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Abstract: This paper deals with a nonlinear control strategy of induction motor that combines an input-output linearization control 
technique and a nonlinear observer design. It is well known that induction motors are the most widely used motors in electrical 
appliances, industrial control and automation. However, it is also known that induction motor control is a complex task that is due to 
its nonlinear characteristics. Two main features of the proposed approach are worth to be mentioned. Firstly, a nonlinear control is 
carried out using a nonlinear feedback linearization technique involving non available state variable measurements of the induction 
motor system. Secondly, a nonlinear observer is designed to estimate these pertinent but unmeasurable state variables of the machine. 
The circle-criterion approach is performed to compute the observer gain matrices as a solution of LMI (linear matrix inequalities) 
that ensure the stability conditions, in the sense of Lyapunov, of the estimated state error dynamics of the designed observer. 
Simulation results are presented to validate the effectiveness of the proposed approach. 
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1. Introduction 

Induction motors are suitable electromechanical 

systems for a large spectrum of industrial applications. 

However, induction motors are multivariable 

nonlinear and strongly coupled time-varying systems, 

mainly, in variable speed applications. Thus it makes 

their control so difficult [1, 2].  

In the majority of industrial applications, it is 

necessary to be able to control the speed of induction 

motor drives. The most common technique to achieve 

this task is the well known vector control technique 

that requires a speed sensor which is usually placed on 

the rotor shaft of the machine. The speed sensor has 

some disadvantages such as being costly and it 
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reduces the robustness and reliability of the induction 

motor system.  

Due to significant influence of nonlinearities on 

induction motor system dynamics, linear control 

techniques are quite good and they may not meet the 

system specifications mainly in the case of variable 

speed applications [2]. Consequently, this has opened 

a new and interesting area for academic research and 

industrial applications for nonlinear control techniques. 

During the last few years, a variety of solutions that 

have promoted the market of control techniques 

became industrial standard for medium and high 

performance applications. Among these nonlinear 

control techniques that ensure high performance and 

global decoupling between the outputs to control 

whatever the path profile imposed for the machine, 

one can mention the input-output feedback 
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linearization technique developed by Isidori [3]. This 

method implements the differential geometry theory to 

transform a nonlinear system into a linear one by 

using a state feedback linearizing method that ensure 

input-output decoupling, and after that it applies a 

method of linear system control theory. The 

availability of powerful low-cost microprocessors has 

spurred great advances in the theory and application of 

nonlinear control techniques as sliding mode, 

nonlinear predictive and nonlinear adaptive control 

techniques [4-7]. All these methods assume that all 

state variable measurements of the considered system 

are available online. In order to implement a nonlinear 

sensorless control technique, to improve the 

robustness and the reliability of induction motor 

drives, it is necessary to synthesize an observer for the 

estimation of non-measurable state variables of the 

machine system that are essential for control purposes.   

In this paper a state feedback linearizing controller 

is used in combination with a nonlinear state observer 

designed via the circle criterion approach for 

induction motor sensorless control. The observer gain 

matrices are determined as a solution of LMI (linear 

matrix inequalities) that ensure the global asymptotic 

convergence of the observer dynamics [8, 9]. The 

main advantage of circle criterion approach is that it 

exploits directly the system nonlinearity properties 

with minimal restrictions in contrast to the other 

methods which attempt to eliminate or at least to 

diminish their effects.  

The paper is organized as follows: In the second 

section we present the considered induction motor 

nonlinear model; In the third section we recall the 

input-output linearization control technique and in the 

fourth section the circle-criterion based nonlinear 

observer design is presented; The simulation results and 

comments are presented in the fifth and final section. 

2. Nonlinear Induction Motor Model 

Induction motor as various electric machines 

constitutes a theoretically interesting and practically 

important class of nonlinear dynamic systems. 

Induction motor is known as a complex nonlinear 

system in which time-varying parameters entail 

additional difficulty for induction motor system 

control, conditions monitoring and faults diagnosis. 

