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Abstract

It is well known that global convergence has not been established
for the Hestenes-Stiefel (HS) conjugate gradient method using the tra-
ditional line searches conditions. In this paper, under some suitable
conditions, by using a modified Armijo line search, global convergence
results were established for the HS method. Preliminary numerical re-
sults on a set of large-scale problems were reported to show that the HS
method’s computational effiiciency is encouraging.
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1 Introduction

Consider the unconstrained optimization problem

{min f(x), x ∈ R
n} , 1 (1)

where f : R
n −→ R is continuously differentiable. The line search method

usually takes the following iterative formula

xk+1 = xk + αkdk2 (2)

for (1.1), where xk is the current iterate point, αk > 0 is a steplength and
dk is a search direction. Different choices of dk and αk will determine different
line search methods([23,25,26]). We denote f (xk) by fk ,∇f (xk) by gk, and
∇f (xk+1) by gk+1, respectively. ‖.‖ denotes the Euclidian norm of vectors and
define yk = gk+1 − gk.

We all know that a method is called steepest descent method if we take
dk = −gk as a search direction at every iteration, which has wide applications
in solving large-scale minimization problems ([23, 24,28]). One drawback of
the method is often yielding zigzag phenomena in solving practical problems,
which makes the algorithm converge to an optimal solution very slowly, or
even fail to converge ([16, 18]).

If we take dk = −Hkgk as a search direction at each iteration in the al-
gorithm, where Hk is an n × n matrix approximating [∇2f (xk)]

−1
, then the

corresponding method is called the Newton-like method ([16, 18, 28]) such as
the Newton method, the quasi-Newton method, variable metric method, etc.
Many papers have proposed this method for optimization problems ([4, 5, 8,
19]).

However, the Newton-like method needs to store and compute matrix Hk at
each iteration and thus adds to the cost of storage and computation. Accord-
ingly, this method is not suitable to solve large-scale optimization problems in
many cases.

Due to its simplicity and its very low memory requirement, the conjugate
gradient method is a powerful line search method for solving the large-scale op-
timization problems. In fact, the CG method is not among the fastest or most
robust optimization algorithms for nonlinear problems available today, but it
remains very popular for engineers and mathematicians who are interested in
solving large problems (cf. [1,15,17,27]). The conjugate gradient method is
designed to solve unconstrained optimization problem (1). More explicitly,
the conjugate gradient method is an algorithm for finding the nearest local
minimum of a function of variables which presupposes that the gradient of the
function can be computed. We consider only the case where the method is
implemented without regular restarts. The iterative formula of the conjugate
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gradient method is given by (2), where αk is a steplength which is computed
by carrying out a line search, and dk is the search direction defined by

dk+1 =

{ −gk sik = 1
−gk+1 + βkdk sik ≥ 2

3 (3)

where βk is a scalar and g (x) denotes ∇f (x). If f is a strictly convex
quadratic function, namely,

f(x) =
1

2
xT Hx + bT x, 4 (4)

where H is a positive definite matrix and if αk is the exact one-dimensional
minimizer along the direction dk, i.e.,

αk = arg α > 0min {f(x + αdk} 5 (5)

then (1.2)–(1.3) is called the linear conjugate gradient method. Otherwise,
(1.2)–(1.3) is called the nonlinear conjugate gradient method.

Conjugate gradient methods differ in their way of defining the scalar pa-
rameter βk. In the literature, there have been proposed several choices for
βk which give rise to distinct conjugate gradient methods. The most well
known conjugate gradient methods are the Hestenes–Stiefel (HS) method [11],
the Fletcher–Reeves (FR) method [9], the Polak-Ribière-Polyak (PR) method
[20,22 ], the Conjugate Descent method(CD) [8], the Liu-Storey (LS) method
[14], the Dai-Yuan (DY) method [6], and Hager and Zhang (HZ) method [12].
The update parameters of these methods are respectively specified as follows:

