
Chapter 1

Object-oriented, component-based, agent-
oriented and service-oriented paradigms in

software architectures

Recent years have seen object-oriented, component-based, agent-oriented and
service-oriented paradigms coexist and develop in parallel. This has led to the
emergence of similar or specialist concepts that are often juxtaposed with
misinterpretations of vocabulary. These misinterpretations are exacerbated by the
existence of hybrid approaches that borrow elements from the four paradigms.
Moreover, modern applications that combine these paradigms emphasize this
ambient intertwining and the overall understanding becomes more difficult.

The purpose of this chapter is to clarify the boundaries between the
paradigms by proposing a conceptual comparative framework based on two
quantitative and qualitative approaches. The principle is to concentrate on
differentiation of the conceptual aspects directly related to the paradigms, as
opposed to an approach that compares the different technologies for
implementing these paradigms. The aim is to offer architects a better
understanding of the implications and consequences of choosing one or the other
of these paradigms.

1.1. Introduction

According to Wikipedia “A programming paradigm is a fundamental style of
computer programming that deals with how solutions to problems must be

Chapter written by Abdelkrim AMIRAT, Anthony HOCK-KOON and Mourad Chabane
OUSSALAH.

2 Software architecture

formulated in a programming language”. This chapter focuses on four key
paradigms in the field of software development - namely: Object-oriented
software engineering (OOSE), Component-based software engineering(CBSE),
Agent-oriented software engineering (AOSE) and Service-oriented software
engineering(SOSE).These paradigms will be studied and analyzed by way of
construction of real-world distributed applications.

A software development paradigm specifies how an information technology

solution to a problem must be formulated in accordance with clearly-defined
concepts and mechanisms. It determines the order in which to deal with the
problem and provides the means to develop this order, to follow its principles
and to implement it in practical terms. Thus, a software development paradigm
has its own particular style of developing IT solutions, in terms of analysis,
design and development.

By nature, a paradigm is independent of function-specific issues; however, it
can encourage certain types of application in order to support specific qualities.
However, these qualities are usually associated with specific repercussions.
When a paradigm is well suited to an implementation issue, it reduces the need
for costly integration process and isolated solution tests by using a common
conceptual framework.

In this chapter, we propose a conceptual framework based on a top-down
approach. The principle of a top-down approach is to concentrate on the
differentiation of conceptual aspects directly related to the paradigms, as
opposed to a bottom-up approach that examines their technological differences.
Our comparison-based conceptual framework relies on two approaches: a
quantitative approach based on the concepts of product and process, and a
qualitative approach based on quality criteria that organize the characteristics of
each paradigm. These approaches will assist in clarifying the conceptual and
technical misinterpretations of these different paradigms.

1.2. History

Figure 1.1, drawn from [SOM 04], shows the evolution of software
engineering. We can see the progression from the lines of code in structured
programming to current trends, or approaches such as service-oriented and
model-based paradigms1.

1. In this chapter, we will deliberately ignore the model paradigm as proposed by the
OMG and focus on the object-oriented, component-based, agent oriented and services
oriented paradigms, which makes for a sufficiently extensive chapter.

Object, component, agent and service paradigms 3

Figure 1.1. Evolution of development paradigms

1.2.1. Object-oriented Paradigm

Object-oriented Paradigm (OO) is a design-oriented and programming-
oriented paradigm that emerged in the early 1960s and continued by Alan Kay’s
works in the 1970s [KAY 93]. It consists of the definition and interaction of
software modules called objects: an object represents a concept, an idea or any
entity in the physical world [OUS 99]. It has an internal structure and behavior,
and it is able to communicate with other objects. The aim of OOP, therefore, is
to represent these objects and their relationships: communication between
objects via their interrelations facilitates the implementation of the intended
functionalities.

The Simula-67 language lays the first foundations; those of object-oriented
languages: class, polymorphism, inheritance, etc. [COX 91]. However, it was
actually with Smalltalk 71,followed by Smalltalk 80 (Dan Ingalls) [GOL 83],
inspired largely by Simula-67 and Lisp, that the principles of object-oriented
programming, building on the work of Alan Kay’s, would be established: object
encapsulation, messages, typing and polymorphism (via sub-classification); other
principles such as inheritance, are either derived from these or fall within
implementation.

The 1980s witnessed the proliferation of object-oriented languages: Objective
C (early 1980s), C++ (C with class structure) in 1983, Eiffel in 1984, Common
Lisp Object System in 1987, etc. The 1990s saw the golden age of enhancement
of object-oriented programming in different sectors of software development.
Currently the object-oriented approach is considered as the reference model for
other approaches.