Different structures of the nonlinear induction motor 

model are investigated and discussed in Ref. [10]. The 

choice of a model structure depends on measurement 

possibilities, selected state variables of the machine 

and the problem at hand. In this paper, the considered 

induction motor model has stator current, rotor flux 

and rotor angular velocity as selected state variables. 

The control inputs are the stator voltage and load 

torque. The available stator current measurements are 

the induction motor system outputs. The nonlinear 

model of the induction motor can be expressed as the 

following:  
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s
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The indexes s  and r  refer to the stator and the 

rotor components respectively and the indexes d  
and q  refer to the direct and quadrature components 

of stator fixed reference frame (Park’s vector 

components); i  and u  are the current  and voltage 

vector;  is the flux vector; R  is the resistance; l  

is the inductance; m  is the mutual inductance; sT  

and rT  are the stator and the rotor time constant 

respectively; r  is the rotor angular velocity; fr is 

the friction coefficient; J is the moment of inertia 

coefficient; np is the number of pair poles; Ωr is the 

mechanical speed of the rotor and finally Tl is the 
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mechanical load torque.  

One can see that nonlinearities of the model are 

expressed by the product between the state variables 

of the machine system as stator current and rotor flux 

components in the electromechanical torque 

expression and rotor flux and rotor angular velocity in 

the other equations. In this type of nonlinear model 

only the stator voltage and current measurements are 

available. Rotor flux and angular velocity that are 

essential for induction motor control and conditions 

monitoring need to be estimated with the help of a 

state observer. 

The above nonlinear induction motor model can be 

rewritten in the following nonlinear state space model: 
)](.[))(),(()()( txHGftutytAxtx          (7) 

)()( tCxty                     (8) 

where )(tx  represents the state vector of the machine; 

)(tu  and )(ty  are the system inputs and outputs 

respectively. A, G, C and H are known constant 

matrices with appropriate dimensions. ),( yu is an 

arbitrary real-valued vector that depends only on the 

system inputs and outputs and finally the term [.]f  

represents the system nonlinearities. One can see that 

the above nonlinear model is composed of a linear 

part and a nonlinear part. 

3. Input-Output Linearizing Controller Design  

The concept of input-output feedback linearization 

is to find a coordinate system transformation so that 

the nonlinear dynamics represented in the new 

coordinate system can be canceled by state feedback 

[3, 5, 6]. This is a quite appealing approach when such 

a transformation exists. The system to be controlled, 

through a linearization control law, must be a square 

type [4, 5]. 

In the case of induction motor application one can, 

therefore, choose the rotor speed and the norm of the 

rotor flux as system outputs. The choice of the 

squared norm is justified only by calculus 

simplification purpose. Taking into account the above 

conditions, the outputs of our induction motor system 

are then expressed in a vector form as follows: 
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where )(xh  is an analytic function and the state 

vector )(tx  belongs to the following set. 

 0: 225  rqrdx          (11) 

The Lie directional derivative of the analytic 
function )(xh  with respect to the field vector )(xf  

is defined as follows [5, 6]: 
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Repeatedly, we have: 
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The time derivative of the system output jy  can 

be expressed as: 

ij

p

i
gijfj uhLhLy )(

1



          (14) 

where, p  is the number of outputs.  

The relative degree of the nonlinear system (1)-(5), 

affine in control, is the vector )...,,,( 21 prrr  verifying 

the existence of at least one derivative such as: 
0)(1  xhLL j
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The element r is the first derivative of jy  showing 

explicitly the control u  in its expression as: 
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Note that for a controllable system, we always have 

r ≤ n; n is the order of the system. 

The total relative degree is defined as the sum of all 

the relative degrees. It must be less than or equal to 

the system order [3]. In these conditions we say that 

the above system has a relative degree at the state x0. 

Using this type of procedure in the case of the 

induction motor system, it is easy to verify that the 

control appears for the first time in the second derivative 

of the outputs y1 and y2 as one can see in the following: 
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The derivative of the second order can be rewritten 

in the matrix form as: 
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The above matrix form can be, also, written as: 
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The relative degree of the induction motor system is 

then (2, 2) and verify r ≤ n.  