βHS
k =

gT
k+1yk

dT
k yk

, βFR
k = ‖gk+1‖2

‖gk‖2 , βPRP
k =

gT
k+1yk

‖gk‖2 , βCD
k = −‖gk+1‖2

dT
k gk

,

βLS
k = −gT

k+1yk

dT
k gk

, βDY
k =

‖gk+1‖2

dT
k yk

, βHZ
k =

(
yk − 2dk

‖yk‖2

dT
k yk

)T
gk+1

dT
k yk

The convergence behavior of the above formulas with some line search
conditions has been studied by many authors for many years. The FR method
with an exact line search was proved to globally convergent on general functions
by Zoutendijk [29]. However, the PRP method and the HS method with
the exact line search are not globally convergent, see Powell’s counterexample
[21]. In the already-existing convergence analysis and implementations of the
conjugate gradient method, the Armijo conditions, namely,

Let s > 0 be a constant, ρ ∈ (0, 1) and μ ∈ (0, 1). Choose αk to be the
largest α in {s, sρ, sρ2, ..., } such that

fk − f(xk + αdk) ≥ −αgT
k dk.6 (6)

The drawback of the Armijo line search is how to choose the initial step
size s. If s is too large then the procedure needs to call much more function
evaluations. If s is too small then the efficiency of related algorithm will be
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decreased. Thereby, we should choose an adequate initial step size s at each
iteration so as to find the step size αk easily.

In addition, the sufficient descent condition:

gT
k dk ≤ −c ‖gk‖2 7 (7)

has often been used in the literature to analyze the global convergence of
conjugate gradient methods with inexact line searches. For instance, Al-Baali
[1], Toouati-Ahmed and Storey [3], Hu and Storey [13], Gilbert and Nocedal
[10] analyzed the global convergence of algorithms related to the Fletcher–
Reeves method with the strong Wolfe line search. Their convergence analysis
used the sufficient descent condition (1.8). As for the algorithms related to the
PRP method, Gilbert and Nocedal [10] investigated wide choices of βk that
resulted in globally convergent methods. In order for the sufficient descent
condition to hold, they modified the strong Wolfe line search to the two-stage
line search, the first stage is to find a point using the strong Wolfe line search,
and the second stage is when, at that point the sufficient descent condition does
not hold, more line search iterations will proceed until a new point satisfying
the sufficient descent condition is found. They hinted that the sufficient descent
condition may be crucial for conjugate gradient methods.

In this paper we propose a new Armijo line search in which an appropriate
initial step size s is defined and varies at each iteration. The new Armijo line
search enables us to find the step size αk easily at each iteration and guarantees
the global convergence of the original HS conjugate gradient method under
some mild conditions. The global convergence and linear convergence rate are
analyzed and numerical results show that HS method with the new Armijo
line search is more effective than other similar methods in solving large scale
minimization problems.

2 New Armijo line search

We first assume that

Asumption A. The objective function f(x) is continuously differentiable
and has a lower bound on R

n

Asumption B. The gradient g (x) = ∇f (x) of f(x) is Lipschitz contin-
uous on an open convex set Γ that contains the level set L(x0) = {x ∈ R

n

|f(x) ≤ f(x0)} with x0 given, i.e., there exists an L > 0 such that

‖g(x) − g(y)‖ ≤ L ‖x − y‖ , ∀x, y ∈ Γ.8 (8)

New Armijo line search
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Given μ ∈ ]0, 1
2

[
, ρ ∈ ]0, 1[ and c ∈ [1

2
, 1
]
, set sk = 1−c

Lk

dT
K(gk+1−gk)

‖dk‖2 and

αk is the largest α in {s, sρsρ2, ..., } such that

fk − f(xk + αdk) ≥ −αμgT
k dk.9 (9)

g (xk + αdk)
T d(xk + αdk) ≤ −c ‖g (xk + αdk)‖2 10 (10)

and

‖gk+1‖ ≤ c ‖dk‖ 11 (11)

where d(xk+αdk) = −g (xk + αdk)+
g(xk+αdk)T [g(xk+αdk)−g(xk)]

dT
k [g(xk+αdk)−g(xk)]

dk for dT
k gk+1 >

dT
k gk

and Lk is an approximation to the Lipschitz constant L of g(x).

