Chapter 1

Object-oriented, component-based, agent-
oriented and service-oriented paradigms in
software architectures

Recent years have seen object-oriented, compomeedbagent-oriented and
service-oriented paradigms coexist and developaialfel. This has led to the
emergence of similar or specialist concepts that eften juxtaposed with
misinterpretations of vocabulary. These misintegirens are exacerbated by the
existence of hybrid approaches that borrow elem&ota the four paradigms.
Moreover, modern applications that combine thesadigms emphasize this
ambient intertwining and the overall understandiegomes more difficult.

The purpose of this chapter is to clarify the bames between the
paradigms by proposing a conceptual comparativendveork based on two
quantitative and qualitative approaches. The ppieciis to concentrate on
differentiation of the conceptual aspects directated to the paradigms, as
opposed to an approach that compares the diffetenhnologies for
implementing these paradigms. The aim is to oféechitects a better
understanding of the implications and consequeateboosing one or the other
of these paradigms.

1.1. Introduction

According to Wikipedia “A programming paradigm isumdamental style of
computer programming that deals with how solutidasproblems must be

Chapter written by Abdelkrim WRAT, Anthony Hbck-Koon and Mourad Chabane
OUSSALAH.

2 Software architecture

formulated in a programming language”. This chagdteuses on four key
paradigms in the field of software development maby: Object-oriented

software engineeringOOSE),Component-based software enginee{®BSE),

Agent-oriented software engineerifgOSE) and Service-oriented software
engineeringSOSE).These paradigms will be studied and analymedvay of

construction of real-world distributed applications

A software development paradigm specifies how dorination technology
solution to a problem must be formulated in accocgawith clearly-defined
concepts and mechanisms. It determines the ordevhinh to deal with the
problem and provides the means to develop thisrptdefollow its principles
and to implement it in practical terms. Thus, awafe development paradigm
has its own particular style of developing IT swmos, in terms of analysis,
design and development.

By nature, a paradigm is independent of functioeeffir issues; however, it
can encourage certain types of application in otdesupport specific qualities.
However, these qualities are usually associatedh sfiecific repercussions.
When a paradigm is well suited to an implementatssnie, it reduces the need
for costly integration process and isolated sofutiests by using a common
conceptual framework.

In this chapter, we propose a conceptual framevib@ased on d@op-down
approach. The principle of &op-down approach is to concentrate on the
differentiation of conceptual aspects directly teth to the paradigms, as
opposed to dottom-upapproach that examines their technological diffees.
Our comparison-based conceptual framework reliestwo approaches: a
guantitative approach based on the concepts ofuptodnd process, and a
qualitative approach based on quality criteria tivgianize the characteristics of
each paradigm. These approaches will assist infyétag the conceptual and
technical misinterpretations of these differentgoiggms.

1.2. History

Figure 1.1, drawn from [SOM 04], shows the evolntiof software
engineering. We can see the progression from ties Iof code in structured
programming to current trends, or approaches siglseavice-oriented and
model-based paradigrhs

1. In this chapter, we will deliberately ignore thedel paradigm as proposed by the
OMG and focus on the object-oriented, componenédhaagent oriented and services
oriented paradigms, which makes for a sufficiertt{ensive chapter.

Object, component, agent and service paradigms

Agent oriented) Model
Component SngIth oriented
oriente —_—
Distributec based [N—

Object objects —— A~
Structured oriented —*—
programming A
—
| | | L ' : —>

1970 1980 1990 1995 2000 2010 2020

Figure 1.1. Evolution of development paradigms

1.2.1. Object-oriented Paradigm

Object-oriented Paradigm (OO) is a design-orienseal programming-
oriented paradigm that emerged in the early 19@&dscantinued by Alan Kay’'s
works in the 1970s [KAY 93]. It consists of the itfon and interaction of
software modules called objects: an object reptesgrconcept, an idea or any
entity in the physical world [OUS 99]. It has arteéimal structure and behavior,
and it is able to communicate with other objectse Bim of OOP, therefore, is
to represent these objects and their relationshgmenmunication between
objectsvia their interrelations facilitates the implementatiof the intended
functionalities.

The Simula-67 language lays the first foundatidhsse of object-oriented
languages: class, polymorphism, inheritance, €2©X 91]. However, it was
actually with Smalltalk 71,followed by Smalltalk §@an Ingalls) [GOL 83],
inspired largely by Simula-67 and Lisp, that théngiples of object-oriented
programming, building on the work of Alan Kay’s, wd be established: object
encapsulation, messages, typing and polymorphisars(ib-classification); other
principles such as inheritance, are either derifretn these or fall within
implementation.

The 1980s witnessed the proliferation of objecewted languages: Objective
C (early 1980s), C++ (C with class structure) il839Eiffel in 1984, Common
Lisp Object System in 1987, etc. The 1990s savgtiiden age of enhancement
of object-oriented programming in different sectofssoftware development.
Currently the object-oriented approach is considere the reference model for
other approaches.

Then, the object-oriented has been completed with Remote Method
Invocation (RMI) mechanism with the aim of introducing the cept of

4 Software architecture

distribution in the programming model. Remote MetHavocation is mainly
based on the principle of ORBject Request BroKefGAS 92, VIN 97].

1.2.2. Component-based Paradigm

The component-based paradigm was proposed by McdMEI 68] where
he implemented an infrastructure on Unix ugiigeline components and filters.
Component-based development appeared in the e@99slin response to the
failure of the object-oriented approach to meet téguirements of reuse and
composition. The component-based approach extehds object-oriented
paradigm by stressing the importance of reuseséparation of problems and
promotion of composition [PAP 07].

Reading and understanding an existing code is aveayedious task for
developers; however, it is highly advantageousedoable to reuse an existing
code in the form of a component. In fact, a devetopnly needs to know a
component includes, and not how it was implementdd. addition, in the
component-based approach, a clear distinction derbatween the development
of a component and that of a system. In the fimse¢c we focus on the
arrangement of the component and in the second wasfocus on the assembly
and composition of compatible components.

1.2.3. Agent-oriented Paradigm

The agent-oriented approach appeared in the 197@sr uhe leadership of
distributed artificial intelligence (DAI) where Hettv [HEW 73, HEW 11]
proposed the concept of actors i.e. competingastere autonomous entities. In
the mid-1990s, MAS collective models (multi-ageystems) appeared. In these
models, an agent is treated as self-containedyeniih certain capabilities that
enable it to carry out its services or use theisesvof another agent through
interaction. Organization-based of multi-agent eyst (OMAS) are among the
new models [FER 03].

Agents are distinguished by their social abilitycmoperate, coordinate and
negotiate with each other [HYA 96]. Autonomy andtiievel interactions are
the main points of difference between agent-based abject-oriented,
component-based and services-based approachestsAganbe classified into
two categories:

» Reactive agents wait for an event to happen befsponding to changes
in their environment.

« Proactive agents take decisions on their own thiBan their environment.

Object, component, agent and service paradigms 5

Software agents have their own contiflead encapsulating not only their
code and state, but their invocation too. Thesentagmay also have rules and
individual goals, appearing as active objects witlocation initiative. In other
words, when and how an agent can act is deterntipdlde agent itself.

In the agent model, communication is usually asyormbus. This means that
there is no predefined flow of control from one @ig® another. An agent can
initiate an internal or external autonomous behasiany time, and not only
when it receives a message [HEW 77].

Agents can respond not only to invocations of deaiethods, but also to
observable events in the environment. Proactivatagean actually question the
environment for events and other messages to dieemhat measures to take.

1.2.4. Services-oriented Paradigm

The service-oriented paradigm is a relatively nenftvgare development,
dating from the early 2000s, and well establishedhie field. SOSE Service
oriented software engineering$ directly inspired by real-world organization
methods in trade between multinationals, and idbam the classic notion of
service.

The origin of service-oriented software engineerogmnes from requests
related to systems that need to be able to wittstacreasingly volatile and
heterogeneous environments such as the InterneW\aaid services [CAS 03],
ambient intelligence environments [WEI 91] or besis applications run on
corporate networks such as ERBystems [PAP 07]. The productivity of a
supplier and their responsiveness to changing naedmajor issues that SOSE
attempts to provide solutions to in software depsient.

The service is a software entity that represergpeific function. It is also
an autonomous building block that does not dependry context or external
service. It is divided into operations that contsjrecific actions that the service
can provide. A parallel can be drawn between ojmrsiand services on the one
hand, and methods and classes in the OOSE on liee. oSOSE also has a
concept of composite service built by combiningvier descriptions. The
implementation of service compositing takes plasend) theruntimephase.

A key element of SOSE is the pattern of interactibiservices, also known
as services-oriented architecture (S{Ahat enables a range of services to

2. ERP:Enterprise Resource Planning
3. SOA:Service Oriented Architecture

6 Software architecture

communicate with each other. SOA is a means foigdesnd an understanding
of a software system to provide services to ap{itina or other serviceda the
publication of tracked interfaces.

A service is an action performed (a function rerdgrby a provider for a
customer; however, the interaction between the lgmp@and customer is
establishedvia a mediator (which may be a bus) responsible fanglrg
between participants together. Services are usualjylemented as coarse-
grained software entities. They encompass and peoggstem entities. These
systems can also be defined as the applicationdajiéne concept of a service
represents a processing entity that respects tosvfog characteristics:

* Coarse grained. Operations offered by a serviceapsudate several
functions and operate on a wide range of datakeniiith the component-
based concept.

* Interface. A service can implement several intexfa@nd several services
can implement a common interface.

* Architecture. Each service is described by an #chire that enables us to
understand what it does, in which conditions, aatyrice andwvith which
non-functional properties are involved.

* Discoverable. Before a service can be calleitd, invokg, it has to be
found Look-up.

* Single instance. Unlike components that are inistted on demand and can
have multiple instances at the same time, it isirgle service. It
corresponds to th&ingleton design pattern

* Loosely coupled. Services are connected to custmed other services
via standards. These standards ensure decoupénghie reduction of
dependencies. These standards are XML documeritsths case of Web
services. However, several communication techniqueanage the
heterogeneity of services implementations so thiaeyt can still
communicate. In the context of SOSE, coupling enuasses all concepts
of dynamic discovery of services and automatic ghegireplacement of
these services.

SOSE considers an application as a set of serintescting in accordance
with their roles and regardless of their locatian, order to withstand
heterogeneous and loosely coupled software syst&hes.Web service is an
example of a service where we use three basic aksnmwehich are: WSDL (an
XML meta-language) as a description language, UDB4istry to enable
localization and a transfer protocol such as HTTBOAP.

Service-Oriented Architectur€SOA) is essentially a collection of services
that interact and communicate with each other. Tusimunication merely

Object, component, agent and service paradigms 7

consists of a data return or an activity (coordoratof several services).
Services-oriented architecture is an interaction deho application that
implements services. This term originated betwe#02and 2001.

There is a hierarchy of services correspondinghéodifferent layers of the
technical architecture of a solution. Servicesfugd architecture is a very
effective solution to the problems faced by comearin terms of reusability,
interoperability and reduction of coupling betwesstems that implement their
information systems.

