdk)− g (xk)]
dk

for dTk (gk+1 − gk) > 0 and Lk is an approxima-
tion to the Lipschitz constant L of g(x).

3. Algorithm and Convergent

Properties

In this section, we will reintroduce the conver-
gence properties of the HS method

Now we give the following algorithm firstly.

Algorithm 1. Step 0: Given x0 ∈ R
n, set

d0 = g0, k := 0.

Step 1: If ‖gk‖ = 0 then stop else go to Step 2.

Step 2: Set xk+1 = xk + akdk where dk is defined
by (3), βk = βHS

k and αk is defined by the new
Armijo-modified line search.

Step 3: Setk := k + 1 and go to Step 1.

Some simple properties of the above algorithm
are given as follows.

Lemma 1. Assume that (A) and (B) hold and
the HS method with the new Armijo-modified line
search generates an infinite sequence {xk}.

If αk ≤ 1−c
L

dT
k
(gk+1−gk)

‖dk‖
2 then:

gTk+1dk+1 ≤ −c ‖gk+1‖
2 (12)

Proof. By the condition (B), the Cauchy–
Schwartz inequality and the HS method, we have

(1− c)dTk (gk+1 − gk) ≥ αkL ‖dk‖
2

=
αkL‖gk+1‖‖dk‖

‖gk+1‖
2 ‖gk+1‖ ‖dk‖

≥
‖gk+1‖‖gk+1−gk‖

‖gk+1‖
2 ‖gk+1‖ ‖dk‖

≥
|gTk+1(gk+1−gk)|

‖gk+1‖
2

∣

∣gTk+1dk
∣

∣

≥
gT
k+1(gk+1−gk)

dT
k
(gk+1−gk)

dT
k
(gk+1−gk)

‖gk+1‖
2

(

gTk+1dk
)

= βHS
k+1

dT
k
(gk+1−gk)

‖gk+1‖
2

(

gTk+1dk
)

Therefore

(1− c) dTk (gk+1−gk) ≥ βHS
k+1

dT
k
(gk+1−gk)

‖gk+1‖
2

(

gTk+1dk
)

and thus

−c ‖gk+1‖
2 ≥ −‖gk+1‖

2 + βHS
k+1

(

gTk+1dk
)

= gTk+1dk+1

The proof is finished. �

Lemma 2. Assume that (A) and (B) hold. Then
the new Armijo-modified line search is well de-
fined.

Proof. On the one hand, since

limα→0
fk−f(xk+αdk)

α
= −gTk dk > −µgTk dk

there is an α
′

k > 0 such that

fk−f(xk+αdk)
α

≥ −µgTk dk, ∀α ∈
[

0, α
′

k

]

.

Thus, letting α”
k = min(sk, α

′

k) yields

fk − f(xk + αdk)

α
≥ −µgTk dk, ∀α ∈

[

0, α”
k

]

.

(13)
On the other hand, by Lemma 1, we can obtain

g (xk + αdk)
T d(xk+αdk) ≤ −c ‖g (xk + αdk)‖

2 .

if α ≤ 1−c
L

dT
k
(gk+1−gk)

‖dk‖
2 .Letting

αk = min
(

α”
k,

1−c
L

dT
k
(gk+1−gk)

‖dk‖
2

)

.

We can prove that the new Armijo-modified
line search is well defined when α ∈ [0, αk]. The
proof is completed. �

4. Global Convergence

Lemma 3. Assume that (A) and (B) hold and
the HS method with the new Armijo-modified
line search generates an infinite sequence {xk}
and there exist m0 > 0 and M0 > 0 such that
m0 ≤ Lk ≤ M0. Then,

‖dk‖ ≤

(

1 +
L (1− c)

m0

)

‖gk‖ , ∀k. (14)

Proof. For k = 0 we have

‖dk‖ = ‖gk‖ ≤ ‖gk‖
(

1 + L(1−c)
m0

)

For k > 0, by the procedure of the new Armijo-
modified line search, we have

αk ≤ sk = 1−c
Lk

dT
k
(gk+1−gk)

‖dk‖
2 ≤ 1−c

m0

dT
k
(gk+1−gk)

‖dk‖
2

By the Cauchy–Schwartz inequality, the above
inequality and noting the HS formula, we have
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‖dk+1‖ =
∥

∥−gk+1 + βHS
k+1dk

∥

∥

≤ ‖gk+1‖+
|gTk+1(gk+1−gk)|
|dTk (gk+1−gk)|

‖dk‖

≤ ‖gk+1‖
[

1 + Lαk
‖dk‖

2

dT
k
(gk+1−gk)

]

≤
(

1 + L (1−c)
m0

)

‖gk+1‖

The proof is completed. �

Theorem 1. Assume that (A) and (B) hold,
the HS method with the new Armijo-modified
line search generates an infinite sequence {xk}
and there exist m0 > 0 and M0 > 0 such that
m0 ≤ Lk ≤ M0. Then

lim
k→∞

‖gk‖ = 0. (15)

Proof. Let η0 = inf∀k{αk}.