3 Algorithm and Convergent properties

In this subsection, we will reintroduce the convergence properties of the HS
method

Now we give the following algorithm firstly. Step 0: Given x0 ∈ R
n, set

d0 = g0, k := 0.
Step 1: If ‖gk‖ = 0 then stop else go to Step 2.
Step 2: Set xk+1 = xk + akdk wheredk is defined by (3), βk = βHS

k and αk

is
defined by the new Armijo line search.
Step 3. Setk := k + 1 and go to Step 1. Some simple properties of the

above algorithm are given as follows.
Assume that (A) and (B) hold and the HS method with the new Armijo

line search generates an infinite sequence {xk}. If

αk ≤ 1−c
L

dT
k (gk+1−gk)

‖dk‖2

then:
gT

k+1dk+1 ≤ −c ‖gk+1‖2 12 (12)

By the condition (B), the Cauchy–Schwartz inequality and the HS method,
we have

(1 − c)dT
k (gk+1 − gk) ≥ αkL ‖dk‖2

= αkL‖gk+1‖‖dk‖
‖gk+1‖2 ‖gk+1‖ ‖dk‖

≥ ‖gk+1‖‖gk+1−gk‖
‖gk+1‖2 ‖gk+1‖ ‖dk‖

≥ |gT
k+1(gk+1−gk)|

‖gk+1‖2

∣∣gT
k+1dk

∣∣
≥ gT

k+1(gk+1−gk)

dT
k (gk+1−gk)

dT
k (gk+1−gk)

‖gk+1‖2

(
gT

k+1dk

)
= βHS

k+1
dT

k (gk+1−gk)

‖gk+1‖2

(
gT

k+1dk

)
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Therefore
(1 − c) dT

k (gk+1 − gk) ≥ βHS
k+1

dT
k (gk+1−gk)

‖gk+1‖2

(
gT

k+1dk

)
and thus

−c ‖gk+1‖2 ≥ −‖gk+1‖2 + βHS
k+1

(
gT

k+1dk

)
= gT

k+1dk+1

The proof is finished. Assume that (A) and (B) hold. Then the new
Armijo line search is well defined.

On the one hand, since
α → 0lim fk−f(xk+αdk)

α
= −gT

k dk > −μgT
k dk

there is an α
′
k > 0 such that

fk−f(xk+αdk)
α

≥ −μgT
k dk, ∀α ∈ [0, α′

k

]
.

Thus, letting α”
k = min(sk, α

′
k) yields

fk − f(xk + αdk)

α
≥ −μgT

k dk, ∀α ∈ [0, α”
k

]
.13 (13)

On the other hand, by Lemma 2, we can obtain
g (xk + αdk)

T d(xk + αdk) ≤ −c ‖g (xk + αdk)‖2 .

if α ≤ 1−c
L

dT
k (gk+1−gk)

‖dk‖2 .Letting

αk = min
(
α”

k,
1−c
L

dT
k (gk+1−gk)

‖dk‖2

)
we can prove that the new Armijo-type line search is well defined when

α ∈ [0, αk]. The proof is completed.

4 Global convergence

Assume that (A) and (B) hold and the HS method with the new Armijo line
search generates an infinite sequence {xk} and there exist m0 > 0 and M0 > 0
such that m0 ≤ Lk ≤ M0. Then,

‖dk‖ ≤
(

1 +
L (1 − c)

m0

)
‖gk‖ , ∀k.14 (14)

For k = 0 we have
‖dk‖ = ‖gk‖ ≤ ‖gk‖

(
1 + L(1−c)

m0

)
For k > 0, by the procedure of the new Armijo line search, we have

αk ≤ sk = 1−c
Lk

dT
k (gk+1−gk)

‖dk‖2 ≤ 1−c
m0

dT
k (gk+1−gk)

‖dk‖2

By the Cauchy–Schwartz inequality, the above inequality and noting the
HS formula, we have

‖dk+1‖ =
∥∥−gk+1 + βHS

k+1dk

∥∥
≤ ‖gk+1‖ +

|gT
k+1(gk+1−gk)|
|dT

k (gk+1−gk)| ‖dk‖
≤ ‖gk+1‖

[
1 + Lαk

‖dk‖2

dT
k (gk+1−gk)

]
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≤
(
1 + L (1−c)

m0

)
‖gk+1‖

The proof is completed. Assume that (A) and (B) hold, the HS method
with the new Armijo line search generates an infinite sequence {xk} and there
exist m0 > 0 and M0 > 0 such that m0 ≤ Lk ≤ M0. Then

k → ∞lim ‖gk‖ = 0.15 (15)

Let η0 = inf∀k{αk}.
If η0 > 0 then we have

fk − fk+1 ≥ −μαkg
T
k dk ≥ μη0c ‖gk‖2 .