SOA became mainstream with the emergence of stdsdasuch as Web
services in e-commerce, B2B (Business to BusinessB2C (Business to
Consumer) based on platforms like J2EE or .NET.

1.3. Software Architecture

For many years, software architecture was describe¢drms of boxes and
lines. It was not until the early 1990s that sofevedevelopers became aware of
the crucial role that software architecture playghe successful development,
maintenance and evolution of their software systefn.good software
architecture design can lead to a product that sneestomer needs and can
easily be updated, whereas an improper architectare have disastrous
consequences that can lead to the withdrawal objeqt [TAY 09].

1.3.1. Object-oriented software architecture

Object-oriented modeling creates diagrams, text cipations and
programming source code based on object-orientettepis to describe a
software system. Object-oriented modeling languagee methods and
techniques to analyze and represent software sgstgaphically. There are
several methods of modeling objects such as D@&Signing Object-Oriented
Softwarg by Wirfs-Brock, MOT (Qbject-Modeling Technigleby Rumbaugh,
OOSE (Qbject-Oriented Software Engineerjngy Jacobson, or OODOpject-
Oriented Analysis and Desiytoy Booch. However, nowadays, most of these
methods are integrated into UMUdified Modeling Languageby Boochet al,
and therefore, are no longer practiced by analyStgect-oriented software
architecture is used to describe a system as ectiolh of classes (entities to be
abstracted and the encapsulation of functiona)itit®t can have objects
(instances) and communicate between themselve®igirgy messages [OUS
99, OUS 05].

8 Software architecture

1.3.1.1. Advantages and disadvantages of object-orientddvacé architectures

Object-oriented software architectures offer sevaaantages:

* They are based on well-defined methodologies teldgvsystems on the
basis of a set of requirements.

 They often provide direct mapping from specificatio implementation.

* They are familiar with a large community of engireend software
developers.

» They are supported by commercial tools.

However, they suffer from a number of shortcominfise most significant
are:
« Significant limitations in terms of granularity asdale-up.

« Low level of object reuse partly due to the tightipling of objects. In fact,
they can communicate without using their interface.

» The structure of object-oriented applications haerpegibility (a set of
files).

* Most object-oriented mechanisms are manually mahégstance creation,
management of dependencies between classes, erptitiod calls, etc.).

» There are few or no tools to deploy executablegifierent sites.

» They only specify the services provided by objesplementation but do
not, in any way, define the requirements of thdgeais.

» They provide little or no direct support to chaeaize and analyze non-
functional properties.

» They provide a limited number of primitive interecmttion mechanisms
(method invocation), making it difficult to accountor complex
interconnections.

» They offer few solutions to facilitate the adapiatiand assembly of
objects.

* They find it difficult to take account of objectiented developments
(adding, deleting, modifying, changing communicatioethods, etc.).

* They are not suitable for building coordination tpais and complex
communication.

» They have limited support for hierarchical desdoips.

» They make it difficult to define the overall system@rchitecture prior to the
complete construction of the components.

Object, component, agent and service paradigms 9

1.3.2. Component-based software architecture

Component-based software architectures describéemsgsas a set of
components (processing or storage units) that carwate with each other via
connectors (interaction units). Their goals areréduce development costs,
improve the reuse of models, share common conttieeen system users and
finally build reusable off-the-shelf component-bdideterogeneous systems. To
support the development of such architecturess imdcessary to have formal
notations and tools of for analyzing architecturspecifications. ADL
(Architecture Description Languagestands as a good solution for this purpose
[OUS 05, TAY 09].

1.3.2.1. Advantages and disadvantages of component-basedwasef
architectures

In component-based software architectures:

« Interfaces are generally first-class entities exhi described by ports and
roles.

« Interactions are separate from the calculationsaaadexplicitly defined in
most ADLs.

« Non-functional properties are taken into account.

« Hierarchical representations are semantically rithen simple inheritance
relationships.

« ADLs are enhanced by architectural styles defirendesign vocabulary
framed by a set of constraints on this vocabulary.

» The overall description of system architecture &@n specified before
completing the construction of its components.

» The level of granularity of a component or connegchigher than that of
an object or of an association.

However, component-based software architecture:

 Provide only high-level models, without explainihgw these models can
be connected to the source code. Such connectimmsingortant to
preserve the integrity of the design.

* Remain arad hocconcept known by the academic community. Currently
the industrial world is becoming increasingly irtstied in this discipline of
software engineering.

10 Software architecture

« Despite the ISO/IEC/IEEE 42010:2011 standarthere is no real
consensus because different notations and appreafdre describing
software architectures have been proposed.

1.3.3. Agent-oriented software architecture

Organization-based multi-agent systems (OMAS) difecéve systems,
which meet the challenges of designing large amdptex Multi-Agent Systems
(MAS). Multi-Agent Systems is a paradigm for undargling and building
distributed systems, where it is assumed that tloeegssing elements - i.e.,
agents, which are autonomous entities able to carwate - have a partial
knowledge of what surrounds them and have their pamicular behavior, as
well as a capacity to execute themselves indepéelydésee Figure 1.2). An
agent acting on behalf of a third party (anothezriga user) that it represents
without necessarily being connected to it, reaots iateracts with other agents.
The social capacity for cooperation, coordinatiod aegotiation between agents
is one of their main characteristics [WOO 09].

@ Agent
<«— Interaction
Organizational

O relationship

Visible and
influential are:

Environment

Figure 1.2. Canonical view of organizational multi-agent systedaN 01]

4. www.iso-architecture.org/ieee-1471/.

Object, component, agent and service paradignis 1

To summarize, a framework for specifying agentstrivasable to capture at
least the following aspects of a multi-agent system

- Beliefs that the agents have.

« Interactions that agents have with their environtmen

» The objectives that officials are trying to achieve

« Actions that agents perform and the impact of tlzesiens.

1.3.3.1.Advantages and disadvantages of agent-orienteéd/ad architecture

In agent-oriented programming the concept of sagwarchitecture is
replaced by a further knowledge-driven concept echllorganization. An
organization is made up of a set of roles and ioziahips between these roles.
Figure 1.3 shows that a role can be played by emaare agents and an agent
could also potentially play more than one role diemeously. A role is an
abstraction of an agent; it allows for a more genetescription of the
architecture as well as the interaction betweemtag&/OO 09].

Explicit reference

to a role
Agentl :KR\

: o
; &
) %]
! ©
R EGGEEE TP PP EE, > Agent2i¢ i
! Implicit references t .%
1 agents -1
e L EE R > Agent3i« I
| 5]
| (@]
| <
- » Agentdie

Figure 1.3. Coupling between agents

Generally:

« Agents-oriented architectures support competitiwch distribution.

« Agent-oriented architectures integrate businesgexcithical perspectives.

» Relationships between agents are therefore veryardim and partly
managed independently wia organizations.

» Multi-agent systems take the coupling and collatlonaconcept between
entities further (coordination, decomposition, nég@mn, etc.).

* MASs use coupling mechanisms dynamically and imtyeintermediary
agent, directory agent, etc.).

12 Software architecture

* MASs propose semantic coupling guided by knowledgd by a social
organization of work.

By contrast, in agent-oriented software architextur

* The agent-oriented paradigm does not support noctifinal properties.
* The usually have only one input, thus they arecootpositional.
» Agent-oriented architectures are generally difficalverify.

1.3.4. Services oriented architecture (SOA)

SOSE is based on the concept of service orientefuitacture (SOA [OAS
08, PAP 07]) which defines a conceptual frameworkrganize the construction
of application based on services. SOA introduces tbncepts of service
providers and consumers.

* A service provider is the actor responsible for thevelopment,
deployment, execution and maintenance of the semwiten it is required.
In addition, when the service expires the providekes care of the
termination of the service activities.

« A service consumer is the actor who uses servicesrding to their needs.

In the beginning, suppliers and consumers are m#dgnt - i.e., the supplier
during the implementation of its services, has morpknowledge about the
future consumers, nor how they might reuse thatisarThus, the SOA is based
on a third actor called theervice brokefOAS 08].

The service brokeiis the actor associated with a service registay émables
the relationship between consumers and supplies are unaware of each
other. Suppliers publish their services in theggstdes, which are then used by
consumers to identify those that match their needs.

Suppliers and consumers commit to a contract of insierms of respect for
the service interface for the consumer and compdiamith functional and non-
functional properties promised to the supplier. uréy 1.4 summarizes the
organization of a services-oriented architecture.

Object, component, agent and service paradign® 1

Service
broker

| Service :

= 1

F|nc : reglstry 1

"""""" ' Publish
Inform
pmmmm e m
. ! i i 1
Service : Doiss(;r:&t::%n' Service
consume, Lo ; rovider
Customer (
Interaction

Figure 1.4.Services-oriented architecture organization

1.3.4.1. Advantages and disadvantages of services-orientaftware
architecture

* SOA provides dynamicitywia the mechanism of discovery and dynamic
service selection.

» The service-oriented paradigm supports distributiam well as the
management of non-functional properties.

» The service-oriented paradigm does not supporasipect of competition
(in the sense of having parallel processing cajieisi).

« SOA offers high internal consistency (using a pietchange format,
usually XML).

« SOA provides loose external coupling (using anroyperable interface
layer, usually a Web service, and through the disgo and dynamic
selection of services).

* SOA can develop a complex product by integratirifipcint products from
different suppliers, regardless of the platform &gchnology used. Thus, it
helps to manage the complexity involved.

However,service-oriented software architectures:

* Are not suitable for applications with GUI functalities. These
applications could become more complex if they & architectures that
require a large volume of data exchange.

14 Software architecture

« Also in the case of standalone application or fmrsterm usage, the SOA
will become a burden.

* Performance problem of SOA, complex mechanism,mamy exchanged
messages, complexity overkill for a number of saftev packages, not
suitable for systems with very strong time constsgietc.

1.4. The two dimensions of the conceptual framework for comparison:
quantitative and qualitative

The aim of our conceptual framework for comparissrio fill the gaps
around the clear identification of differences betw OOSE, CBSE, AOSE and
SOSE. The goal is to provide a better understanttingsers by a comparative
summary of the four paradigms in order to assistrilin deciding on the use of
one or the other of these paradigms. This aspirativolves a grasp of their
respective concepts, in their definition and therthie analysis of impacts on
quality.

This comparison between object, component, agettsanvices serves the
same effort and the same purpose as the compahbstween objects and
components [OUS 05, SZY 02]. The common goal is #malysis and
understanding of the differences in a unique cohgmsible framework.

Thus, the approach we develop follom®p-downpattern, which as opposed
to previousbottom-upworks, focuses initially on the conceptual levelsectly
on the paradigms before seeking to derive the @gtial implications. This high
level focus allows the definition of an overall flawork capable of handling
four paradigms. In this definition of the compavatiramework, we seek both:

» Generality in identifying categories and sub-categgpof the comparison
framework that should not be dependent on a péaticparadigm, but
rather provide an outside perspective on which elgm of the four
paradigms may be projected. This generality enabesot to favor one
paradigm over another, and also ensures the rditxsatfithe framework,
which can be used to compare various other devedapparadigms.