If η0 > 0 then we have

fk − fk+1 ≥ −µαkg
T
k dk ≥ µη0c ‖gk‖

2 .

By (A) we have

+∞
∑

k=0

‖gk‖
2 < +∞

and thus,

limk→∞ ‖gk‖ = 0.

In the following, we will prove that η0 > 0. For
the contrary, assume that η0 = 0.
Then, there exists an infinite subset
K ⊆ {0, 1, 2, ..., } such that

lim
k∈K,k→∞

αk = 0 (16)

By Lemma 3 we obtain

sk = 1−c
Lk

dT
k
(gk+1−gk)

‖dk‖
2 ≥ 1−c

m0

(

1 + L(1−c)
m0

)−2
> 0

Therefore, there is a k
′

such that

αk/ρ ≤ sk , k ≥ k
′

and k ∈ K.

Let α = αk/ρ , at least one of the following
two inequalities

fk − f(xk + αdk) ≥ −αµgTk dk (17)

and

g (xk + αdk)
T d(xk + αdk) ≤ −c ‖g (xk + αdk)‖

2

(18)
does not hold. If (17) does not hold, then we
have

fk − f(xk + αdk) < −αµgTk dk.

Using the mean value theorem on the left-hand
side of the above inequality, there exists
θk ∈ [0, 1] such that

−αg (xk + αdk)
T dk < −αµgTk dk

Thus

g (xk + αdk)
T dk > µgTk dk (19)

By (B), the Cauchy–Schwartz inequality, (19)
and Lemma 1, we have

Lα ‖dk‖
2 ≥ ‖g (xk + αθkdk)− g (xk)‖ ‖dk‖

≥
∣

∣

∣
(g (xk + αθkdk)− g (xk))

T dk

∣

∣

∣

≥ −(1− µ)gTk dk

≥ c(1− µ) ‖gk‖
2 .

We can obtain from Lemma 3 that

αk ≥ cρ(1−µ)
L

‖gk‖
2

‖dk‖
2

≥ cρ(1−µ)
L

1
(

1

1+
L(1−µ)

m0

)2 > 0,

k ≥ k
′

, k ∈ K.

which contradicts (16).

If (18) does not hold, then we have

g (xk + αdk)
T d(xk+αdk) > −c ‖g (xk + αdk)‖

2 .

and thus,

g(xk+αdk)
T [g(xk+αdk)−gk]

dT
k
[g(xk+αdk)−gk]

g (xk + αdk)
T dk

> (1− c) ‖g (xk + αdk)‖
2 .

By using the Cauchy–Schwartz inequality on
the left-hand side of the above inequality we
have

αL ‖dk‖
2

d
T

k
(g(xk+αdk)−gk)

> (1− c)

Combining Lemma 3 we have

αk > ρ(1−c)
L

d
T

k
(g(xk+αdk)−gk)

(

1+
L(1−µ)

m0

)2
‖gk‖

2
> 0,

k ≥ k
′

, k ∈ K.

which also contradicts (16). This shows that
η0 > 0. The whole proof is completed. �

5. Linear Convergence Rate

In this section we shall prove that the HS method
with the new Armijo-modified line search has lin-
ear convergence rate under some mild conditions.

We further assume that

Asumption C. The sequence {xk} generated by
the HS method with the new Armijo-type line
search converges to x∗, ∇2f(x∗) is a symmetric
positive definite matrix and f(x) is twice contin-
uously differentiable on

N(x∗, ε0) = {x/ ‖x− x∗‖ < ε0}.



Modification of the Armijo line search to satisfy the convergence properties of HS method 149

Lemma 4. Assume that Asumption (C) holds.