Then, the object-oriented has been completed with the Remote Method
Invocation (RMI) mechanism with the aim of introducing the concept of

Agent oriented,
Component

based

Structured
programming

Object
oriented

Distributed
objects

Service
oriented

Model
oriented

1980 1990 1995 2000 2010 2020 1970

4 Software architecture

distribution in the programming model. Remote Method Invocation is mainly
based on the principle of ORB (Object Request Broker) [GAS 92, VIN 97].

1.2.2. Component-based Paradigm

The component-based paradigm was proposed by McIlroy [MCI 68] where
he implemented an infrastructure on Unix using pipeline components and filters.
Component-based development appeared in the early 1990s, in response to the
failure of the object-oriented approach to meet the requirements of reuse and
composition. The component-based approach extends the object-oriented
paradigm by stressing the importance of reuse, the separation of problems and
promotion of composition [PAP 07].

Reading and understanding an existing code is always a tedious task for
developers; however, it is highly advantageous to be able to reuse an existing
code in the form of a component. In fact, a developer only needs to know a
component includes, and not how it was implemented. In addition, in the
component-based approach, a clear distinction is made between the development
of a component and that of a system. In the first case, we focus on the
arrangement of the component and in the second case; we focus on the assembly
and composition of compatible components.

1.2.3. Agent-oriented Paradigm

The agent-oriented approach appeared in the 1970s under the leadership of
distributed artificial intelligence (DAI) where Hewitt [HEW 73, HEW 11]
proposed the concept of actors i.e. competing interactive autonomous entities. In
the mid-1990s, MAS collective models (multi-agent systems) appeared. In these
models, an agent is treated as self-contained entity with certain capabilities that
enable it to carry out its services or use the services of another agent through
interaction. Organization-based of multi-agent systems (OMAS) are among the
new models [FER 03].

Agents are distinguished by their social ability to cooperate, coordinate and
negotiate with each other [HYA 96]. Autonomy and high-level interactions are
the main points of difference between agent-based and object-oriented,
component-based and services-based approaches. Agents can be classified into
two categories:

• Reactive agents wait for an event to happen before responding to changes
in their environment.

• Proactive agents take decisions on their own initiative in their environment.

Object, component, agent and service paradigms 5

Software agents have their own control thread, encapsulating not only their
code and state, but their invocation too. These agents may also have rules and
individual goals, appearing as active objects with invocation initiative. In other
words, when and how an agent can act is determined by the agent itself.

In the agent model, communication is usually asynchronous. This means that
there is no predefined flow of control from one agent to another. An agent can
initiate an internal or external autonomous behavior at any time, and not only
when it receives a message [HEW 77].

Agents can respond not only to invocations of specific methods, but also to
observable events in the environment. Proactive agents can actually question the
environment for events and other messages to determine what measures to take.

1.2.4. Services-oriented Paradigm

The service-oriented paradigm is a relatively new software development,
dating from the early 2000s, and well established in the field. SOSE (Service
oriented software engineering) is directly inspired by real-world organization
methods in trade between multinationals, and is based on the classic notion of
service.

The origin of service-oriented software engineering comes from requests
related to systems that need to be able to withstand increasingly volatile and
heterogeneous environments such as the Internet and Web services [CAS 03],
ambient intelligence environments [WEI 91] or business applications run on
corporate networks such as ERP2 systems [PAP 07]. The productivity of a
supplier and their responsiveness to changing needs are major issues that SOSE
attempts to provide solutions to in software development.

The service is a software entity that represents a specific function. It is also
an autonomous building block that does not depend on any context or external
service. It is divided into operations that contain specific actions that the service
can provide. A parallel can be drawn between operations and services on the one
hand, and methods and classes in the OOSE on the other. SOSE also has a
concept of composite service built by combining service descriptions. The
implementation of service compositing takes place during the runtime phase.

A key element of SOSE is the pattern of interaction of services, also known
as services-oriented architecture (SOA3) that enables a range of services to

2. ERP: Enterprise Resource Planning.
3. SOA: Service Oriented Architecture.

6 Software architecture

communicate with each other. SOA is a means for design and an understanding
of a software system to provide services to applications or other services via the
publication of tracked interfaces.

