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a b s t r a c t

This article presents the results of an investigation that combines standard methods of fracture me-
chanics, empirical correlations of stress-corrosion cracking, and probabilistic methods to provide an
assessment of Intergranular Stress Corrosion Cracking (IGSCC) of stainless steel piping. This is done by
simulating the cracking of stainless steel piping under IGSCC conditions using the general methodology
recommended in the modified computer program Piping Reliability Analysis Including Seismic Events,
and by characterizing IGSCC using a single damage parameter. Good correlation between the pipe end-
life probability of leak and the damage values were found. These correlations were later used to
generalize this probabilistic fracture model. Also, the probability of detection curves and the benefits of
in-service inspection in order to reduce the probability of leak for nuclear piping systems subjected to
IGSCC were discussed for several pipe sizes. It was found that greater benefits could be gained from
inspections for the large pipe as compared to the small pipe sizes. Also, the results indicate that the use of
a better inspection procedure can be more effective than a tenfold increase in the number of inspections
of inferior quality.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In Boiler Water Reactor (BWR) piping, the susceptible material
to Stress Corrosion Cracking (SCC) is usually AISI304 stainless steel
in a sensitized condition next to weldments. The susceptibility of
this material to Intergranular SCC (IGSCC) is due to chromium
carbide precipitation in the grain boundaries, which leaves the
regions immediately adjacent to these grain boundaries low in
corrosion-resistant chromium [1,2]. The precipitation occurs most
commonly under the thermal conditions encountered during
welding. The stress is primarily due to weld shrinkage during
fabrication, and the corrosive environment results from coolant
oxygen and low impurity levels according to the operating speci-
fications [1,2].

Zhang et al. [2] carried out experimental investigations to
determine the time to crack initiation and crack propagation ve-
locity for intergranular stress corrosion cracks in sensitized type
AISI304 stainless steel in dilute sulfate solutions. Their work is
considered instrumental in this area of research, which lacks field
data and served as a base for several work. Several researchers [3e
11] addressed the probabilistic failure analysis of components
All rights reserved.
subjected to stress corrosion cracking (SCC) based on fracture
mechanics. Failure probabilities of a piping component subjected to
IGSCC, including the effects of residual stresses, was computed by
Guedri et al. [12,13] using Monte Carlo Simulation (MCS) tech-
niques. Trends of data from these studies were used in the work
described below to develop input data for the probabilistic failure
analysis. The purpose of this paper is to apply probabilistic fracture
mechanics to analyze the influence of ultrasonic (UT) inspections
on austenitic stainless steels piping structural reliability under the
effect of IGSCC. IGSCC in the heat-affected zones of stainless steel
welds is much more difficult to detect by UT inspection techniques
and in-service inspection (ISI), conducted in accordance with the
minimum requirements of Section XI of the ASME boiler and
Pressure Vessel Code, which tends to be of little value for this
problem [14,15].

In this study, the simulation of stainless steel piping cracking
under IGSCC conditions is based on the general methodology rec-
ommended in the Piping Reliability Analysis Including Seismic
Events (PRAISE) computer program [16], which is explained briefly
in the next section. The proposed procedure to characterize IGSCC
by a single damage parameter which depends on residual stresses,
BWR environment conditions, and degree of sensitization is out-
lined in Section 3. Details of the simulation and numerical exam-
ples including the benefit of in-service inspections considered to
evaluate the structural reliability and to identify most effective
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6. Conclusions

This paper presents the results of an investigation that combines
standard methods of fracture mechanics, empirical correlations of
stress-corrosion cracking, and probabilistic methods to provide an
assessment of IGSCC of stainless steel piping using the modified
PRAISE code. The modifications in the PRAISE code included the
adjustment of residual stress factors to better fit experimental data
and the change of the stress intensity factors expressions to
ameliorate the previous more conservative ones. This model was
used to predict the probability of failure of different level of pipe
damages. Good correlation between the pipe end plant-life prob-
ability of leak and the damage values were found. These correla-
tions were used to generalize this probabilistic fracture model. In
BWRs, the failure rate from IGSCC is lower for small piping than for
large piping. Moreover, for small piping costs are considerably
lower and leakage has much less impact. Finally, the probability of
detection curves and the benefits of in-service inspection in order
to reduce the probability of leak for nuclear piping systems sub-
jected to IGSCC were discussed.
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Notation

a: crack depth
Acr: area of crack
Ap: area of cross-section of pipe
b: one-half of crack length
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C1eC9: material dependent constants
C12, C13, C15: material dependent constants
C14: material dependent random variable
d: spacing between two cracks
Ds: damage parameter
E: modulus of elasticity
f1: sensitization term
f2: environmental term
f3: loading term
G: material dependent constant
h: pipe wall thickness
J: material dependent random variable
K: stress intensity factor
Ka: stress intensity factor in the depth direction of crack
Kap: stress intensity factor for applied stress
Kb: stress intensity factor in the length direction of crack
Kres: stress intensity factor for residual stress
l, l1, l2: crack length
n: number of possible initiation sites in the pipe
N: number of simulations
Nf: number of failure cases
O2: oxygen concentration
Pa: degree of sensitization
Pf: probability of failure
Q: leak rate
Ri: internal radius of pipe
tI: time to initiation of stress corrosion cracking
T: temperature
v1: initiation crack growth velocity
v2: fracture mechanics based crack growth velocity
g: water conductivity
d: crack opening displacement
ε: smallest possible PND for very large cracks
s: applied stress
sf: flow stress
sLC: load-controlled component of stress
snet: net-section stress
y: Poisson’s ratio

Units
1 inch (in): 25.4 mm
1 gallon (gal.): 3.8 L
1 mil: 0.0254 mm

Abbreviations and acronyms
ASM: American Society of Materials
IGSCC: Intergranular Stress-Corrosion Cracking
ISI: In-Service Inspection
MCS: Monte Carlo simulation
M-PRAISE: Modified PRAISE
NDE: Non-Destructive Examination
PRAISE: Piping Reliability Analysis Including Seismic Events
PND: Probability of Non-Detection
PNNL: Pacific Northwest National Laboratory
SCC: Stress Corrosion Cracking
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