* Minimalism in the selected categories and clag$iéements, which must
only extract the essence of the paradigms requiceddentify their
differences.

« Completeness in identifying differences that allavesto fully understand
the impact on the quality of the choice of one gayam over another.
Completeness of this framework gives the opponurir users to
customize the qualitative analysis.

Object, component, agent and service paradigns 1

1.4.1. Conceptual differences

The four paradigms studied have a very similar eagn based on the
construction of systems from existing or futuretsafe entities. They have a
common goal of maximizing reusability that is ditgaderived from the object.
They share the same overall development processcthmsists of identifying
software entities (object, agent, component orisesy that meet the needs, and
then combining these entities to make the finalliepfion. They are based on
the same concepts of composition, for the constnuodf new entities from
existing ones to ensure a consistent approach vamrentity can be seen as an
object, agent, component or service. Thus, thisaggh facilitates incremental
development and exploitation of knowledge.

However, although these four paradigms have theesawerall goal, the
concepts behind the notions of objects, componexgsnts, and services are
different.

Thus, we confront the following four aspects:

« Difference in utilization and owner’s responsilyilit
« Difference in coupling.

« Difference in granularity.

« Difference in cooperation and problem-solving.

1.4.1.1 Difference in use and owner’s responsibility

A component is called "off the shelf" [CRN 06, HE&L] by adopting a piece
of technology, the component, which is available developers. The latter
recover a block of software component and ensgrénitorporation based on
their requirements.

A service focuses on the use of a function proviodied third party [DUS 05,
NIT 08, OAS 08, THE 08]. A service consumer onlesighe result from the
invocation of the target service.

These two views seem close at first; however, theye a significant impact
on the allocation of responsibilities between sigs@nd consumer. To illustrate
this distinction, we take an example of the videong industry on PC. This
industry is mainly based on two models of contestridution:

* Classical model: purchasing a game in a specitiisp or downloading on
the Internet.

* Cloud gaming model: purchasing a subscription &y mvailable games
directly on an Internet platform.

16 Software architecture

The classic model illustrates the object-orientaanponent-based and agent-
oriented approach. The said cloud gaming modedtilides the service-oriented
approach.

14.1.1.1. Responsibility of an object, componeragent

The first classic model corresponds to a player tungs a copy of his game.
This copy is collected either on a physical mediwsyally a DVD or in a
dematerialized form (cloud) via download platformsch as STEAM The
player is then responsible for installing the gammehis own machine, i.e. its
deployment. It is only after this installation tha can launch the application
and start playing.

This distribution model corresponds to a comporsed approach.
Typically, the game (the component) comes with @struction manual (the
documentation) that defines a number of consumdr-eonstraints. These
constraints are of two kinds:

* Deployment constraints: the provider of a PC vidame sets the minimum
system requirements in terms of computing powerUCgraphics card,
RAM, etc.), storage capacity (hard drive), audisorgces, etc. The
customer’s system must meet these requirements @ble to install and
run the game. The installation process itself prsseonstraints whether it
is the exact location on the hard disk or the cotioas requirements to the
Internet, key authentication, etc. In OOSE, CBSH ahOSE these
installations constraints are typically defined the chosen component
model [CRN 11]. Each model is associated with ati@dar system
environment before it can be used. Moreover, thisdeh provides
deployment rules associated to these components.

« Usage constraints: each game provides a list ofiffpeommands that
determines how to interact with it and the resgltiactions that are
necessary to progress through the levels (Game Ipéasel design, etc.).

These elements provide the rules to be compliel ivihe user wants to take
full advantage of the proposed experiment. In OOSBSE and AOSE these
user constraints are typically defined by the aaxttral interface of the entity
(object, component and agent). Compliance with thterface is crucial to
ensure the correct use of resources according @optssibilities previously
determined by the supplier of the entity.

5. http://store.streampowered.com.

Object, component, agent and service paradigns 1

1.4.1.1.2. Responsibility of a service

The second distribution model, call&@oud gaming illustrates the concept
of service-oriented. In this model, the player poesright to play a game that is
running on a remote platform under the respongjbdf the supplier. He only
needs the interface and the appropriate connetdiancess the platform. In fact,
the player is no longer responsible for operathmgy game on his own machine.
The only information he requires is how to accéss platform and how to play
the game. Hence, deployment constraints no longest én relation to the
installation of the game; only usage constraintaaia. This lack of operation
has several advantages. On the one hand, it siegplthe exploitation of
resources by removing efforts that accompany thdexgtanding of the
installation phases. On the other hand, it enstinesoptimal use of these
resources. In fact, the application runs directlytbe provider's environment.
The latter therefore has full control of its exéont Thus, it is more likely to
ensure the quality promised to its customers.

In our example, the quality of a video game (fltyidigraphics, etc.) varies
depending on the system on which it is installe@inB run on a remote
platform, this game has the same quality for edalign connected. In addition,
users who originally did not have the required esystonfigurations will benefit
from this service. Thus, constraints on the custoody decrease to their
communication capacity.

Finally, another significant advantage of this #mwriented model
relationship between customers and suppliers istidesparency of service
developments as long as the latter do not changenitial usage constraints
(connection interface, protocols, etc.). As it tise new versions are directly
accessible without the need to adapt on the consant On the contrary, in a
component-based approach, if the customer wantak® advantage of these
developments he must collect and deploy the gamséif. Problems associated
with this deployment may occur if the customer’stsyn no longer supports the
updated component. Cloud gaming illustrates thigaathge where different
versions of the same game follow one from the oither transparent manner to
users. As for the classic distribution, it requipgayers to collect a particular
patch and then its deployment on their machinedeioto develop the version of
the game. These new versions can potentially requinardware upgrade at the
consumer-end (for example, to support an improveglgcs engine) whereas it
is not required in the Cloud gaming. Thus, collegtthe patch, its installation
and the ability to use the new version of the ganay incur additional costs.
These additional costs are generally not presetitdrservice-oriented approach
where the customer pays for this function whereaghe component-based

18 Software architecture

approach the customer pays for the component ahe and within a given
release version.

However, the main drawback of this service-orienteldhtionship between
the customer and the service provider is the tatiznce of the first system to
the second system as well as the reliance on diffenedia of communication
between them. As it is, a failure of these elemeviteh are outside the sphere
of the customer’s actions sees its inability to @ttthe issue. In return, it is the
contract previously established with the supplidratt characterizes the
consequences of these failures in terms of comgiendar the customer.

Within the framework ofCloud gamingthese failures, which are out of the
customer’s control, are, for example, an errohmgame’s platform or even loss
of Internet connectivity linked to the ISP. Thugnsce-oriented paradigm
pushes the owner’s responsibility to the maximumngared to the component-
based paradigm and therefore decreases the custaasponsibility. Indeed, the
CBSE, theoff-the-shelfapproach, implies that the supplier is solely oasjible
for the development of its component, the assatigteality of service required
and its maintenance.

In the SOSE approach, the supplier is also resptngir the deployment,
execution and management of their service. Theicereonsumer is solely
responsible for the communication and for compkaotthe usage constraints.

1.4.1.1.3. Multitenant Nature

An application is called “multitenant” [JAC 05] iif offers functionalities to
many users simultaneously. It therefore managesmus instances at the same
time and allow for hosting multiple isolated instes in order to guarantee
accurate results to its various customers.

Similarly, an instance being run is dedicated tonage multiple parallel
connections. In our example of video games, CloadhiBgplatforms support a
large number of players in parallel. For each ekthplayers, they must maintain
a particular context in order to retain their retpe information. This
information is of two kinds:

* Contractgroups the set of data related to the contractdmtvthe customer
and the supplier that govern the use of the sefiiceur example: monthly
subscription account number, quality, etc.).

* Runtimegroups the set of data required to run the apgpdicahroughout
the use of the service (in our example: experiegaieed, games played,

Object, component, agent and service paradign® 1

persistent universes, etc., in order to reprodueetty the status where the
player stopped in his game).

This multitenant principle is not necessary forodject/component/agent. In
fact, although it may belong to multiple compositp at runtime, different
instances of the component are created and eachcrased under the
responsibility of a customer in the context of atipalar composition.

To conclude, from a usage and owner’s responsilplitint of view, object-
oriented, component-based and agent-oriented ppnadare close.

1.4.1.2 Difference relating to coupling

Coupling is a concept that we identify as one & Key breaking points
between OOSE/CBSE and AOSE/SOSE. This concept ssgseall possible
dependencies between conceptual and software esntiReducing coupling
guarantees a number of intuitive benefits in tewhsgsolating errors, easing
additions and removal of entities reused, reconéitjon, etc.

In fact, OOSE and CBSE have a broad mandate intyfhee of applications
they wish to implement, whereas the SOSE and AOSEhamisms are built to
support the development of applications that rurhighly volatile, cooperative
and heterogeneous environments.

This difference is consecutively illustrated byithespective connection for,
on the one hand, the management of heterogenaeitiels,on the other hand, of
the automation of other mechanisms.

1.4.1.2.1. Management of heterogeneities

The aim of the service-oriented paradigm is thesjpeahdence it has with
implementation technologies. A service must be sgibée and usable without
any assumption on its implementation, on the p@knsers or on how to use
this service. This problem is well known in CBSE munot as critical as in the
SOSE issue. As it is, there are a large numbepofponent models [CRN 11].
To develop a new system, the designer must cho@setigular model and use
only the components complying with this model as tiollaboration between
different models is very difficult [CRN 06]. Thuslthough the CBSE has proven
its effectiveness in software reuse and maintalitgbit does not specifically
target certain difficulties encountered by develspm relation to changes in
platforms, protocols, devices, Internet, etc. [B&RE.

20 Software architecture

For its part, the SOSE advocates a single homogsnservice-oriented
model [ERI 08], to be standardized and used bytalencapsulate all types of
resources and hide their heterogeneous naturegddewvelopment.

1.4.1.2.2. Comparison to on automating mechanisms

Automation contributes to the definition of the IDigself, and therefore the
vast majority of research seeks to automate theichanisms such as service
publication, discovery, selection, composition,.efs it is the decoupling
between requirements and services used, discovenntime, the definition of
collaboration and finally dynamic establishment cimmunications were the
main goals set from the start in the developmerthefservice paradigm. This
principle of automation is pushed to its maximum tmg concept of self-
adaptation [NIT 08], which seeks to coordinate ra#éichanisms related to the
service-oriented paradigm to allow for reactive proactive contextual
adaptations.

Although the process automation is a key elememeséarch in CBSE and
represents many of its current challenges, it is @o integral part of the
conceptual origin of the CBSE or the definition aafcomponent model [CRN
11].

Thus, with respect to the heterogeneity and automatSOSE aims to
produce loose coupling at all levels, from develeptrio execution.