A service is an action performed (a function rendered) by a provider for a
customer; however, the interaction between the supplier and customer is
established via a mediator (which may be a bus) responsible for bringing
between participants together. Services are usually implemented as coarse-
grained software entities. They encompass and propose system entities. These
systems can also be defined as the application layers. The concept of a service
represents a processing entity that respects the following characteristics:

• Coarse grained. Operations offered by a service encapsulate several
functions and operate on a wide range of data, unlike with the component-
based concept.

• Interface. A service can implement several interfaces, and several services
can implement a common interface.

• Architecture. Each service is described by an architecture that enables us to
understand what it does, in which conditions, at what price and with which
non-functional properties are involved.

• Discoverable. Before a service can be called (bind, invoke), it has to be
found (Look-up).

• Single instance. Unlike components that are instantiated on demand and can
have multiple instances at the same time, it is a single service. It
corresponds to the singleton design pattern.

• Loosely coupled. Services are connected to customers and other services
via standards. These standards ensure decoupling i.e. the reduction of
dependencies. These standards are XML documents as in the case of Web
services. However, several communication techniques manage the
heterogeneity of services implementations so that they can still
communicate. In the context of SOSE, coupling encompasses all concepts
of dynamic discovery of services and automatic changing/replacement of
these services.

SOSE considers an application as a set of services interacting in accordance
with their roles and regardless of their location, in order to withstand
heterogeneous and loosely coupled software systems. The Web service is an
example of a service where we use three basic elements which are: WSDL (an
XML meta-language) as a description language, UDDI registry to enable
localization and a transfer protocol such as HTTP or SOAP.

Service-Oriented Architecture (SOA) is essentially a collection of services
that interact and communicate with each other. This communication merely

Object, component, agent and service paradigms 7

consists of a data return or an activity (coordination of several services).
Services-oriented architecture is an interaction model application that
implements services. This term originated between 2000 and 2001.

There is a hierarchy of services corresponding to the different layers of the
technical architecture of a solution. Services-oriented architecture is a very
effective solution to the problems faced by companies in terms of reusability,
interoperability and reduction of coupling between systems that implement their
information systems.

SOA became mainstream with the emergence of standards such as Web
services in e-commerce, B2B (Business to Business) or B2C (Business to
Consumer) based on platforms like J2EE or .NET.

1.3. Software Architecture

For many years, software architecture was described in terms of boxes and
lines. It was not until the early 1990s that software developers became aware of
the crucial role that software architecture plays in the successful development,
maintenance and evolution of their software system. A good software
architecture design can lead to a product that meets customer needs and can
easily be updated, whereas an improper architecture can have disastrous
consequences that can lead to the withdrawal of a project [TAY 09].

1.3.1. Object-oriented software architecture

Object-oriented modeling creates diagrams, text specifications and
programming source code based on object-oriented concepts to describe a
software system. Object-oriented modeling languages are methods and
techniques to analyze and represent software systems graphically. There are
several methods of modeling objects such as DOSS (Designing Object-Oriented
Software) by Wirfs-Brock, MOT (Object-Modeling Technique) by Rumbaugh,
OOSE (Object-Oriented Software Engineering) by Jacobson, or OOD (Object-
Oriented Analysis and Design) by Booch. However, nowadays, most of these
methods are integrated into UML (Unified Modeling Language) by Booch et al.,
and therefore, are no longer practiced by analysts. Object-oriented software
architecture is used to describe a system as a collection of classes (entities to be
abstracted and the encapsulation of functionalities) that can have objects
(instances) and communicate between themselves by sending messages [OUS
99, OUS 05].

8 Software architecture

1.3.1.1. Advantages and disadvantages of object-oriented software architectures

Object-oriented software architectures offer several advantages:

• They are based on well-defined methodologies to develop systems on the
basis of a set of requirements.

• They often provide direct mapping from specification to implementation.

• They are familiar with a large community of engineers and software
developers.

• They are supported by commercial tools.

However, they suffer from a number of shortcomings. The most significant
are:

• Significant limitations in terms of granularity and scale-up.

• Low level of object reuse partly due to the tight coupling of objects. In fact,
they can communicate without using their interface.

• The structure of object-oriented applications has poor legibility (a set of
files).

• Most object-oriented mechanisms are manually managed (instance creation,
management of dependencies between classes, explicit method calls, etc.).

• There are few or no tools to deploy executables on different sites.

• They only specify the services provided by object implementation but do
not, in any way, define the requirements of these objects.

• They provide little or no direct support to characterize and analyze non-
functional properties.

• They provide a limited number of primitive interconnection mechanisms
(method invocation), making it difficult to account for complex
interconnections.

