Towards a Generic Reconfigurable Framework for Self-
adaptation of Distributed component-based Application

Ouanes AISSAOU| Fadila ATILY, Abdelkrim AMIRAT?

! Department of Computer Science, Badji Mokhtar UniiegréAnnaba, Algeria
ai ssaoui . ouenes@mai |l . com atil _fadila@ahoo.fr

2Department of Computer Science, Mohamed Cherif Meiaasniversity
Souk-Ahras, Algeria
abdel kri m am rat @ahoo. com

Abstract. Software is moving towards evolutionary architeetuthat are able
to easily accommodate changes and integrate nestidaality. This is impor-
tant in a wide range of applications, from plugesed end user applications to
critical applications with high availability reqeiments. This work presents a
component based framework that allows introducidgpsability to the distri-
buted component-based applications. The framewisdfiis reconfigurable
and it based on the classical autonomic controp Idtape-k (Monitoring,
Analysis, Planning, and Execution). The paper thices a prototype frame-
work implementation and its empirical evaluatiomttshows encouraging re-
sults.

Keywords: Dynamic adaptation, Distributed systems, compcheased applica-
tion, Autonomic computing

1 Introduction

With the development of the networks and the irgiregly significant delocalization
of the enterprises, the implementation of distiéouapplications was essentially being
a solution allowing the cooperation of the varicosistituent actors of the enterprise.
For the purpose of reducing the construction costistributed applications increa-
singly sophisticated development tools were designe

Nowadays, more and more of distributed applicatiems round the clock, seven
days out of seven. The shutdown of this type ofliepiion to improve it, or quite
simply to perform updating operations costs a $icgmt sums of money. A solution
to this problem is to provide mechanisms allowihg &volution or the modification
of an application during its running without stopgiit [1]. So, we speak about the
dynamic reconfiguration of distributed applicatiomsich can be defined as the whole
of the changes brought to a distributed applicatibruntime.

In the critical systems the adaptation must takeght runtime and the application
should not be entirely stopped. Unfortunately, sadhptation is not trivial; there are

several conditions and constraints to be satisfed, this leads to many problems to
overcome.

The problems treated in this paper accost the domfiresearch around the dy-
namic adaptation of the computing systems and iticpdar, the distributed compo-
nent-based systems. Generally, the existing appesaprovide solutions for (1) re-
configuration in non-distributed systems [5] or (2fonfiguration in distributed sys-
tems but not distributed reconfiguration [10] [Ahich is composed of multiple dis-
tributed processes.

Our objective is to facilitate the addition of thgnamic adaptation capabilities to
existing component-based applications by providirgplution of management of the
distributed and coordinated dynamic adaptation. tRat, we propose a component-
based framework to add flexible monitoring and aa@épn management concerns to
a running component-based application. In the pgeddramework, we separate the
concerns involved in the classical autonomic cdntrap MAPE (Monitoring, Analy-
sis, Planning, and Execution) [3] and implementséhaoncerns as separate compo-
nents. As we treat in our context the distributpgligations, we integrated in our
framework a mechanism to manage the distributeddioated adaptations. These
components are attached to each managed sub-system.

The remainder of the paper is organized as foll@estion 2 presents an overview
of our solution for the distributed and dynamicaefiguration. Section 3 details step
by step the design of our framework following théamomic computing MAPE-K
phases. In Section 4, we give implementation defait a prototype of our frame-
work. Finally, Section 5 concludes the paper.

2 Overview of our solution for the distributed and dynamic
reconfiguration

We consider an application as a self-adaptablesitomposed of an adaptation sys-
tem on the one hand and of a set of functional aorapts on the other hand. The
adaptation system is responsible for the manageofethie application context (col-
lection of data, analyzes...) and of its adaptatighereas the components represent
logic trade of the application (functional codejcB separation is also suggested in
many works such as [10], [13], [15]. In our contdkie adaptation system is
represented by the framework which we present im plaper. Figure 1 shows an
overview of our solution. For reasons of clearnesa$y two sites are represented.

As we treat the distributed applications, we fingkach site a sub-system (a set of
application components) plus one instance of améwork which manages the sub-
system. The negotiation of adaptation strategy thrdexecution coordination of an
adaptation operation are done via special compenietegrated in the framework.
This organization makes the architecture of ountsmh decentralized what avoids the
problems of the centralized approaches [14].

|
1
Sitesr ! Sitez

e T e B e)
: Component Component Campenent : 1 : Component Component Component :

I .
1 i | |
& c. . : - = c. |
! i ' |
] i | !