1.4.1.3. Difference in granularity

In the field of software engineering, granularityrresponds to a relative
measurement of the size of architectural elemérasrhake up the applications.
The software engineering community then spoke a@frg®-grained systems or
fine-grained systems [BEI 07], which are respetyivassociated by their
composition by assembly of software blocks of higlanularity and low
granularity. These notions of high and low grantyaare determined by the
importance of the encapsulated resources by acthitd elements. This
importance is relative to the underlying complexitiythe implementation and
usage of these resources.

Understanding granularity became prominent withdéeelopment of CBSE
[BEI 07, MOH 08]. As it is, the granularity reprege one of the first distinctive
points between an object and a component. The blgsponds to the lack of
clarity, understanding and thus the handling otesys which are decomposed
into too many objects or too large objects. Thufemrdnt component models
offer different granularities [BEI 07], and theseposed varieties for the size of

Object, component, agent and service paradignts 2

the building blocks reinforce the importance of ickoin the decoupling of the
application in order to maximize the quality of flesulting architecture.

The concept of granularity is intuitively undersiable, which counteracts
with the vagueness of its formalization where tlgaicdelineation between high
granularity and low granularity remains to be defin However, the current
understanding is sufficient to establish a hieratoitween SOSE, CBSE, AOSE
and OOSE, where service-oriented paradigms ardlysigscribed more coarse-
grained than component-based paradigms, in the sawmedhat the component-
based paradigms are typically seen as coarse-grairrelation to agent-oriented
paradigms and fine-grained in relation to objed¢mted paradigms.

We justify this comparison of granularity betweernet service-
oriented/component-based/agent-oriented/objectaie with two commonly
encountered realities:

* Technical reality: where component-based modelsoften used to build
new SOSE services from scratch or from legacy systeCBSE related
technologies can intervene at all phases for SOQStEem realization from
the services implementation to their adaptationsrifer to integrate them
taking care of the heterogeneities (as differenitinne environments,
languages, protocols, interfaces, etc.) or eveorder to provide the level
of abstraction necessary for the composition ofegxisting services. This
relationship between service-oriented paradigms aathponent-based
paradigms is the same between component-based/agented and
object-oriented paradigms, where the object-orébnggaradigms are
commonly used to implement components or agents.

Conceptual reality: linked to the very nature of gervice and processes
associated with it. The previous sections haveligigted a set of inherent
properties of the SOSE such as loose couplingréggaeity management,
automation degree, the distribution of respongibdi or even the
multitenant. Although these concepts are alreadgent in the CBSE, the
thrust of SOSE is to push them to their maximum. @rsure these
developments, complex processes must be executads, The coarse-
grained only nature of the service-oriented pamadigmes from a need for
balance or dilemma between the cost of supporhefservice processes,
the size of the encapsulated resources and thearele of their placement
on the network.

The technical reality is offset against the compi+iEased approaches such
as [AND 08, OAS 09] which, during the implementatiof the SOSE
applications consider the service of the interfat@a component as a service
within SOSE term. In this respect, the SOSE seriscgeen as a subset of the

22 Software architecture

interface. However, the ratio of the implementatadrone by the other remains
the same.

1.4.1.4. Difference of cooperation and problem-sagjv

The concept of cooperation and problem-solving éercept stemming from
the field of distributed artificial intelligence @) in coordination with the
multi-agent approach. The main problem in the stuafy cooperation in
distributed problem-solving is to understand howerdg wishing to
accommodate each other, may interact with eachr tdhferm an effective team.
Two forms of cooperation are defined, the sharihgsks and sharing of results,
which correspond generally to discerned phaselsdarstudy of problem-solving.
In both of these types of cooperation, R. Davis &xdSmith are particularly
interested in its control and communication. In dixsion of tasks, the control
is directed by the goals and the agents are rapesbdy the tasks they are
committed to perform; the problem lies in the digttion of the tasks. In sharing
results, the control is data-driven, the agents refgesented by knowledge
resources, and the problem lies in the communigatiothe results [BOU 92,
SMI 81].

A cooperative strategy is necessary to perform stasKectively whose
problem-solving involves several agents. The pupafsa strategy is to ensure
overall consistency from local decisions and enathle effective use of
communication. Two classes of cooperative strategiie defined: organizational
strategies and the distribution of information &gées. The first class deals with
the decomposition of a global task into subtasks assigning these subtasks to
the agents. They aim to identify the most appraerégent to decide which plan
to follow. For instance, an organizational strateiposes an agent, which has
the largest selection of possible actions. Strategin the distribution of
information indicate how and when agents must comoate. For example, one
of these strategies specifies that we should npeatedly send the same
information to an agent [BOU 92, CAM 83].

Cooperation refers to a judgment value on the divadivity of a set of
agents. The judgment of cooperation is influencgddwveral indicators such as
the number and the persistence of conflicts as a<he synchronization of
actions of different agents. The mechanisms whibtwaus to weigh these
indicators are called cooperation processes.

Edmund H. Durfee has identified the cooperationdaidrs. These indicators
were empirically determined from the observatiortebperative situations. The
following list of indicators is not exhaustive [DUS9]:

Object, component, agent and service paradign® 2

* Coordination of actions, this indicator relates ttee adjustment of the
direction of the agents' actions over time (synolza@tion) and in space.

* Parallelization, this indicator is based on theritistion of tasks and their
concurrent execution.

* The sharing of resources, this indicator relatethéouse of resources and
skills such as information, results and equipment.

* Robustness, this indicator relates to the abilftthe system to compensate
for the failure of an agent.

* Non-redundancy, this indicator reflects the lackerfundant activities, for
instance, selective communication.

* The non-persistence of conflict, this indicatoreets the lack of blocking
situations; it is based on the ability of agentptevent conflicts or to solve
them by default.

The cooperation and problem-solving concept is @bse the OOSE, the
CBSE and the SOSE because their basic entitieseantive and not proactive
nature as it is in the case of the agents.

1.4.1.5.Summary of conceptual differences

We have shown our conceptual framework for comparisetween the four
paradigms. The first purpose is to complete theticaimg lack not covered by
the literature about the clear specification of thaceptual differences between
object-oriented, component-based, agent-orientedd agervice-oriented
paradigms.

We therefore chose a top-down approach, which fxusstly, on the
conceptual aspects of the different paradigms bealeveloping qualities, which
are derived from them.

24 Software architecture

Figure 1.5. Summary of conceptual differences between the fnadgms
(UOR: Usage and Owner’s Responsibility; RC: Relatm@oupling;
G: Granularity; CRP: Cooperation and Problem-Solving;
L: Low; M: Medium; H: High)

1.4.2. Quantitative dimension

Structural elements and mechanisms, which chaiaetthre four paradigms,
can be classified into two categories: productsfaodesses.

1.4.2.1. Product and process

A product is a software or conceptual entity tlsathie result of an action or
process. A process is an action or series of attbat is used to create or

Object, component, agent and service paradigns 2

modify a product and thusbtain a product as a result. Products are divided into
two subcategories:

* Simple architectural elements: the basic builditogks of a paradigm;

* Composite architectural elements: complex prodiet#t from existing
architectural elements. Their structure clearly nidfes the reused
architectural elements and their relationships.

Each sub-category is further divided into two g@agcording to two levels
of abstraction: theesign-timeandruntime

L Process
Description levels —
@ CD In the same description level

Design —— =1 ; I ol ==
" timeg I Basic . Composnel Between description levels
°© I type_| : , type | —
E) A Sasaraaaas Between abstraction levels
c '
N N N B
S N
@ :
@ E
o '
2 |)

Runtime Basic m@ Composite]

instance ' instance

Figure 1.6. Abstraction and description levels:
distribution of products and processes

The process category focuses on the principle o$agi.e. how to reuse
software entities in order to build new compositee@m Conventionally, a
component can be a single or composite architdotlgenent. These notions of
component and composite define two levels of dpor. Thus, processes are
grouped according to the levels of abstractiondestription:

* In the same level of description: this categoryugoprocesses that target
and generate products of the same level of degmmigFigure 1.6: white
arrows). This category is divided into both desiigme and runtime.

* Between levels of description: this category groppscesses that target
products of two different levels of descriptiondéie 1.6: dashed arrows).

* Between levels of abstraction: This category regmtssthe processes that
ensure the transformation of products from thegtetime to runtime (see
Figure 1.6: black arrows).

26 Software architecture

Figure 1.6 shows the distribution of products amdcpsses on a single
representation. A composite "A" is made up of acdetomponents such as "B"
which is defined as a simple architectural elem®&uth products have their
performances at design-timand runtime. The various arrows represent
processes that are being studied. The white areseghe processes related to
the same level of description and abstraction. @ashed arrows are the
processes that make the link between the leveldeséription and have their
representation at the design-time and the runtifie black arrows are the
processes that make the link between the levedbstfaction and thus ensure the
transformation from the design-time to runtime.

1.4.2.2.Comparison between paradigms

1.4.2.2.1. Product
Single Architectural Elements

Single architectural elements of the object-oridnp@aradigms are thelass at
design-time and the instance (object) at runtintee $ame distinction is made
for the CBSE between component type and connegpa products [AMI 09,
GAR 97] and their component and connector instances

Connectors [CRN 11] are mediators in connectiongéen components, i.e.
they are used as intermediaries between theseitcemétcomponents. They
have a two-fold function: (i) enabling indirect cpasitions between components
and (ii) the introduction of additional functionsrough the glue code, which
they encapsulate.

In AOSE, we describe an entity that is capableatihg in an environment
that can communicate directly with other agentadsingle agent"; it has its
own resources and skills and provides servicessterivironment. The concept
of the single agent is used interchangeably in dhsign-time and runtime
phases.

In SOSE, the boundary between levels of abstragsianuch less clear and
most existing work refers to a service as a runtengty [STO 05, THE 08].
However, a notion of abstract service exists ins@mproaches [CAV 09]. This
concept is used to distinguish between the req@irésnsought by the architect
to define its application and services actuallyilatée in the system to meet
these requirements. However, an exact clarificabeveen abstract service and
concrete service remains to be defined. We alsdiamethe concept of service
description, which is a major product of the SOSEA$ 08]. As it is, each
runtime representation of a service is associatél its service description,
which is the target of many processes involvedhinexploitation of resources.

Object, component, agent and service paradigns 2

Composite Architectural Elements

The four paradigms share the notion of composite dbject-oriented paradigm
is based on the concepts of composite class angasita object. The CBSE
relies on concepts of configuration and composibenmonent types at the
design-time. For their runtime, it relies on thewnfiguration and composite
component instances.

In the context of this study we consider a comgoaent as a multi-agent
system which is composed of a set of single agemesenting active entities
of the system with a set of relations that unite #iyents between themselves.
However, neither the agents nor the MAS are explicomposable in contrast
to the Organization-based agent systems whicharpasitional.