• They offer few solutions to facilitate the adaptation and assembly of
objects.

• They find it difficult to take account of object-oriented developments
(adding, deleting, modifying, changing communication methods, etc.).

• They are not suitable for building coordination patterns and complex
communication.

• They have limited support for hierarchical descriptions.

• They make it difficult to define the overall systems architecture prior to the
complete construction of the components.

Object, component, agent and service paradigms 9

1.3.2. Component-based software architecture

Component-based software architectures describe systems as a set of
components (processing or storage units) that communicate with each other via
connectors (interaction units). Their goals are to reduce development costs,
improve the reuse of models, share common concepts between system users and
finally build reusable off-the-shelf component-based heterogeneous systems. To
support the development of such architectures, it is necessary to have formal
notations and tools of for analyzing architectural specifications. ADL
(Architecture Description Languages) stands as a good solution for this purpose
[OUS 05, TAY 09].

1.3.2.1. Advantages and disadvantages of component-based software
architectures

In component-based software architectures:

• Interfaces are generally first-class entities explicitly described by ports and
roles.

• Interactions are separate from the calculations and are explicitly defined in
most ADLs.

• Non-functional properties are taken into account.

• Hierarchical representations are semantically richer than simple inheritance
relationships.

• ADLs are enhanced by architectural styles defining a design vocabulary
framed by a set of constraints on this vocabulary.

• The overall description of system architecture can be specified before
completing the construction of its components.

• The level of granularity of a component or connector is higher than that of
an object or of an association.

However, component-based software architecture:

• Provide only high-level models, without explaining how these models can
be connected to the source code. Such connections are important to
preserve the integrity of the design.

• Remain an ad hoc concept known by the academic community. Currently,
the industrial world is becoming increasingly interested in this discipline of
software engineering.

10 Software architecture

• Despite the ISO/IEC/IEEE 42010:2011 standard4, there is no real
consensus because different notations and approaches for describing
software architectures have been proposed.

1.3.3. Agent-oriented software architecture

Organization-based multi-agent systems (OMAS) are effective systems,
which meet the challenges of designing large and complex Multi-Agent Systems
(MAS). Multi-Agent Systems is a paradigm for understanding and building
distributed systems, where it is assumed that the processing elements - i.e.,
agents, which are autonomous entities able to communicate - have a partial
knowledge of what surrounds them and have their own particular behavior, as
well as a capacity to execute themselves independently (see Figure 1.2). An
agent acting on behalf of a third party (another agent, a user) that it represents
without necessarily being connected to it, reacts and interacts with other agents.
The social capacity for cooperation, coordination and negotiation between agents
is one of their main characteristics [WOO 09].

Figure 1.2. Canonical view of organizational multi-agent system [JEN 01]

4. www.iso-architecture.org/ieee-1471/.

Agent

Interaction

Organizational
relationship

Environment

Visible and
influential area

Object, component, agent and service paradigms 11

To summarize, a framework for specifying agents must be able to capture at

least the following aspects of a multi-agent system:

• Beliefs that the agents have.

• Interactions that agents have with their environment.

• The objectives that officials are trying to achieve.

• Actions that agents perform and the impact of these actions.

1.3.3.1. Advantages and disadvantages of agent-oriented software architecture

In agent-oriented programming the concept of software architecture is
replaced by a further knowledge-driven concept called organization. An
organization is made up of a set of roles and relationships between these roles.
Figure 1.3 shows that a role can be played by one or more agents and an agent
could also potentially play more than one role simultaneously. A role is an
abstraction of an agent; it allows for a more generic description of the
architecture as well as the interaction between agents [WOO 09].

Figure 1.3. Coupling between agents

Generally:

• Agents-oriented architectures support competition and distribution.
• Agent-oriented architectures integrate business and technical perspectives.
• Relationships between agents are therefore very dynamic and partly

managed independently or via organizations.
• Multi-agent systems take the coupling and collaboration concept between

entities further (coordination, decomposition, negotiation, etc.).
• MASs use coupling mechanisms dynamically and indirectly (intermediary

agent, directory agent, etc.).

Agent1 Role

Agent2

Agent3

Agent4

Explicit reference
to a role

A
g

en
ts

 p
la

in
g

 th
e

 s
am

e
 r

o
le

Implicit references to
agents

12 Software architecture

• MASs propose semantic coupling guided by knowledge and by a social
organization of work.

By contrast, in agent-oriented software architecture:

• The agent-oriented paradigm does not support non-functional properties.