Coordination
“m‘g(

Fig. 1. Overview of our solution for the dynamic and dmited adaptation

3 Design of the proposed Framework

For the definition of our framework, we consideset of constraints which are: (i)
independence of the existing component modelsfléxibility and extensibility of
the framework, (iii) adaptability of the framewoind (iv) taking into account of the
distributed nature of the software to make it adalgt

Our framework is based on the classical autonomntrol loop Mape-k (Monitor-
ing, Analysis, Planning, and Execution) [3]. Tho®p is used in many works treating
the dynamic adaptation [8] [11], [12]. The diffecenbetween these current research
activities is in the implementation way of the Mapop.

So, in our framework we separate the concerns waabln a classical autonomic
control loop and implement those concerns as stpatamponents. The monitoring,
analysis and adaptations are carried out by thsrabloop. We have merged the two
phases of analysis and planning and we have inegfjthem in the same component.
A significant part of the coordination, negotiatiand the checking (checking of the
application structure and the behavior of its congs) were externalized of the
control loop. The Figure 2 shows an overview of mamework.

The coordinator coordinates the execution of thaptation operations; the nego-
tiator negotiates an adaptation strategy withiitslar at the other sites. The checking
component carries out the checking of the appboastructure as well as the check-
ing of the behavior of its components following thening of an adaptation opera-
tion. This checking operation is carried out on éinehitecture description of the ap-
plication. For that, the component <<translatorpresented hereafter) forwards the
changes carried out on the application to its &chire description each time that an
adaptation operation is done. This is for assuangausal connection between the
architecture description of the application andsyxgtem in running.

- Negotistor
L -
e

Coordinator - L}

Fig. 2. Overview of the proposed framework

Knowledge Manager. It's a component used by the various componenthef
framework. It allows (1) to safeguard information the knowledge base and (2) to
provide information contained in the knowledge basthe other components accord-
ing to their need.

Monitor. It's the first component in the chain which canséis the control loop.
It's composed of sub-component of the type <<Ceaftantext>> and a set of sub-
components of the type <<Sensor>>.The first supesvthe application environment
(e.g. memory, CPU, bandwidth...) whereas, the sesumervises the various func-
tional components of application (i.e., sub-syst&nthe application managed by the
framework) for that, it has a cardinality 1-*. Tkkesomponents (<<CaptureContext>>
and <<Sensor>>) are responsible to (1) gather gieatly the information of the
controlled elements and (2) to pass them to thé olgpect of the chain (the context
manager).

ContextM anager. It's the second object in the execution chairs. #'composite
component in charge of the management of the rgnoamtext. For that, it's com-
posed of two components <<AcquisitionManager>> gnthterpreter>> with a car-
dinality 1-1 for both. The first (1) gathers thdarmation collected by the monitor
and saves it in the knowledge base via the compomgnowledgeManager>>, and
(2) delegates the execution to the component <rfdrgger>>. This last, interprets
data provided by the acquisition-manager. The veckilata are separately interpreted
for each type of measurement in order to providggaificant contextual data. For
example, a decreasing bandwidth event can be alome&epresentative. On the other
hand, if it's repeated in time, it can indicatet ttiee user moves away from an access
point and thus being significant. So, the intemareftores the values measured by
event type. As the decision maker <<DecisionMakeas>pegistered with events near
the context manager, the detection of a suitabigestd change triggers the notifica-
tion of the decision maker. In this case, the prteter delegates the execution to the
next component of the chain (DecisionMaker).

DecisonM aker. It's the third object in the execution chain of ttontrol loop. It's
responsible of making an adaptation decision andiges in exit the adaptation strat-

egy to be applied. For that, it subscribes withnéy@ear one or more context manag-
ers. The decision maker (1) starts the interpitatif the adaptation policy (script)
which is of type ECA "Event, Condition, Action"t is possible that several rules (i.e.
several adaptation operations) so, several stegege applicable at the same time. In
this case, the decision maker must order thestegtes according to their priorities,
then (2) it initiates a negotiation operation déttrategy via the component <<Nego-
tiator>> according to the given sequence. This tiafjon is necessary since we
speak here about the distributed adaptations. é@etid of the negotiation, the deci-
sion of the negotiator is the notification of thericipants of the negotiation failure or
of its success with the strategy selected. Theredfie <<DecisionMaker>> (3) dele-
gates the execution to the next object (Executotfé chain.

cnmumnlnumnm 1 Inmiator: ‘ ['scrlpc |m|=|pa¢(=e } I Intiator: I[] |
R i T

(I of even,
2 interpretPolicyScript(), .
3. Resut I

4; negotiate (Strategy)
f

I
I
I
1 -

& ProposeStrategy(Strateny) |

I S—
Lopt) B _proposehlodification]Strategy}

& Reason(Strategy)

[C 10 Accept(Strategy)

fe — 13 Refuse(Swategy)

P
T
|
|
|

& DetermineParticipant() | |
|
|
|
|
|
|
|
|
|
|
|
|
|

!