The notion of service composition and, ultimatedf,composite service of
the SOSE is mainly at the runtime. Indeed, moghefexisting works consider
the composite service as the execution of a collgh@® scheme between
services by a composition engine. However, somecoagpes [GEE 08, ZEN
03] introduce instantiation concepts of a collatiwea scheme from abstract
templates that describe them. We choose to con#iidesimilar representation
with OO types of collaborative schemes such asgdeine entities, and
instances of collaborative schemes such as runemiéies. In addition, a
collaborative scheme is classically associated with patterns of coordination
of services, such as choreography and orchestrgR@A 08], which have
technologies that support their representation @sigh-timeand runtime. We
define a composite service encapsulating a conposif services in a similar
manner in the composite service type and compssitéce instance.

1.4.2.2.2. Process

In order to elaborate the main differences betwzsmadigms, we describe a
selection of the most relevant and widely acceptedesses by the community.

At the same level of description:

Design-time The object-oriented paradigm is primarily basedlee process
of association and inheritance. The CBSE is basethi® horizontal composition
[BAR 06, CRN 11] between architectural elements té same level of
description. This horizontal composition correspontb the process of
establishing connections between components. Wealsanmention versioning,
selective inheritance and refinement processethdrsame level of description,
the SOSE processes focus mainly on handling caoitdive schemes between

28 Software architecture

services. We mention the process of choreographghwh one of the principle
supports for reuse and does express direct comations between services;

Runtime Communication processes between architecturahesies are the
major concern in this category. OO and CBSE aredasainly on call function
processes, while the SOSE inevitably includes amtit processes. Typically,
services have to be discovered and selected dyalyn{process discovery and
selection of services). Then these services coatglitheir actions through a
process of choreography that defines the successimvocations of service. In
addition, a front-end process of service publicatis required to make the
service available to potential customers (see Eigut).

Between levels of description:

Design-time The OO is based on the composition process tauoe
composite components. The CBSE is based on vedmalposition that links
components and composites. Vertical compositionhferarchical) [BAR 06,
CRN 11] consists of a sub-component encapsulateddomposite component.
This composition is anti-reflexive to avoid cyclég, that the same component
cannot be found at several levels of the hieraréhyassumes the consistent
combinations of behavior for the composite with ligdavior of its constituents.
Moreover, the constituents are hidden for the regueof the composite
customers. The SOSE is based on the orchestratimess that models vertical
communications between the composite service armbitstituent services;

Runtime The communication processes between constit@et£omposites
are the essence of this category. OO and CBSE asedbon different call
processes. In CBSE, these calls are sometimesredféo as the process of
delegation. In SOSE, the coordination of the preces services invocations
from the composite towards its constituents isecairchestration. Similarly, the
process of discovery and dynamic selection of sesviare required to identify
the constituents of the composite service.

Between levels of abstraction:

The OO and the CBSE are based on the instantiptmeess to link types to
their instances. The AOSE is based on the cona#pgeneric role (part of the
design-timg and specific role to a domain (part of thetimg. The SOSE is
based on the concepts of abstract service and efenservice respectively as
elements ofdesign-timeand runtime [HOC 11]. However, the transition from
one to the other is based on the discovery proaassselection of services
process. The transition from one type of collabieeascheme to an instance of
collaborative scheme is based on instantiation. fféxesition from one type of

Object, component, agent and service paradign® 2

composite service to an instance of composite eendorresponds to the
combination of discovery and selection of its cdoeht services and the
instantiation of collaborative schemes, which guttr behavior.

Table 1.1 shows a summary of the comparative shatween paradigms from

the product and process point of view.

Product Object Component Agent Service
Component
D‘?S'Q”‘ Class type, Agent Abstract service
. time Connector
Single tvpe
Elemen yp -
. Concrete service,
Runtime Object Component, | - Specific ro_Ie Description
Connector to a domain of service
Type of Type of
Design- | Composite configuration, SMA/ collaborative
: Type o scheme,
time class . Organization .
of composite Type of composite
) component service
IComposite Configuration Instance of
Flement Composite ’ Composite collaborative
Runtime Object Composite role scheme,
Instance of
component .)
composite service
Process Object Component Agent Service
Horizontal
Composition,
De_S|gn- Assoqlatlon, . Selepnve Multiple roles Choreography
Inthe time Inheritance inheritance,
same level Versioning,
Refinement
of Choreograph
abstraction reograpny,
_ _ call Dlscover_y
Runtime | Call method Call function transmission and sele_ctlon,
Invocation,
Publication
Deggn- Composition Vertlcgl' Composition Orchestration
time Composition of roles
Between -
Orchestration,
levels of Call function; Call Invocation
description | Runtime | Call method L - . '
Delegation transmission Discovery
and selection
Between Specific r(_)Ie D|scover_y
L - to a domain + and selection,
levels of Instantiation Instantiation - o
abstraction Individual Instantiation
knowledge of scheme

Table 1.1. Product and process: comparison between paradigms

30 Software architecture

1.4.3. Qualitative dimension

Existing research studies related to software tualefine a number of
criteria such as performance, safety, robustndssgibility, development, etc.
[BIA 07, KIT 96]. Each of these studies has outlirtbeir own organization of
these criteria. The definition of these qualitytenia and the way to apprehend
them are being shaped based on the perspectiveeofatget user via these
measurement frameworks. Indeed, understanding l#yqoan vary between the
stakeholders involved; whether they are architedesigners, developers or
others. In addition, the scope of the system dirénfluences the importance of
these criteria. We therefore try to cover all oégl variations by offering the
ability for users to define their own vision of tlggialities that interest them
most. In the first instance, we identify the seffaxtors of these paradigms that
influence software quality. Then we compare OOSBSE, SOSE and AOSE
approaches following these factors. Secondly, te defines the quality criteria
that they want to measure by combining the previessilts.

Using the various previous analyzes and by plattiegfour object-oriented,
component-based, agent-oriented and service-odeptgadigms within the
conceptual framework, it emerges that they sharddhowing quality factors in
common:

* Reusability support and easiness of a product or a procdatedeto a
software development paradigm to be reused indh@esway or through a
number of changes.

* Composability:support and ease of a software development pamattg
safely combine architectural elements to constroetv systems or
composite architectural elements.

* Dynamicity: support and ease of a paradigm to develop apiglitathat
can adapt their behavior dynamically, automaticallyl autonomously to
meet changing requirements and changing contextswels as the
possibilities of errors.

These three factors represent the qualitative edahat led to the definition of
the object-oriented, component-based, servicedmitnand agent-oriented
development paradigms. Figure 1.7 illustrates ahialysis and provides a high-
level view of their primary points of interest anrhces the chronological
evolution of the concerns for the software engimgecommunity.

Reusability is the oldest of the three concerng &érlier developers quickly
became aware of code repetition in an applicatiwh lzave therefore sought to
define mechanisms to limit repetition. The objedeoted paradigm focuses on

Object, component, agent and service paradignis 3

this concern and its development is one of themuts of this research. The
object-oriented concept facilitates the conservidiod the transfer of experience
gained across different systems. It further deepeunse, which, at the outset it
was intended to reuse the code as it is througlntreritance process that helps
to evolve saved data and behavior in order to repetial requirements. Thus,
the object-oriented paradigm provides high reugtgbithich paved the way for
applications to more complex applications and ttouthe identification of new
limits in terms of granularity, of software architere, communication
abstraction, etc. These limits have therefore ledat shift of concern to
composability.

Thus, the software engineering community has d@esland introduced the
CBSE to overcome this new challenge. The famoutesea of Szyperski [SZY
02] "Components are for composition” illustrategstltase perfectly. By
definition, a component must have a design spedifiestablished to support
the potential composition to allow interoperabilit€¢omponent models and
associated technologies (CORB¥mponent ModeCCM [OMG 12], COM +
[MIC 13], Fractal [BRU 06], etc.) exist to providspecific development and
deployment frameworks needed to support composiiiaiterns. Such models
impose component formats in terms of constructibrrades and deployment
rules [CRN 11]. Thus, the CBSE strengthens therobof composability and
clearly formalizes the associated processes. Ultityathis formalization raises
the solid foundation needed for opportunities dbeation. Part of the software
community has therefore been redirected to the miicity concern as the
predominant aspect. Thus, SOSE has been develogadhe experience gained
of objects and components; however, at the outdegused on how to improve
the dynamicity. The SOSE seeks to provide an ap@t@presponse to highly
volatile environments and thus overcome the coimsgramposed by the general
purpose of the CBSE.

Figure 1.7 summarizes these displacement-relaiadecns. Research from
the OOSE focuses mainly on reuse and discusses someosability and
dynamicity. The CBSE focuses on composability, \whétrengthens reusability
and also seeks to automate its processes. The $@BEes mainly on the
dynamicity of existing processes to ensure reusk ammposition. As for the
AOSE, it gave more importance to the dynamicity heitt significant
improvement of composability factors and reusapilfactors; however, it
focuses on cooperation and coordination of agensslve a problem.

The direct comparison following these three qudaiigtors between object-
oriented, component-based, agent-oriented and ceeoviented paradigms
(which is the more reusable, more modular, and rdgreamic) is very difficult
to establish because it depends on the perspexftihe one who compares. The

32 Software architecture

results vary depending on the contexts in whiclshmsitioned and he positions
each of the four paradigms namely; object-orientminponent-based, agent-
oriented and service-oriented software entities. é&@ample, from the point of
view of a low-level developer, an object will besem to reuse than a service,
whereas conversely, from a business perspectivenyahigh level service will
be more easily reusable.

Thus, our conceptual comparison framework atterptake this reality into
account by providing these users with all the infation required to express
their own analyzes and qualitative comparison. &€hggalitative factors are
based on a classification of the material providgdhe paradigms, which we
grouped by their qualitative criteria.

Dynamicity Dynamicity

Component

>
fComposabiIity

/ Composability

P

Reusabiliy

Service

>

Composability ___,.-"Composability

Reusabiliy

Figure 1.7. Evolution of overall concerns between paradigmsLw, M: Medium, H:
High)

Object, component, agent and service paradign® 3

1.4.3.1.Qualitative criteria for comparing development pdigms

We have identified eight main qualitative critetlzat are common to all
software development paradigms. These criteria hasignificant impact on the
overall quality of the system development processliypced as a result:

Explicit architecture:capacity of a paradigm to define clear architedtur
views of an application, i.e. to provide the metmilentify and explain the
functions associated with the products that makéhepapplication as well
as the processes between these products.

Communication abstractioncapacity of a paradigm to abstract the
communication between functions of applications ated learn and
understand these communications from one tenarthesp can be easily
handled.

Expressive poweris the expressive potency of a paradigm in terifns o
capacity and optionality of creation. It is basedtbe number of concepts
and processes provided to specify, develop, hamdfdement and execute
applications;

Loosely coupling:is the potential reduction between product-process
dependencies.

Evolution capacitythis is the potential of a paradigm to evolve itsdqucts
and processes. It is based on analysis and judgratrg considered on the
different processes that support these evolutiodsizeir targets.

Owner’s responsibility: this corresponds to the assignment of
responsibilities between suppliers and consumehgsd responsibilities
focus on the reused software entities in termsesfetbpment, quality of
service, maintenance, deployment, execution and agenent. This
distribution reflects the degree of freedom grantecconsumers by the
supplier.