By (A) we have

+∞∑
k=0

‖gk‖2 < +∞

and thus,

limk→∞ ‖gk‖ = 0.

In the following, we will prove that η0 > 0. For
the contrary, assume that η0 = 0.
Then, there exists an infinite subset
K ⊆ {0, 1, 2, ..., } such that

lim
k∈K,k→∞

αk = 016 (16)

By Lemma 3 we obtain

sk = 1−c
Lk

dT
k (gk+1−gk)

‖dk‖2 ≥ 1−c
m0

(
1 + L(1−c)

m0

)−2

> 0

Therefore, there is a k
′
such that

αk/ρ ≤ sk , k ≥ k
′
and k ∈ K.

Let α = αk/ρ , at least one of the following
two inequalities

fk − f(xk + αdk) ≥ −αμgT
k dk17 (17)

and
g (xk + αdk)

T d(xk + αdk) ≤ −c ‖g (xk + αdk)‖2 18 (18)

does not hold. If (17) does not hold, then we
have

fk − f(xk + αdk) < −αμgT
k dk.

Using the mean value theorem on the left-hand
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side of the above inequality, there exists
θk ∈ [0, 1] such that

−αg (xk + αdk)
T dk < −αμgT

k dk

Thus

g (xk + αdk)
T dk > μgT

k dk19 (19)

By (B), the Cauchy–Schwartz inequality, (19)
and Lemma 1, we have

Lα ‖dk‖2 ≥ ‖g (xk + αθkdk) − g (xk)‖ ‖dk‖
≥
∣∣∣(g (xk + αθkdk) − g (xk))

T dk

∣∣∣
≥ −(1 − μ)gT

k dk

≥ c(1 − μ) ‖gk‖2 .

We can obtain from Lemma 3 that

αk ≥ cρ(1−μ)
L

‖gk‖2

‖dk‖2

≥ cρ(1−μ)
L

1�
1

1+
L(1−μ)

m0

�2 > 0,

k ≥ k
′
, k ∈ K.

which contradicts (16).

If (18) does not hold, then we have

g (xk + αdk)
T d(xk + αdk) > −c ‖g (xk + αdk)‖2 .

and thus,

g(xk+αdk)T [g(xk+αdk)−gk]

dT
k [g(xk+αdk)−gk]

g (xk + αdk)
T dk

> (1 − c) ‖g (xk + αdk)‖2 .

By using the Cauchy–Schwartz inequality on
the left-hand side of the above inequality we
have

αL ‖dk‖2

d
T
k (g(xk+αdk)−gk)

> (1 − c)

Combining Lemma 3 we have

αk > ρ(1−c)
L

d
T

k (g(xk+αdk)−gk)�
1+

L(1−μ)
m0

�2‖gk‖2
> 0,

k ≥ k
′
, k ∈ K.

which also contradicts (16). This shows that
η0 > 0. The whole proof is completed.
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5 Linear Convergence Rate

In this section we shall prove that the HS method with the new Armijo-
modified line search has linear convergence rate under some mild conditions.

We further assume that

Asumption C. The sequence {xk} generated by the HS method with the
new Armijo-type line search converges to x∗, ∇2f(x∗) is a symmetric positive
definite matrix and f(x) is twice continuously differentiable on

N(x∗, ε0) = {x/ ‖x − x∗‖ < ε0}.
Assume that Asumption (C) holds. Then there exist m

′
, M

′
and ε0 with

0 < m
′ ≤ M

′
and ε ≤ ε0 such that

m
′ ‖y‖2 ≤ yT∇2f(x)y ≤ M

′ ‖y‖2 ,

∀x, y ∈ N(x∗, ε)20 (20)

1
2
m

′ ‖x − x∗‖2 ≤ f(x) − f(x∗) ≤ h ‖x − x∗‖2 ,

h =
1

2
M

′
, ∀x ∈ N(x∗, ε)21 (21)