From relation (18) the control law of the induction 

motor can be expressed as: 
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where the vector V = [Vd  Vq ]
T is an external set of 

linearized system that can be computed as: 
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The term )(xA is the matrix of input-output 

decoupling such as: 
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From the above equation one can see that the state 

feedback control decouples and linearizes the 

induction motor system model. Therefore, the closed 

loop system is equivalent to two independent chains 

of two integrators, relation (18).  

Note that the involved state variables of the 

machine system are unmeasurable and therefore they 

must be estimated with the help of an observer design 

technique. The retained technique in this paper is the 

circle-criterion approach. To this end a selected output 

reference trajectory is  Trefrefry 2  and the 

estimated output is T
rry )( 2 . This choice leads 

to the following tracking error dynamics: 
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where refre  1  and 
22

2 refre   and 

aik , bik  are respectively the coefficients of Hurwitz 

polynomials. 

4. Nonlinear Observer Design  

In contrast to linearization techniques and high gain 

approaches, which attempt to eliminate or to dominate 

the system nonlinearities in designing a nonlinear 

observer, circle-criterion approach exploits the type of 

system nonlinearities. In its basic form, circle criterion 

approach for nonlinear observer design, introduced for 

the first time by Arcak and Kokotovic [8], is 

applicable to a class of nonlinear systems that can be 

decomposed into linear and nonlinear parts with a 

condition that the nonlinear part is a time-varying 

function that satisfies the following sector property. 

4.1 Definition (Sector Property) 

A memoryless function ),( tzf  is said to belong 

to the sector [0[   if the following property is 

fulfilled: 
pp RRtzf  [0[:),( then 0),( tzzf  (23) 

The above sector property is equivalent to the 

following:  
 Rvvtvftvfvv 212121 ,0)],(),()[(   (24) 

where 1v  and 2v  are two real positive numbers 

such as 21 vvz   and )],(),([),( 21 tvftvftzf    

Relation (24) states that the nonlinear function 

),( tzf  is a nondecreasing function. Furthermore, if 

),( tzf  is a continuously differentiable function the 

above relation is also equivalent to [8, 9]: 

Rztzf
dz

d
 0),(             (25) 

In the following the authors recall the main theorem 

and conditions that are used in this work to study the 

feasibility of nonlinear observer design for induction 

motor control with respect to circle criterion or sector 

property. 

4.2 Theorem ([8, 9, 11]) 

Consider a nonlinear system of the form (7)-(8) 

with the nonlinear part satisfying the circle criterion 

relations (23)-(24). If there exists a symmetric positive 

definite matrix nxnRP  , a set of row vectors 
pRK  and a small positive real constant 0  such 
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that the following LMI (linear matrix inequalities) 

hold: 

0)()(  n
T ILCAPPLCA       (26) 

0)(  TKCHPG          (27) 

Then a nonlinear observer can be designed as: 
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and 0)(ˆ)()(lim  txtxtet . where )(ˆ tx  and 

)(ˆ ty  are the estimate of the state )(tx  and the output 

)(ty  of the nonlinear system respectively. L  and 

K  are the observer gain matrices to be determined 

such as the state estimation error dynamics are 

asymptotically stable in the sense of Lyapunov. 

The state estimation error dynamics, which are the 

difference between the dynamics of the system motor 

model and the dynamics of the observer, can be 

expressed as: 
),(.)()()( tzfGteLCAte       (30) 

)()( teKCHz             (31) 

where )(ˆ)()( txtxte   is the state estimation error. 

One can see that the structure of the designed 

nonlinear observer is similar to Luenberger linear 

observer with an additional term that represents the 

system time-varying nonlinearities.  

One can see, once again, that state estimation error 

dynamics, relations (30)-(31), are composed of a 

linear part and a time-varying nonlinearity that 

satisfies the sector property. Circle criterion 

establishes that this type of interconnection system is 

globally uniformly asymptotically stable [8, 9].  