Then there exist m
′

,M
′

and ε0 with 0 < m
′

≤
M

′

and ε ≤ ε0 such that

m
′

‖y‖2 ≤ yT∇2f(x)y ≤ M
′

‖y‖2 ,

∀x, y ∈ N(x∗, ε) (20)

1
2m

′

‖x− x∗‖2 ≤ f(x)− f(x∗) ≤ h ‖x− x∗‖2 ,

h =
1

2
M

′

, ∀x ∈ N(x∗, ε) (21)

M
′

‖x− y‖2 ≥ (△ g)T (x− y) ≥ m
′

‖x− y‖2 ,

△ g = g(x)− g(x∗), ∀x, y ∈ N(x∗, ε) (22)

and thus

M
′

‖x− x∗‖2 ≥ g(x)T (△ x) ≥ m
′

‖x− x∗‖2 ,

△ x = (x− x∗) , ∀x ∈ N(x∗, ε) (23)

By (23) and (22) we can also obtain, from the
Cauchy–Schwartz inequality, that

M
′

‖x− x∗‖ ≥ ‖g(x)‖ ≥ m
′

‖x− x∗‖ ,

∀x ∈ N(x∗, ε) (24)

and

‖g(x)− g(y)‖ ≤ m
′

‖x− y‖ ,

∀x, y ∈ N(x∗, ε) (25)

Proof. Its proof can be seen from the literature
(e.g. [29]). �

Theorem 2. Assume that Asumption (C) holds,
the HS method with the new Armijo-type line
search generates an infinite sequence {xk} and

there exist m
′

> 0 and M
′

> 0 such that m0 ≤
Lk ≤ M0. Then {xk} converges to x∗ at least
R-linearly.

Proof. Its proof can be seen from the literature
(e.g. [26]). �

6. Numerical Reports

In this section, we shall conduct some numer-
ical experiments to show the efficiency of the
new Armijo-modified line search used in the HS
method.

The Lipschitz constant L of g(x) is usually
not a known priori in practical computation and
needs to be estimated. In the sequel, we shall
discuss the problem and present some approaches
for estimating L. In a recent paper [24], some ap-
proaches for estimating L were proposed. If k ≥ 1
then we set δk−1 = xk−xk−1 and yk−1 = gk−gk−1

and obtain the following three estimating formula

L ≃
‖yk−1‖

‖δk−1‖
, (31)

L ≃
‖yk−1‖

2

δTk−1yk−1
, (32)

L ≃
δTk−1yk−1

‖δk−1‖
2 . (33)

In fact, if L is a Lipschitz constant then any
L

′

greater than L is also a Lipschitz constant,
which allows us to find a large Lipschitz constant.
However, a very large Lipschitz constant possibly
leads to a very small step size and makes the HS
method with the new Armijo-modified line search
converge very slowly. Thereby, we should seek as
small as possible Lipschitz constants in practical
computation.

In the k-th iteration we take the Lipschitz con-
stants as respectively

Lk = max

(

L0,
‖yk−1‖

‖δk−1‖

)

, (34)

Lk = max

(

L0,min

(

‖yk−1‖
2

δTk−1yk−1
,M

′

0

))

, (35)

Lk = max

(

L0,
δTk−1yk−1

‖δk−1‖
2

)

, (36)

with L0 > 0 and M
′

0 being a large positive
number.

Lemma 5. Assume that (H1) and (H2) hold,
the HS method with the new Armijo-modified line
search generates an infinite sequence {xk} and Lk

is evaluated by (34), (35) or (36). Then, there
exist m0 > 0 and M0 > 0 such that

m0 = Lk = M0 (37)

Proof. Obviously, Lk = L0, and we can take
m0 = L0. For (34) we have

Lk = max
(

L0,
‖yk−1‖
‖δk−1‖

)

≤ max (L0, L)

For (35) we have

Lk = max

(

L0,min

(

‖yk−1‖
2

δT
k−1yk−1

,M
′

0

))

≤ max
(

L0,M
′

0

)

For (36), by using the Cauchy–Schwartz
inequality, we have

Lk = max

(

L0,
δTk−1yk−1

‖δk−1‖
2

)

≤ max (L0, L) .