M
′ ‖x − y‖2 ≥ (� g)T (x − y) ≥ m

′ ‖x − y‖2 ,

� g = g(x) − g(x∗), ∀x, y ∈ N(x∗, ε)22 (22)

and thus

M
′ ‖x − x∗‖2 ≥ g(x)T (� x) ≥ m

′ ‖x − x∗‖2 ,

� x = (x − x∗) , ∀x ∈ N(x∗, ε)23 (23)

By (23) and (22) we can also obtain, from the
Cauchy–Schwartz inequality, that

M
′ ‖x − x∗‖ ≥ ‖g(x)‖ ≥ m

′ ‖x − x∗‖ ,

∀x ∈ N(x∗, ε)24 (24)

and

‖g(x) − g(y)‖ ≤ m
′ ‖x − y‖ ,

∀x, y ∈ N(x∗, ε)25 (25)
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Its proof can be seen from the literature (e.g. [29]).
Assume that Asumption (C) holds, the HS method with the new Armijo-

type line search generates an infinite sequence {xk} and there exist m
′

> 0
and M

′
> 0 such that m0 ≤ Lk ≤ M0. Then {xk} converges to x∗ at least

R-linearly.
Its proof can be seen from the literature (e.g. [26]).

6 Numerical Reports

In this section, we shall conduct some numerical experiments to show the
efficiency of the new Armijo-modified line search used in the HS method.

The Lipschitz constant L of g(x) is usually not a known priori in practical
computation and needs to be estimated. In the sequel, we shall discuss the
problem and present some approaches for estimating L. In a recent paper
[24], some approaches for estimating L were proposed. If k ≥ 1 then we set
δk−1 = xk−xk−1 and yk−1 = gk−gk−1 and obtain the following three estimating
formula

L � ‖yk−1‖
‖δk−1‖ , 31 (26)

L � ‖yk−1‖2

δT
k−1yk−1

, 32 (27)

L � δT
k−1yk−1

‖δk−1‖2 .33 (28)

In fact, if L is a Lipschitz constant then any L
′

greater than L is also a
Lipschitz constant, which allows us to find a large Lipschitz constant. However,
a very large Lipschitz constant possibly leads to a very small step size and
makes the HS method with the new Armijo-modified line search converge very
slowly. Thereby, we should seek as small as possible Lipschitz constants in
practical computation.

In the k-th iteration we take the Lipschitz constants as respectively

Lk = max

(
L0,

‖yk−1‖
‖δk−1‖

)
, 34 (29)

Lk = max

(
L0, min

(
‖yk−1‖2

δT
k−1yk−1

, M
′
0

))
, 35 (30)

Lk = max

(
L0,

δT
k−1yk−1

‖δk−1‖2

)
, 36 (31)

with L0 > 0 and M
′
0 being a large positive number.
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Assume that (H1) and (H2) hold, the HS method with the new Armijo-
modified line search generates an infinite sequence {xk} and Lk is evaluated
by (34), (35) or (36). Then, there exist m0 > 0 and M0 > 0 such that

m0 = Lk = M037 (32)

Obviously, Lk = L0, and we can take

m0 = L0. For (34) we have

Lk = max
(
L0,

‖yk−1‖
‖δk−1‖

)
≤ max (L0, L)

For (35) we have

Lk = max
(
L0, min

(
‖yk−1‖2

δT
k−1yk−1

, M
′
0

))
≤ max

(
L0, M

′
0

)
For (36), by using the Cauchy–Schwartz

inequality, we have Lk = max
(
L0,

δT
k−1yk−1

‖δk−1‖2

)
≤ max (L0, L) .

By letting M
′
0 = max(L0, L, M

′
0), we complete

the proof.

HS1, HS2, and HS3 denote the HS methods with the new Armijo-modified
line search corresponding to the estimations (34)–(36), respectively. HS de-
notes the original HS method with strong Wolfe line search. PRP+ denotes
the PRP method with βk = max

(
0, βPRP

k

)
and strong Wolfe line search .