Fig. 3. Sequence diagram of negotiation between two atiaptaanagers

The diagram showed in figure 3 describes the sexguehmessages for the negoti-
ation of a strategy between an initiator and pgoaicts. For reasons of clearness, only
one participant is represented.

The initiating decision maker chooses an adaptagicategy. Then, it asks its ne-
gotiator to negotiate the strategy which it choBeis negotiator proposes simulta-
neously to each participant the strategy that #wsibn maker chose. The negotiator
of each participant receives the strategy andpn¢s its policy to reason on its appli-
cability. It can then accepts, refuse or proposeodification of the strategy. Then, it
answers the initiating negotiator. When this |l&steives all the answers, it thinks on
the acceptances and/or the applicability of theifitadions asked. When all the par-
ticipants accept the strategy, the negotiationeets. Otherwise, it detects and solves
the conflicts and it can then in its turn proposmedification of the strategy. The
negotiation process is stopped if one negotiatfuses a strategy or if a stop condi-
tion is checked. This condition is in connectiontie authorized maximum time of
negotiation or with the maximum number of negobiati cycles. If the negotiation

succeeds, the initiating negotiator returns toitftéating decision maker the strategy
resulting from the negotiation and sends to theotiapr of each participant the final
strategy. At the reception of this strategy, thgatiator of the participant asks to this
last (3) to adopt the strategy resulting from tlegatiation and delegates the execu-
tion to the next object in the control loop <<Extxe>.

Executor. We adopted the transaction-based system techifiifjeo make our
adaptation operations transactional i.e. havingptioperties ACID (Atomicity, Con-
sistency, Isolation, Durability) of transactions, Sve consider an adaptation opera-
tion as a set of primitive operations of adaptation

The purpose of this decomposition is to facilitdite detection of errors during the
running of these operations and much more theovery what allows to preserve the
consistency of the application to be adapted. Aapgation operation is validated
(commit) only if all its primitive operations ararmried out without faults. If an error
is detected before finishing the execution of tbapation operation, the effect of all
primitive operations is cancelled for preserving #pplication consistency. Figure 4
shows our abandon model of an adaptation operation.

s >
D e A

Abandon

() FE()eBER)PE - 42
A Configarasion
<: Rollback | OP; Aagasion cpesation

Fig. 4. Abandon model of an adaptation operation

According to our model the effect of the reconfigfion operation is cancelled by the
running of the reverse action of each primitiveragien done. We define the concept
of opposite operation which is used to undo theatf of a reconfiguration operation
and which is useful to ensure its atomicity. Ak treconfiguration operations are not
necessarily invertible. The operations of modifimatof the component properties are
generally their own reverse. In addition, the ofiigoéor reciprocal) operation of a

primitive operation is not necessarily a primitigperation but can be a composite
operation.

Given a configuratiord, by application of the composite operatipT? ° op on A,

we obtain normallyp~1°op (4) = A according to the following diagram where
indicates the reconfiguration by the operatpn

p1
48424

For example, the reverse of the operatiemoveComp which allows removing a
component is the operati@ddComp which allows adding a component.

In certain component model, certain operationsnateinvertible, like in the Frac-
tal model where the operatioew for which the opposite operation would correspond
to an operation of destruction of component dodserist. For the particular case of
the non reversible operations, the cancellationecbnfiguration requires a specific
treatment in the event of abandonment of the ttitsa Compensation operations
can then be associated to these operations; mareovguarantee on atomicity can
then be given because the state of the systentingsfrom the abandonment cannot
be completely identical to the state before theninun of the reconfiguration.

Algorithm 1

1: Begin

2: For all op; O startegy do

3: RunOp(op)) ;

4: TranslateChanges();

5% if not IsConsistentApplication () then

6: SendMessageToCoordinator (“Adaptation failure”);
7: For all executed primitive operation op;do RecoveryManager.undo(op;) ;
8: end_for

9: end_if

10: else

11: SendMessageToCoordinator (“ApplyNextOperation”);

12: response — coordinator.decisionCoordinator() ;

13: if response |=" ApplyNextAction" then

14: SendMessageToCoordinator(“Adaptation failure”) ;
15: For all executed primitive operation op; do RecoveryManager.undo(op));
16: end for

17: BREAK;

18: end_if

19: end_else

20: end_for

21: if all operations in strategy are executed

22: LogExecutedOps();

23: end_if

24: End.