By letting M
′

0 = max(L0, L,M
′

0), we complete
the proof. �



150 M. Belloufi, R. Benzine, Y. Laskri / Vol.3, No.2, pp.145-152 (2013) c©IJOCTA

HS1, HS2, and HS3 denote the HS methods
with the new Armijo-modified line search cor-
responding to the estimations (34)–(36), respec-
tively. HS denotes the original HS method with
strong Wolfe line search. PRP+ denotes the PRP
method with

βk = max
(

0, βPRP
k

)

and strong Wolfe line search .
Birgin and Martinez developed a family of

scaled conjugate gradient algorithms, called the
spectral conjugate gradient method (abbreviated
as SCG) [3]. Numerical experiments showed

that some special SCG methods were effective.
In one SCG method, the initial choice of α at the
k−th iteration in SCG method was

α (k, dk, dk−1, αk−1) =

{

1 if k = 0

αk−1
‖dk−1‖
‖dk‖

otherwise

(38)
Table 1. Number of iterations and
number of functional evaluations

P n HS1 HS2 HS3 HS
21 104 31/109 36/124 54/123 56/176
22 104 32/122 50/217 56/276 61/427
23 104 26/103 30/126 32/119 39/196
24 104 33/136 46/234 53/270 80/295
25 104 44/127 43/221 56/227 44/125
26 104 35/142 31/105 37/127 51/196
27 104 32/210 44/229 36/196 50/237
28 104 63/321 66/296 74/280 82/335
29 104 31/132 27/209 30/130 44/209
30 104 42/291 37/126 36/160 41/279
31 104 61/196 76/179 67/231 74/279
32 104 71/221 74/339 81/341 85/419
33 104 35/211 41/133 47/161 35/134
34 104 40/217 33/327 36/235 56/383
35 104 52/276 66/281 51/357 70/274
CPU - 89 s 120 s 180 s 257 s

We chose 15 test problems (Problems 21–
35) with the dimension n = 10 000 and initial
points from the literature [18] to implement the
HS method with the new Armijo-modified line
search. We set the parameters as µ = 0.25,
ρ = 0.75, c = 0.75 and L0 = 1 in the numerical
experiment. five conjugate gradient algorithms
(HS1, HS2, HS3, HS and HS+) are compared in
numerical performance.

The stop criterion is ‖gk‖ ≤ 10−8, and the nu-
merical results are given in Table 1.

In Table 1, CPU denotes the total CPU time
(seconds) for solving all the 15 test problems. A
pair of numbers means the number of iterations
and the number of functional evaluations. It can

be seen from Table 1 that the HS method with
the new Armijo-modified line search is effective
for solving some large scale problems. In particu-
lar, method HS1 seems to be the best one among
the five algorithms because it uses the least num-
ber of iterations and functional evaluations when
the algorithms reach the same precision. This
shows that the estimating formula (34) may be
more reasonable than other formula. In fact, if
δTk−1yk−1 > 0 then we have

δTk−1yk−1

‖δk−1‖
2 ≤

‖yk−1‖

‖δk−1‖
≤

‖yk−1‖
2

δTk−1yk−1
.

This motivates us to guess that the suitable
Lipschitz constant should be chosen in the inter-
val

[

δTk−1yk−1

‖δk−1‖
2 ,

‖yk−1‖
2

δTk−1yk−1

]

.

It can be seen from Table 1 that HS meth-
ods with the new line search are superior to HS
and PRP+ conjugate gradient methods. More-
over, the HS method may fail in some cases
if we choose inadequate parameters. Although
the PRP+ conjugate gradient method has global
convergence, its numerical performance is not
better than that of the HS method in many sit-
uations.

Numerical experiments show that the new line
search proposed in this paper is effective for the
HS method in practical computation. The reason
is that we used Lipschitz constant estimation in
the new line search and could define an adequate
initial step size sk so as to seek a suitable step size
αk for the HS method, which reduced the func-
tion evaluations at each iteration and improved
the efficiency of the HS method.

It is possible that the initial choice of step size
(38) is reasonable for the SCG method in prac-
tical computation.All the facts show that choos-
ing an adequate initial step size at each iteration
is very important for line search methods, espe-
cially for conjugate gradient methods.

7. Conclusion

In this paper, a new form of Armijo-modified
line search has been proposed for guaranteeing
the global convergence of the HS conjugate gra-
dient method for minimizing functions that have
Lipschitz continuous partial derivatives. It needs
one to estimate the local Lipschitz constant of
the derivative of objective functions in practical
computation. The global convergence and linear
convergence rate of the HS method with the new
Armijo-modified line search were analyzed under
some mild conditions. Numerical results showed
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that the corresponding HS method with the new
Armijo-modified line search was effective and su-
perior to the HS conjugate gradient method with
strong Wolfe line search. For further research
we should not only find more techniques of esti-
mating parameters but also carry out numerical
experiments.
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