Concurrency: in resource-intensive applications that have a deiing
need of computational power, concurrency is thetrposmising solution.
Further, concurrency is also highlighted by theergcprogress on the
hardware side such as the introductiomaiiti-core processors angraphic
cards with parallel processing capabilities. Mainly, tlehallenges of
concurrency are preserving consistency, prevengigainst deadlock as
well as prevention of race condition dependant bieha

Distribution: different classes of distributed applicationsséxiccording to
where the data, the users or computation are lulistdl. As an example of
these classes, we have tlient/serverapplications (CS) as well ager-to-
peer (P2P) computing applications. The challenges atrithution are

34 Software architecture

manifold. Among the major concerns of distributiove have future

extensions and interoperability, which are often mpared by

heterogeneous infrastructure component. In additlmndifferent scenarios
of most applications are nowadays increasingly dhoawvith a flexible set

of interacting components.

1.4.3.2.Comparison between paradigms

Table 1.2 shows the values assigned to the eigteriar to assess the
differences between the OOSE, the CBSE, the SO8Eh@nAOSE. The results
are given following three levels of importance thignedium, low), which are
awarded for each criterion and express our anabfsiee four paradigms. This
comparison establishes a relative assessment betivegaradigms (relative to
each other).

Paradigms
Quality criteria Object |Component | Service | Agent
1| Explicit architecture L M M L
2 | Communication abstraction L M H M
3 | Expressive power H M L M
4 | Loose coupling L M M H
5 | Evolution capacity L H M M
6 | Owner’s responsibility L M H M
7 | Concurrency L M H H
8 | Distribution L M H H

Table 1.2. Comparison of development paradigms (L: Low, M: Meditl: High)

Software architecture is the cornerstone criterion the CBSE and the
SOSE, unlike the OOSE and the AOSE, which havetalan this concept in
their initial definition. To fill this gap, in UML2.0, OMG introduced the concept
of component and connector to describe a softweshitacture based on the
object-oriented mechanisms.

In communication abstractions, the SOSE provideshist communication
abstraction based on the encapsulation providetidgervices in addition to the
isolation of communications in a collaborative gsuoee In CBSE,
communications are located within different conoextthat share the overall
behavior. The fine granularity of the object-orghtparadigms worsens this
drawback due to the explosive number of collaboratibetween objects, which
is mainly due to the multiple method calls betweébjects.

Object, component, agent and service paradigns 3

Loose coupling is a key issue for the differentaoiigms. Object-oriented
systems involve a set of strongly coupled clasdatevhe CBSE, the SOSE and
the AOSE target a reduction of this coupling to m#kooser.

Regarding the expressive power, the OOSE handlésrge number of
concepts such as inheritance, levels of abstractiemels of description,
granularity, reflection, etc. These concepts arpressed through different
programming languages such as Java and C++. Th& @Bl&rgely inspired by
the object-oriented paradigm, but it has not yetched the same level of
maturity. Finally, the SOSE has the lowest expresgpower, because it
combines the same shortcomings, plus inaccuracidsvels of abstraction, as
the component-based paradigm.

The evolution capacity is directly related to thetion of explicit
architecture. Software architecture can be depicteda graph of nodes and
edges. Evolution processes can be grouped accotdirtbeir target: nodes,
edges, or the graph. Typically, the OOSE does aw@t hhis notion of explicit
architecture. The OOSE evolution process focusdg on nodes and edges.
Instead, the CBSE and the SOSE handle the con€expticit architecture and
therefore offer evolution process on three targdtsvever, the most important
maturity of the CBSE and the explicit managementhef levels of abstraction
have enabled the community to go further and t@@se evolution processes at
the meta-architecture and meta-meta-architecéwedd.

Owner’s responsibility: The SOSE pushes the owne&ponsibility to the
maximum where the service provider is responsibtedtie development, quality
of service, maintenance, deployment, execution amghagement. On the
contrary, the CBSE shares responsibilities at thplayment level where the
customer becomes responsible for instantiating twmponent in its
implementation, execution and management. In OQI&Eclass is typically in
white box implementation where the customer is feemanipulate it at will but
they have full responsibility of the class.

Concurrency and distribution: AOSE is built arounide aspects of
concurrency and distribution. These two criteri@ehappeared in a number of
important research studies and have led to thegamee of distributed artificial
intelligence (DAI). With this new approach, the was done by a group of
agents, which act in the same environment and saraktimes resolve conflicts
caused by this distribution of expertise.

The analytical method used can only establish ativel order between the
paradigms compared, where one paradigm is moretizethan the other on a
particular criterion. However, in the current framoek, the results obtained are

36 Software architecture

limited to relative hierarchies. We believe thatstltomparison framework
between the four paradigms is a step in their tatale assessment process.

Service

Agent

Figure 1.8. Comparison of criteria with respect to the four @digms (EA: Explicit
Architecture; CA: Communication Abstraction; ExBpessive Power; LC: Loose Coupling;
EvC: Evolution Capacity; OR: Owner's Responsitillly Concurrency; D: Distribution)

Figure 1.8 shows the use of the eight criteriagseas differences between
OOSE, CBSE, SOSE and AOSE. The results are givethriee levels of
importance (low, medium, high), which are awarded éach criterion and
express our analysis of the current status of iheet paradigms. Also note that
this figure (1.8) represents a graphic interpretatf data displayed in Table 1.2.

Object, component, agent and service paradigns 3

1.4.3.3.Perspective of qualitative analysis

The conceptual framework that we propose is buoilimake way for the
definition of the user's own assessment of qualégperspectives. The chosen
approach is that the user expresses their knowleygpecifying the perspective
through which they want to study the four paradigheing compared. A
particular perspective corresponds to the usertsidoon a specific factor. It
defines a formula for evaluating this factor by dmning the results received
from the previous comparison, i.e. following theepst of our eight quality
criteria.

A qualitative perspective is the combination of:

* The chosen factor to compare the paradigms.
* The expression of the user’s expertise in relatothis factor.

Thus, we define a standard formula, which modessabhility to customize:

Quality = Q €1, oy, 03, 04, s, g, 07, Og)

The ¢; coefficients express the importance of the eiglaityucriteria, which
is given by the user with the target factor. ThefuQction defines how the
coefficients are combined along with the measurésneinproperties.

A perspective is therefore a qualitative windowdsh®n the eight criteria
and their results. As an illustration, we assessfolur paradigms following our
personal viewpoint on the three selected qualityctois: reusability,
composability and dynamicity that represent theecooncerns of OOSE,
CBSE, SOSE and AOSE paradigms.

1.4.3.3.1. Example of qualitative perspectives: sadility, composability,
dynamicity

In Figure 1.9 we divide the quality criteria basmdthe impact they have on
the different quality factors.

38 Software architecture

Dynamicity

a>b>c>d
Concurrency _|
Distributior

Loose coupling
Evolution capacity + b
Communicatiorabstractiol

Owner’sresponsibilit, |
Explicit architectur

Expressive power

T
o

Explicit architectur

Loose couplin
Communication abstraction
Evolutioncapacity

Concurreny

Distributior
Owner’s responsibility

Expressive power

d N
d a =
Concurrency Composability

Distribution

a
>

Owner’sresponsibilit

b

Expressive power Communication abstraction
Evolution @pacity Explicit architecture
a Loose coupling

Reusability

Figure 1.9. Perspectives expressions of reusability, compasahihd dynamicity

Reusability is mainly influenced by the expressppawer and evolution
capacity with an "a" coefficient, followed by theromunication abstraction, the
explicit architecture and low coupling with a "bbefficient, the owner’s
responsibility with a "c" coefficient and finallyhé concurrency and the
distribution with a "d" coefficient, where (a, b, d) represent coefficients of
importance of each criterion with respect to a fdéctor, with (a> b> c> d).
From there, we define a set of formulas that coebithis distribution and the
results of the previous classification of the fquaradigms. To calculate a
numerical measure, we associate a weight to eaehdé Figure 1.8 of 1, 2 and
3 for low, medium and high levels respectively. Egample, for the reusability
of the factor (r) of each paradigm, we obtain tlssegsment of the quality
function Q:

Qr, object= Do+ bay+ 3anz+ bay+ ans+ Cag+ daz+ dog

Q, componert 2lny + 3oy + 2803+ 2bay+ 3ans+ 2006+ 2007+ 2dag

Object, component, agent and service paradign® 3

Qr’ agent— ba1+ 2&12"‘ 2&13"‘ 3M4+ 2&15"‘ 2Cae+ 3&17"‘ 2&18
Qr, service= 2y + 3boy + ags+ 2bas+ 2aus+ 3cne+ 3dar+ 3dog

Composability is generally influenced by the comination abstraction and
evolution capacity with an "a" coefficient, thery, the explicit architecture and
loose coupling with a "b" coefficient, the owner&sponsibility and expressive
power with a "c" coefficient and finally the conceincy and distribution with a
"d" coefficient where (a> b> c> d). From there, define a set of formulas that
combines this distribution and the results of thevipus classification of the
four paradigms. To calculate a numerical measuecasgociate a weight to each
level of Figure 1.8 of 1, 2 and 3 for low, mediumdahigh levels respectively.
For example, for the composability factor (cp) atl paradigm we obtain the
assessment of the quality functiog,Q

Qcp, object= oy + @0+ 3caz+ bas+ aas+ cog+ daz+ dag

Qcp, componert 2bog + 3@ + 2Cag+ 2bas+ 3ans+ 2006+ 2dar + 2dag
Qcp, agent= bog + 2a0,+ 2caz+ 3boy+ 2a05+ 2006+ 3007+ 2dag
Qcp, senvice= 2lmy + 3au, + Cag+ 2bas+ 2aus+ 3cas+ 3daz+ 3dog

Dynamicity is mainly influenced by concurrency atfidtribution with an "a"
coefficient, then the communication abstraction awnolution capacity and loose
coupling with a "b" coefficient, the explicit art¢bcture and owner’'s
responsibility with a "c" coefficient, and finalthe expressive power with a "d"
coefficient where (a> b> c> d). From there, we wefa set of formulas that
combines this distribution and the results of thevipus classification of the
four paradigms. To calculate a numerical measugsassociate a point at each
level of Figure 1.8 with 1, 2 and 3 for low, mediamd high levels respectively.
For example, for the dynamicity factor (d) of egmhradigm, we obtain the
assessment of the quality functiog Q

Qu, object = boy + @0+ 3coz+ any+ aas+ bog+ ao7+ ang
Qu, componert 2bn1 + 3an, + 2Caz+ 2a0,+ 3aus+ 2bog+ 2807+ 2a0g
Qd, agent — ba1+ 2&2"‘ 2&13"‘ 3&14"‘ 2&15"‘ 2bae+ 3&17"‘2&18
Qd, senvice = 2lmy+ 3auy+ Cazt+ 2an,+ 2a0s+ 3bog+ 3av;+ 3avg
In summary, the conceptual framework provides a pamative picture
between object-oriented, component-based, ageemted and service-oriented
paradigms. These categories identify the importaottware development

paradigm characteristics and provide a common egipk framework to assess
the OOSE, the CBSE, the AOSE and the SOSE in arfaimer. This assessment

40 Software architecture

is quantitative and qualitative in nature and affan overall understanding of
their similarities and differences. However, thaufitative assessment described
is only relative, i.e. it establishes a relatiopskif superiority between the
paradigms but does measure neither their valuesthr differences. The
example of perspectives shown above resulting fthis relative assessment
provides therefore relative results.