The <<Executor>> is the component responsible Herexecution of the adapta-
tion strategy suggested by the component <<Dedi4ider>> and of its control. For
that, it (1) triggers the execution of each regunfation action in the strategy accord-
ing to the order of their appearances.

We consider the adaptation of distributed applicatas a global adaptation
process composed of distributed local adaptatiatgsses. For that, a coordination
component of the execution of an adaptation is sea1g.

Following the running of each primitive adaptatioperation, the <<Executor>>
(2) calls the translation function of the componerflranslator> for transferring
the changes performed in the application in runtinigs architectural representation.
After, it (3) carries out the checking of the catsncy of the application structure and
the checking of the validity of the behavior of @emponents via the component
<<Checking>>. If a constraint is violated, the <<Exwr>> asks to the recovery
componenk<RecoveryManager> to carry out the rollback for preserving the con-

sistency of the application. In this case there,dbmponent<RecoveryManager
undoes the effect of all the primitive adaptatige@tions which are already executed
through the execution of their reverse operatiaexlained in the previous section.
Moreover, this initiating executor notifies the cdimator of the failure of execution
of the primitive adaptation operation in questi®his last, deals with the notification
of the other participants of this failure (the paEpants are the coordinators of the
adaptation execution which are deployed at therathes) so that they can undo the
effect of the primitive operations already carr@d at their level in order to preserve
the global consistency of the application.

In the opposite case, i.e. if the <<Checking>> doasdetect any error following
the running of a primitive operation of adaptatitre <<Executor>> sends a message
"ApplyNextAction” to the coordinator. This last awaits the receptiball the partici-
pants’ messages. If one of them replies negatifredyadaptation failure), the coordi-
nator announces the failure of the execution ofadti@ptation operation. Otherwise, it
indicates to the participants to carry out the nakmitive adaptation operation and
the process is still repeated. After the runnind #ire validation of all the primitive
operations of all adaptation operations in thetetys the <<Executor>> (4) logs
these executed operations in the journal of thdiGgin for a future use. The end of
the execution of this operation determines the @frttie control loop cycle. The run-
ning of the <<Executor>> is summarized by algorithm

4 Implementation and validation

In this section, we give details and technical cesimade to implement an instance
of our framework. We present also the result ofat@luation of this framework.

4.1 Background

For the implementation of the elements of our framr which we have presented in
the section 3, we have used the component modgltSEM [9] which is an adapta-
ble model extension of the model COM (Componente@bModel) [2]. It's a com-
ponent model which we have proposed in an earl@mkwWe have used this model
because it allows the development of a scriptingmanent as it's based on the use of
the scripting languages. These languages allovinttemental programming, i.e. the
possibility of running and developing simultaneguie scripts which represents in
this context the components implementation. Thigpéation is possible via a set of
three controllers which are: the Interface condmliscript controller and property
controller. Moreover, this model benefited from tdiutions and advantages of the
COM model since it's an extension of the latter. Wave chosen this component
model in order to make our framework itself adafgab

4.2 Framework implementation

The framework is implemented via the component rh8aeiptCOM as a set of non
functional components that can be added, removeadadlified at runtime. We have
designed a set of predefined components that imgiérmach one of the elements

which we have described in Section 3. This is fust of possible implementations
and particularly, this has been designed to progeléadaptable capabilities to the
framework.

4.3 Validation plan

In order to validate our proposal, we have usediitastrial model EJB [4] for the
development of an application example which is @#p server. We have chosen this
model to prove that our framework is generic beeatis implemented via the com-
ponent model ScriptCOM and the adapted applicatateveloped via another com-
ponent model (EJB). We have chosen this applicdtnT P Server) since it's used in
the evaluation of many works [5-7]. Thereforeeipresents a reference for us. This
application of the type server does not interatally with a user. However, the need
for performances implies that it must be able tapado the characteristics of its host
and the type of load which it undergoes. In thiaregle, the significant context for
the adaptation will be thus that of the material anftware resources rather than the
characteristics of the end-user. In order to imprthe performances, we have inte-
grated a mechanism to put in cache the conteriliesfwhich it reads.