To proof the stability of the observer error 

dynamics a candidate Lyapunov function, PeeV T , 

is used. Negativity conditions for the time derivative 

of the Lyapunov function determine the LMI (linear 

matrix inequalities) conditions, relations (26)-(27). 

Resolution of these LMI conditions leads to feasible 

values of the observer gain matrices L  and K . An 

extension to multivariable systems with multiple 

nonlinearities is presented in Ref. [11]. 

5. Simulation Results and Comments 

In order to illustrate the performance of the 

proposed controller we provide a series of simulations. 

The characteristics of the considered induction 

machine are listed in Table 1.  

The first step of the simulation consists of resolving 

the LMI conditions, relation (26)-(27), using an 

adequate LMI tools such as the LMI toolbox of the 

Matlab software, to determine the gain matrices of the 

observer. The obtained numerical values of the 

observer gain matrices L  and K  are the following: 
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The simulation block diagram of circle criterion 

nonlinear observer to estimate the needed state 

variables of the machine system is given in Fig. 1. 

Once the estimated state variables of the machine 

system are available the input-output state feedback 

control is implemented. The simulation results are 

presented in the following figures.   

From Figs. 2-6, the authors present the estimated 

and measured state variables of the machine according 

to load torque variation from no load value to the 

value Tl = 5 N.m introduced at time t = 0.5 s and 
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Table 1  Characteristics of the considered induction machine. 

Symbol Quantity Numerical value 

P (Kw) Power 1.5  

f (Hz) Supply frequency 50  

np Number of pair poles 2 

U (V) Supply voltage 220  

Rs (Ω) Stator resistance 4.85  

Rr (Ω) Rotor resistance 3.805  

ls (H) Stator inductance 0.274  

lr (H) Rotor inductance 0.274  

m (H) Mutual inductance 0.258  

r ( rd/s) Rotor angular speed 297.25  

Kf (N.s/rd) Friction coefficient 0.00114  

J (Kg2/s) Inertia coefficient 0.031  

Tl (N.m) Load torque 5  
ka1,ka2, 
kb1, kb2 

Coefficients of Hurwitz 
polynomials 

105-1,000 
105-1,000 

 

return to no load value, and rotor angular speed 

variations form the reference value w_ref =120 rd/s to 

w_ ref = -120 rd/s at time t = 4 s.  

In Fig. 3 and 5, one can see a significant decoupling 

effect of flux components under rotor angular speed 

and load torque variations in d-q Park representation.  

Analysis of the simulation results shows that the 

obtained performance of rotor angular speed and flux 

tracking are very adequate. Analysis of the different 

figures points out that designed nonlinear observer 

effectively estimates the unmeasured state variables of 

the machine and tracks the load torque variations with 

respect to applied nonlinear control law computed in 

accordance with the input-output linearization 

feedback control technique. 

6. Conclusions 

In this paper, the authors have presented a nonlinear 

control of induction motor as a combination of a 

nonlinear observer and input-output linearization 

technique. Simulation results show that this control  

strategy assures a perfect linearization regardless 

profile trajectories physically imposed to the induction 

motor system. Decoupling between the two selected 

outputs (speed and flux) is then achieved. The 

designed nonlinear observer, via circle-criterion 

approach, has contributed effectively to estimate the 

unmeasurable state variables that are essential for the 

nonlinear control. 
 

 
Fig. 1  Simulation block scheme.  
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Fig. 2  Measured and estimated electromechanical torque. 
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Fig. 3  Rotor speed evolution according to load variations. 
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Fig. 4  Measured and estimated (d, q) stator currents. 
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Fig. 5  Measured and estimated norm of the rotor flux. 
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Fig. 6  One phase stator current variations. 
 

Simulation results show that this approach 

improves the performance of trajectory tracking and 

should bypass shortcomings of conventional methods. 

To this end, experimental tests will be investigated in 

a future framework. 
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