Figure 1.10 summarizes the functioning of our cpheal framework for
comparison. The gquantitative aspect representpribeesses and products of the
corresponding paradigms that are the pillars of ¢ight properties. These
properties characterize the quality criteria and/eseas vocabulary to users to
express their own perspectives on the qualitietsahiacern them.

Qualitative . . Qualitative
aspects Hight Properties Characlerize perspectives
4

Support

Quantitative Products and
aspects Processes

Figure 1.10. Overall functioning of the conceptual framework

1.5. Approachesfor integrating development paradigms

Several alternative approaches for integratinggignas were categorized by
the entities they aim to combine (object, agenmponent, and service). These
approaches are based either on conceptual propysadsnbinations of technical
and conceptual proposals (emiddlewaresee Table 1.3).

The active object-oriented model is an example abjeiented and agent-
oriented combination which represents an object tbaceptually runs on its
own thread and provides an asynchronous execufionethod invocations. It
can thus be considered as a higher-level conceptdiocurrency of the object
oriented systems [SUT 05]. Further, language eitasgo support concurrency
and distribution were proposed. Eiffel [MEY 93]an influential proposal in this
direction.

Object, component, agent and service paradignis 4

Also in the area of agent-oriented and componesédbaparadigms,
combinations proposals can be found. CompAA [AN], B SAA [DRA 09]
and Agent Components [KRU 03] try to extend thenggeiented paradigm with
the concepts and mechanisms of the component-ipasadigms. In CompAA, a
component-based model is extended with adaptatdmspfor services. These
adaptation points allow for service selection attime according to the
specifications of the functional and non-functiopabperties in the model. This
flexibility is achieved by the addition of an agdat each component, which is
responsible for selecting the service at runtinfee 0SAA architecture consists
of a base layer with standard component system,aalayer of agents, which
controls the base layer to perform reconfiguratiassan example of control. In
Agent Components, the agents are slightly rendesedomponents connected
together using ports with predefined communicagiootocols.

Approaches that combine the agent-oriented paradigth SOA are
primarily motivated by the need for dynamic servimemposition where agents
are used to dynamically search and select serduogag the execution. These
approaches deal mainly with aspects linked to themastic description and
research of services, but do not aim at a paradigagration byitself. As
examples, we have the agent-oriented invocatioseofices using the WSFG
component (Web Service Integration Gateway) of IA®E platform, or the
code generation approach led by the PIM4Agents tidtld 08] and workflow
approaches such as WADE or JBees [EHR 05]. Ageetaiseful in achieving
flexible and adaptable workflows using dynamic ceosifion techniques based
on negotiation and planning mechanisms.

We also find other approaches that combine thetagemponent and object
paradigms. ProActive [BAU 09] and AmbientTalk [VAN7] are two recent
approaches in this category, which provide stroogceptual foundations and
ready-to-use framework.

An approach in the context of software engineeting emerged under the
name ofService Component Architectuf8CA) [MAR 09]. It was proposed by
several major suppliers of the software industngluding IBM, Oracle and
TIBCO. The SCA combines service-oriented architext(SOA) with the
component-based paradigms to provide SCA componkatscommunicate via
services.

Braubach and Pokahr [BRA 12] propose the concepictife components
during the development of a distributed systemgubjThe active component-

6. http://jade.tilab.com/.

42 Software architecture

based paradigm is proposed in the framework ofpgamaach to reconcile ideas
as well unifying the contributions of the objectemted, component-based,
service-oriented and agent-oriented concepts usingommon conceptual
perspective. The proposed paradigm is supportezsherside by a programming
model, which allows the development of systems wittive components using
XML and Java, and on the other hand byn&ldlewareinfrastructure, which
directs a transparent distribution of the compomeahd provides useful
development tools. The active components are aradpgf the SCA by adding
the agent-oriented element in the SCA. The genéeal is to transform passive
components of the SCA to providers and service woess, who act
independently to better reflect real-world sceratlmat are made up of different
active stakeholders.

Aboud [ABO 12] proposes a metamodel combination reagh called
CASOM (Component Agent Service Oriented Model)wifgy the specification
of applications composed from a set of interoperafdents, components and
services in coherent scheme.

Combined Paradigms

Approaches and L anguages Object | Component | Agent | Service

Programming languages, Java, C#, ef x

Application Server (JBOSS, Glassfish X
Component Specification by ADL

Web servicand X
Business Process Specifications

FIPA Agent specifications X
Agent-oriented platforms (JADE,
Cougaar, etc.)

Eiffel, active objects X X

WSIG, WADE, PIM4Agents, JBeeg X X
etc.

Fractal, Java EE, OSGI, .Net X X

Service Component Architecture X X
(Passive SCA)

CompAA, SoSAA, AgentComponents X X

Active Components [BRA 12], X X X

CASOM [ABO 12]

Table 1.3. Approaches for integrating paradigms

Object, component, agent and service paradign® 4

1.6. Summary and discussion

We recall that our purpose through this chaptéo {grovide a cross-sectional
view of the four paradigms namely OOSE, CBSE, S@S&EAOSE.

The CBSE and the SOSE have two different pointsviefv on the
relationship between the customer and the suppliBe SOSE comes from
certain functional requirements of specific apglma domains that have specific
needs in terms of agility and adaptability, whie {CBSE is defined for a larger
purpose. The Service-oriented and component-odepsgadigms have a very
high granularity. However, a service-oriented payadis generally of higher
granularity than a component-based paradigm.

An ad hoc distinction between the agent-oriented and oljeented
paradigms is that:

* The agent-oriented paradigms are more independsm the object-
oriented paradigms.

* The agent-oriented paradigms have a flexible, nemgproactive and social
behavior.

* The agent-oriented paradigms have at least oneattimteadbut may have
more.

Agent-oriented paradigms can be considered as eactibjects that
encapsulate both their state and behavior, and ttey communicate by
exchanging messages. The agent-oriented paradigpnesent a mechanism of
natural abstraction to decompose and organize @mgystems just as the
object-oriented did before them. An agent-orienpettadigm is a system of
rational decision-making: we need an agent to He @b have a reactive and
proactive behavior and to be able to perform therimeaving of these two types
of behavior, if necessary.

Object-oriented paradigms are generally passivendture: they need to
receive a message before they become active. Ajthoabject-oriented
paradigms encapsulate their state and behavioy tle not encapsulate
behavioral activation. Thus, any object-oriented call any another object’s
public method. Once the method is called, the spoading actions are
performed.

While this approach is sufficient for small apptioas in cooperative and
well-controlled environments, it is not suitabler féarge, concurrent or
competitive environments because the entire buadénvocation behavior will
be charged to the customer. However, it will bedref the invocation action
becomes a process of mutual consent.

44 Software architecture

According to these relevant observations, under dbetrol of a single
organization, software systems must move from amérenment towards an
open environment in which the system contains asgas that compete with
each other.

The object-oriented paradigm fails to provide aacadhte set of concepts and
mechanisms for modeling complex systems. Individobjects have a fine-
grained behavioral granularity and the invocatioethod is a mechanism too
primitive to describe the different types of intgtfans that may occur.

An approach that is closely linked to that of thgeat-oriented approach is
based on software components. The most importatdrfaehind the component
systems is the ultimate goal of software reuseeiisly, a component-based
model enables developers to create and combinewvaeft as units of
deployment.

According to the description introduced for the pmment-based approach,
we can say that it is #op-down approach to the object-oriented approach;
therefore, it inherits all the properties of thejemroriented paradigms. The
similarities between the object-oriented and agei@nted paradigms are also
present between the agent-oriented and componeettgaradigms.

However, the components are not autonomous inghsesof the definition
of the independence of agents; in addition, jushasbject-oriented paradigms,
the component-based paradigms do not have dird@insoof responsiveness,
pro-activity and social behavior. The service-otéghapproach is considered an
evolution of the component-based approach enrichgdthe principles of
dynamicity, discovery and composition. To sketche tlhasic ideas of
development we propose a characterization treesimayn in Figure 1.11.

Object, component, agent and service paradigns 4

Reusability

Encapsulatio

Autonomy +
Encapsulation of
action choice

Composability

Dynamicity
Components

Services

Figure 1.11. Development of paradigms

1.7. Conclusion

In this chapter, we have shown a conceptual comparframework between
the four software development paradigms (obje@rted, component-based,
agent-oriented and service-oriented). The main abivge of this chapter is to
provide a clear specification of the conceptualfedénces between these
paradigms and their contribution to the descriptibsoftware architectures.

Our analysis is carried out throughag-downapproach, which focuses first
on the conceptual aspects of the different parasligmefore developing the
qualities that result from them. Decisions and cési on this comparison
framework have a common goal to make it as genascpossible and
independent of any description of software architecparadigm. Therefore, we
endeavor to increase its potential for reusabditg ability to be applied to other
areas of software engineering.

The proposed framework is based on two dimensignsntitative and
qualitative, where product and process representtiantitative dimension. This
dimension introduces the concepts defined by eaghdigm required in the
description of a software architecture. Meanwhilee qualitative dimension
defines eight properties, which groups the elem#rasinfluence the quality of
software architecture.

Finally, the qualitative dimension allows userset@ress their own quality
factors using the eight selected quality critefiais capacity to customize is

46 Software architecture

provided by the notion of qualitative perspectikattreflects the expertise of the
user. In fact, a perspective allows him to commateicheir understanding of a
target quality through the way that they exploil @embine these properties.

1.8. Bibliography

[ABO 12] Asoup N. A., Services-oriented integration of component anginizational
multi-agents models, Thése de doctorat, Univemi Pau et des pays de I’Adour,
2012.

[AMI 09] AMIRAT A., OussALAH M., « First-class connectors to support systematic
construction of hierarchical software architectweJournal of object technology
vol. 8, n° 7, p. 107-130, 2009.

[AND 08] ANDRE P., ARDOUREG., ATTIOGBEC., « Composing components with shared
services in the KmeliaModel $oftware compositigmp. 125-140, 2008.

[ANI 08] ANIORTEP.,LACOUTUREJ., « CompAA : A self-adaptable component model for
open systems »,5th IEEE International conference and workshopeagineering of
computer based systems (ECBS’08) 19-25, 2008.

[BAR 06] BarBIER F., « An enhanced composition model for conversational
enterprise JavaBeans Proceedings of the 9th international conference on
component-based software engineering (CBSE06344-351, 2006.