The objective of the validation in this paper igast the adaptation mechanism in-
fluence on the application response time and tlaptation time. We have obtained
encouraging results, where the influence on thpomese time is stable and that over-
head time is about 15%. The adaptation time aveisagpproximately 2 seconds. Of
course, this figure is large compared to the respdime of one request which is
approximately 30ms. Notice, that this test is dei@e machines equipped with In-
tel(R) Core(TM) 2 Duo CPU T5670 @ 1.80GHz 1.79GIHd & GB of RAM.

5 Conclusion

We have presented a generic reconfigurable compdrased framework for support-
ing the dynamic adaptation of distributed compo+iEaged applications. Our frame-
work is based on the classical autonomic controp IMape-k (Monitoring, Analysis,
Planning, and Execution). It implements each pludighe autonomic control loop as
a separate component, and allows multiple impleatems on each phase, giving
enough runtime flexibility to support evolving ndanctional requirements on the
application. To the difference of the others frameks, our framework is conceived
to support the distributed adaptations. Moreows,independent of the component
models and designed to minimize the cost and the &f the addition of capacities of
self-adaptation to a large variety of system. Atgtype of this framework has been
implemented using an adaptable component m8agitCOM. Moreover, an empiri-
cal evaluation of this prototype is done and itveh@ncouraging results.

Our future work focuses on improving the resporis® tby the improvement of
the negotiation and coordination algorithms.

References

10.

11.

12.

13.

14.

15.

16.

. Taylor, R.N., Medvidovic, N., et al. Software Arakiture: Foundations, Theory, and

Practice. 736 pgs., John Wiley & Sons (2008)

. Microsoft Corp., Component Object Modhl, t p: / / wwv. ni crosoft. com COM
. IBM. An architectural blueprint for autonomic compmgt. Autonomic computing white-

paper, 4th edition (2006)

. Matena, V., Hapner, M.: Enterprise Java Beans Spetidn v1.1 - Final Release. Sun

Microsystems, Mai (1999)

. David, P.C.: Développement de composants Fractgitatfs: Un langage dédié a l'aspect

d'adaptation. PhD thesis, université de Nantesideré2005)

. Léger, M. : Fiabilité des Reconfigurations Dynamisjutans les Architectures a Compo-

sant. PhD thesis, Ecole Nationale Supérieure desdtie Paris (2009)

. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using Taral Logic for Dynamic Reconfi-

gurations of Components. In: FACS, 7th Int. Ws. om#&a Aspects of Component Soft-
ware, Portugal (2010)

. Ruz, C., Baude, F., Sauvan, B.: Flexible adaptatiop for component-based soa applica-

tions. In: ICAS 2011, the Seventh International Coeriee on Autonomic and Autonom-
ous Systems, pp. 29-36. , May (2011)

. Aissaoui, O., Atil, F.: ScriptCOM an Extension of CCit the Dynamic Adaptation. In:

Proc. of 2° IEEE International Conference on Information Tezlbgy and e-Services, pp.
646-651, Tunisia (2012)

Garlan, D. Cheng, S.W., Huang, A.C., Schmerl, B.,i#is&e, P.: Rainbow : Architecture-
based self-adaptation with reusable infrastructime. IEEE Computer, 37(10) :46-54,
(2004)

Maurel, Y., Diaconescu, A., Lalanda, P.: Ceylorsékvice-oriented framework for build-
ing autonomic managers. In: Engineering of Autormrand Autonomous Systems
(EASe), Seventh IEEE International Conference andkélmps, pp. 3 —11, (2010)
Gauvrit, G., Daubert, E., Andr, F.: Safdis: A frammek to bring self-adaptability to ser-
vice-based distributed applications. In: SEAA'1@p¢eedings of the 36th EUROMICRO
Conference on, Software Engineering and Advancediédgifpns. IEEE Computer Socie-
ty, pp. 211-218, (2010)

Baresi, L., Guinea, S.: A3: Self-Adaptation Capéib#i through Groups and Coordina-
tion. In : ISEC '11, Kerala, India, (2011)

Tan, C., Mills, K.: Performance characterizatiordetentralized algorithms for replica se-
lection in distributed object systems. In: WOSRygm257-262. ACM, (2005)

Zouari, M., Segarra, M.T., André, F.: A Framewodk Distributed Management of Dy-
namic Self-adaptation in Heterogeneous EnvironmémtsEEE International Conference
on Computer and Information Technology: 265-2721(9

Gray, J., Reuter, A.: Transaction Processing : Qascand Techniques. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, (1992)