Birgin and Martinez developed a family of scaled conjugate gradient algo-
rithms, called the spectral conjugate gradient method (abbreviated as SCG)
[3]. Numerical experiments showed

that some special SCG methods were effective. In one SCG method, the
initial choice of α at the k−th iteration in SCG method was

α (k, dk, dk−1, αk−1) =

{
1 ifk = 0

αk−1
‖dk−1‖
‖dk‖ otherwise

38 (33)
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tableNumber of iterations and number of functional evaluations
P n HS1 HS2 HS3 HS
21 104 31/109 36/124 54/123 56/176
22 104 32/122 50/217 56/276 61/427
23 104 26/103 30/126 32/119 39/196
24 104 33/136 46/234 53/270 80/295
25 104 44/127 43/221 56/227 44/125
26 104 35/142 31/105 37/127 51/196
27 104 32/210 44/229 36/196 50/237
28 104 63/321 66/296 74/280 82/335
29 104 31/132 27/209 30/130 44/209
30 104 42/291 37/126 36/160 41/279
31 104 61/196 76/179 67/231 74/279
32 104 71/221 74/339 81/341 85/419
33 104 35/211 41/133 47/161 35/134
34 104 40/217 33/327 36/235 56/383
35 104 52/276 66/281 51/357 70/274
CPU - 89 s 120 s 180 s 257 s

We chose 15 test problems (Problems 21–35) with the dimension n = 10
000 and initial points from the literature [18] to implement the HS method
with the new Armijo-modified line search. We set the parameters as μ = 0.25,
ρ = 0.75, c = 0.75 and L0 = 1 in the numerical experiment. five conjugate
gradient algorithms (HS1, HS2, HS3, HS and HS+) are compared in numerical
performance.

The stop criterion is ‖gk‖ ≤ 10−8, and the numerical results are given in
Table 1.

In Table 1, CPU denotes the total CPU time (seconds) for solving all the
15 test problems. A pair of numbers means the number of iterations and the
number of functional evaluations. It can be seen from Table 1 that the HS
method with the new Armijo-modified line search is effective for solving some
large scale problems. In particular, method HS1 seems to be the best one
among the five algorithms because it uses the least number of iterations and
functional evaluations when the algorithms reach the same precision. This
shows that the estimating formula (34) may be more reasonable than other
formula. In fact, if δT

k−1yk−1 > 0 then we have δT
k−1yk−1

‖δk−1‖2≤‖yk−1‖
‖δk−1‖≤

‖yk−1‖2

δT
k−1

yk−1
.

This motivates us to guess that the suitable Lipschitz constant should be

chosen in the interval
[

δT
k−1yk−1

‖δk−1‖2 ,
‖yk−1‖2

δT
k−1yk−1

]
.

It can be seen from Table 1 that HS methods with the new line search
are superior to HS and PRP+ conjugate gradient methods. Moreover, the HS
method may fail in some cases if we choose inadequate parameters. Although
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the PRP+ conjugate gradient method has global convergence, its numerical
performance is not better than that of the HS method in many situations.

Numerical experiments show that the new line search proposed in this
paper is effective for the HS method in practical computation. The reason is
that we used Lipschitz constant estimation in the new line search and could
define an adequate initial step size sk so as to seek a suitable step size αk for
the HS method, which reduced the function evaluations at each iteration and
improved the efficiency of the HS method.

It is possible that the initial choice of step size (38) is reasonable for the
SCG method in practical computation.All the facts show that choosing an
adequate initial step size at each iteration is very important for line search
methods, especially for conjugate gradient methods.

7 Conclusion

In this paper, a new form of Armijo-modified line search has been proposed
for guaranteeing the global convergence of the HS conjugate gradient method
for minimizing functions that have Lipschitz continuous partial derivatives. It
needs one to estimate the local Lipschitz constant of the derivative of objec-
tive functions in practical computation. The global convergence and linear
convergence rate of the HS method with the new Armijo-modified line search
were analyzed under some mild conditions. Numerical results showed that the
corresponding HS method with the new Armijo-modified line search was ef-
fective and superior to the HS conjugate gradient method with strong Wolfe
line search. For further research we should not only find more techniques of
estimating parameters but also carry out numerical experiments.

Acknowledgements. The authors wish to express their heartfelt thanks
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the manuscript.
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