[BAU 09] BAUDE F., CAROMEL D., DAaLMASSO C., DANELUTTO M., GETOV V., HENRIO L.,
Prez C., « Gem: a grid extension to fractal for autonamdistributed components »,
Annals of Telecommunicatignsl. 64, p. 5-24, 2009.

[BEI 07] BEISIEGEL M., Booz D., EbWARDS M., HERNESSE., KINDER S., « Software
components: coarse-grained versus fine-grainé@v,Developer Works2007.

[BIAO7] Bianco P., KOTERMANSKI R., MERSON P., Evaluating a services-oriented
architecture, Technical reporSoftware engineering institute, Carnegie Mellon
University, 2007.

[BOU 92] BouroN M.T., Structures de communication et d'organisatipour la
coopération dans un univers multi-agents, Thésdat#orat de I'université Paris 6,
1992.

[BRA 12] BrRAUBACH L., PokAHR A., « Developing distributed systems with Active
Components and JadexSgalable computing: practice and experieneal. 13, n°2,
2012.

[BRE 07] BrRelvoLD H.P., LARSSON M., « Component-based and services-oriented
software engineering: Key concepts and principlesPsoceedings of the 33rd
EUROMICRO conference on software engineering and rembe applicationsp. 13-

20, 2007.

Object, component, agent and service paradigns 4

[BRU 06] BRUNETONE., COUPAYET., LECLERC@M., QUEMA V., STEFANIJ.B., « The
FRACTAL component model and its support in JavaSsftware practice and
experiencevol. 36, n° 11-12, p. 1257-1284, 2006.

[CAM 83] CAMMARATA S., MCARTHUR D., STEEB R., « Strategies of cooperation in
distributed problem-solving »nternational joint conference on artificial int@lence
(IJCAI), p.767-770, 1983.

[CAS 03] ALonsO G., CasaTl F., KuNo H., MACHIRAJU V., Web services: concepts,
architectures and applicationS$pringer, Berlin, 2003.

[CAV 09] CAvALLARO L., NITTOE.D., PRADELLAM., « An automatic approach to enable
replacement of conversational serviceBECSOC/ServiceWay@. 159-174, 2009.

[COX 91] Cox B.J., NovosiLski A.J., Object-oriented programming: An evolutionary
approach 2" edition, Addison Wesley, Boston, 1991.

[CRN 06] rnkovic I., CHAUDRON M., LARSSON S., « Component-based development
process and component lifecyclelsternational conference on software engineering
advancesp. 44, 2006.

[CRN 11] QRNKOVIC |., CHAUDRON M., SENTILLES S.,VULGARAKIS A., « A classification
framework for software component models Jgurnal : IEEE Transactions on
software engineering/ol. 37, n° 5, p. 593- 615, 2011.

[DRA 09] DRAGONE M., LiLLIS D., CoLLIER R., O'HARE G., « SOSAA: A framework for
integrating components & agents Symposium on applied computilgCM Press,
20009.

[DUR 89] Durrekt E.H., Coordination of distributed problem solvetsluwer Academic,
Boston,1989.

[DUS 05] DUSTDAR S., SCHREINER W., « A survey on web services composition »,
International journal of Web and grid serviceml. 1, n° 1, p. 1-30, 2005.

[EHR O5]EHRLER L., FLEURKE M., PURVIS M., TONY B., SAvARIMUTHU R., « Agent-based
workflow management systems 3ournal of information systems and e-business
managementvol. 4, p. 5-23, 2005.

[ERI 08] ERricksonN J., SIAU K., « Web services, services-oriented computingd an
services-oriented architecture: separating hypen freality »,Journal of database
management (JDMYol. 19, n° 3, p. 42-54, 2008.

[FER 03] FERBER J., QUTKNECHTO., MICHELF., « From agents to organizations: An
organizational view of multi-agents systemsAgent-oriented software engineering
(AOSE), p. 214-230, 2003.

[GAR 97] GarLAN D., MONROE R.T., WiLE D., « Acme: an architecture description
interchange language sRroceedings of the 1997 conference of the centre fo
advanced studies on collaborative research (CASCON[27j), 1997.

[GAS 92] Gasser L., BrioT J. P., « Object-based concurrent programming and
distributed artificial intelligence », in N. Avowi L. Gasser (dir.)Distributed
artificial intelligence: Theory and praxig. 81-107, Kluwer, Norwell, 1992.

48 Software architecture

[GEE 08] GeEBELENK., MICHIELSS., JOOSENW., « Dynamic reconfiguration using
template based web service compositionProceedings of the 3rd workshop on
middleware for service oriented computing (MW4SO{;'P849-54, 2008.

[GOL 83] GoLbBERG A., RoBsoN D., Smalltalk-80: The language and its
implementationAddison-Wesley, Boston, 1983.

[HEI 01] HEINEMAN G.T., CounciLL W.T., Component-based software engineering:
Putting the pieces togethekddision Wesley professional, Boston, 2001.

[HEW 73] HewitT C., BisHOPP.,STEIGERR., « A universal modular actor formalism for
artificial intelligence »,In the 3rd International joint conference on axiél
intelligence (IJCAI'73)1973.

[HEW 77] HewitT C., « Viewing control structures as patterns of passnessages,
Journal of artificial intelligencevol. 8, n°3, p. 323-364, 1977.

[HEW 11] Hewitt C., « Actor model of computation: Scalable robudbrimation
systems »Proceedings of inconsistency robustneg 1.

[HOC 11] Hock-KooN A., Contribution a la compréhension et a la mod#étsade la
composition et du couplage faible de services timarchitectures orientées services,
Thése de doctorat, Université de Nantes, 2011.

[HYA 96] HyacINTH S. N., « Software agents: An overview Kknowledge engineering
review vol. 11, n°3, p. 205-244, 1996.

[JAC 05] hcos D., « Enterprise software as service@ueue - enterprise distributed
computingvol. 3, n° 6, p. 36-42, 2005.

[JEN 01] JENNINGS N.R., « An agent-based approach for building comeftware
systems »Communications of the AGMol. 44, n° 4, p. 35-41, 2001.

[KAY 93] KAY A. C., « The early history of Smalltalk ACM SIGPLAN Noticewol. 28,
n° 3, p. 69-95, 1993.

[KIT 96] KITcCHENHAM B., PFLEEGERS.L., «Software quality: the elusive targetEEE
Software special issues section, n° 1, p. 12-21, 1996.

[KRU 03] KruTiSCH R., MEIER P., WIRSING M., « The agent component approach,
combining agents, and componentslst German conference on multi-agent system
technologies (MATES)p. 1-12, Springer, Berlin, 2003.

[MAR 09] MarRINO J., RowLEY M., Understanding SCA (Service component
architecture) 1™ edition, Addison Wesley professional, Boston, 2009.

[MCI 68] MclLroy D., « Mass-produced software components », in Bikton, P.
Naur, B. Randell (dir.)Software engineering concepts and technigye88-98,
NATO Science Committee, 1968.

[MEY 93] MEYERB., « Systematic concurrent object-oriented progrargm »,
Communication ACM36, p. 56-80, 1993.

[MIC 13] MicrosoFT COM (Component Object Model) Technology, www.micro-
soft.com/com/default. msp013.

Object, component, agent and service paradign® 4

[MOH 08] MoHAMED A., ZULKERNINE M., « At what level of granularity should we be
componentizing for software reliability? >3, 1th IEEE High assurance systems
engineering symposium (HASE'08) 273-282, 2008.

[NIT 08] NITTOE.D., GHEZZIC., METZGERA., PAPAZOGLOUM., KLAUS P., « A journey to
highly dynamic, self-adaptive service-based apptica », Automated software
engineeringvol. 15, n°® 3-4, p. 313-341, 2008.

[OAS 08] OAS, Reference architecture for service oriented arahiiee, version 1.0
2008, http://docs.oasis-open.org/wsbpel/2.0/0S/ekstp.0-OS . .html

[OAS 09] OAS, Service component architecture assembly model fagn, version
1.1, 2009, http://docs.oasis-opensa.org

[OMG 12] OMG, Common object request broker architee{ CORBA), formal/2012-11-
16, www.omg.org/spec/CORBA/.

[OUS 99] QussaLAH M. et al, Génie objetLavoisier, Paris, 1999.

[OUS 05] QussAaLaH M. et al, Ingénierie des composants : Concepts, techniques et
outils, Vuibert, Paris, 2005.

[PAP 07] RrpazoGLOU M.P.,HEUVEL W.J., « Service-oriented architectures: Approaches,
technologies and research issuethe VLDB Journalvol. 16, p. 389-415, 2007.

[PES00] PEscHANSKIF., MEURISSET., BRIOT J.P., « Les composants logiciels : Evolution
technologique ou nouveau paradigme?Aetes de la conférence objets, composants,
modeles (OCM’'0Q)Nantes, France, p. 53-65, 2000.

[SMI 81] sviTH R.G., Davis R., « Frameworks for cooperation in distributedbpem-
solving »,IEEE Transactions on systemman and cyberneticyvol. 11, n° 1, p. 61-
70, 1981.

[SOM 04] SSMMERVILLE 1., Software engineering? edition, Addison Wesley, Harlow,
2004.

[SUT 05] SUTTER H., LARUS J., « Software and the concurrency revolution ACM
Queuevol. 3, n° 7, p. 54-62, 2005.

[STO 05] SoiaNovic Z., DAHANAYAKE A., Services-oriented Software System
Engineering: Challenges and Practicé&| Publishing, Hershey, PA, 2005.

[SzY 02] Svperski C., Component software: Beyend object-oriented programgmi
Addison-Wesley Professional, Harlow, 2002.

[TAY 09] TAvLor R.N., Mebpvibovic N., DasHory E., Software architecture:
Foundations, theory, and practic@/iley-Blackwell, Chichester, 2009.

[THE 08] TheSeCSETeangervice centric system engineeririglJ Integrated Project,
2008, www.secse-project.eu/.

[VAN 07]VAN CuTsem T., MOSTINCKX S., Boix E.G., DEDECKER J., DE MEUTER W.,
« AmbientTalk: Object-oriented event-driven progmaimg in mobile ad hoc
networks »Chilean computer science socigty 3-12, 2007.

50 Software architecture

[VIN 97] ViNoskiI S., « CORBA: Integrating diverse applications within dimited
heterogeneous environmentdBEE Communications magazinel. 14, 1997.

[WEI 91] WEISERM., The computer for the 21st centup; 94-104, Scientific american,
New York, 1991.

[WOO 09] WoOLDRIDGE M., An introduction to multi-agent systen®® edition, John
Wiley & Sons, New York, 2009.

[ZEN 03] ZENGL., BENATALLAH B., DuMASM., KALAGNANAM J., SHENGQ.Z., « Quality
driven web services composition Bxoceedings of the 12th international conference
on World Wide WeBNWW'03) p. 411-421, 2003.

[ZIN 08] ZINNIKus 1., HAHN C., FiscHERK., « A model-driven, agent-based approach for
the integration of services into a collaborativesihass process Rroceeding of
AAMAS, IFAAMAS’08p. 241-248, 2008.