• The usually have only one input, thus they are not compositional.
• Agent-oriented architectures are generally difficult to verify.

1.3.4. Services oriented architecture (SOA)

SOSE is based on the concept of service oriented architecture (SOA [OAS
08, PAP 07]) which defines a conceptual framework to organize the construction
of application based on services. SOA introduces the concepts of service
providers and consumers.

• A service provider is the actor responsible for the development,
deployment, execution and maintenance of the service when it is required.
In addition, when the service expires the provider takes care of the
termination of the service activities.

• A service consumer is the actor who uses services according to their needs.

In the beginning, suppliers and consumers are independent - i.e., the supplier
during the implementation of its services, has no prior knowledge about the
future consumers, nor how they might reuse that service. Thus, the SOA is based
on a third actor called the service broker [OAS 08].

The service broker is the actor associated with a service registry that enables
the relationship between consumers and suppliers who are unaware of each
other. Suppliers publish their services in these registries, which are then used by
consumers to identify those that match their needs.

Suppliers and consumers commit to a contract of use, in terms of respect for
the service interface for the consumer and compliance with functional and non-
functional properties promised to the supplier. Figure 1.4 summarizes the
organization of a services-oriented architecture.

Object, component, agent and service paradigms 13

Figure 1.4.Services-oriented architecture organization

1.3.4.1. Advantages and disadvantages of services-oriented software
architecture

• SOA provides dynamicity via the mechanism of discovery and dynamic
service selection.

• The service-oriented paradigm supports distribution as well as the
management of non-functional properties.

• The service-oriented paradigm does not support the aspect of competition
(in the sense of having parallel processing capabilities).

• SOA offers high internal consistency (using a pivot exchange format,
usually XML).

• SOA provides loose external coupling (using an interoperable interface
layer, usually a Web service, and through the discovery and dynamic
selection of services).

• SOA can develop a complex product by integrating different products from
different suppliers, regardless of the platform and technology used. Thus, it
helps to manage the complexity involved.

However, service-oriented software architectures:

• Are not suitable for applications with GUI functionalities. These
applications could become more complex if they use SOA architectures that
require a large volume of data exchange.

Service
broker

Service
provider

Service
consumer

Customer Service

Service
registry

Description
of service

Find

Inform

Publish

Interaction

14 Software architecture

• Also in the case of standalone application or for short term usage, the SOA
will become a burden.

• Performance problem of SOA, complex mechanism, too many exchanged
messages, complexity overkill for a number of software packages, not
suitable for systems with very strong time constraints, etc.

1.4. The two dimensions of the conceptual framework for comparison:
quantitative and qualitative

The aim of our conceptual framework for comparison is to fill the gaps
around the clear identification of differences between OOSE, CBSE, AOSE and
SOSE. The goal is to provide a better understanding to users by a comparative
summary of the four paradigms in order to assist them in deciding on the use of
one or the other of these paradigms. This aspiration involves a grasp of their
respective concepts, in their definition and then in the analysis of impacts on
quality.

This comparison between object, component, agent and services serves the
same effort and the same purpose as the comparison between objects and
components [OUS 05, SZY 02]. The common goal is the analysis and
understanding of the differences in a unique comprehensible framework.

Thus, the approach we develop follows a top-down pattern, which as opposed
to previous bottom-up works, focuses initially on the conceptual levels, directly
on the paradigms before seeking to derive the qualitative implications. This high
level focus allows the definition of an overall framework capable of handling
four paradigms. In this definition of the comparative framework, we seek both:

• Generality in identifying categories and sub-categories of the comparison
framework that should not be dependent on a particular paradigm, but
rather provide an outside perspective on which elements of the four
paradigms may be projected. This generality enables us not to favor one
paradigm over another, and also ensures the reusability of the framework,
which can be used to compare various other development paradigms.

• Minimalism in the selected categories and classified elements, which must
only extract the essence of the paradigms required to identify their
differences.

• Completeness in identifying differences that allows us to fully understand
the impact on the quality of the choice of one paradigm over another.
Completeness of this framework gives the opportunity for users to
customize the qualitative analysis.

Object, component, agent and service paradigms 15

1.4.1. Conceptual differences

The four paradigms studied have a very similar approach based on the
construction of systems from existing or future software entities. They have a
common goal of maximizing reusability that is directly derived from the object.
They share the same overall development process that consists of identifying
software entities (object, agent, component or services) that meet the needs, and
then combining these entities to make the final application. They are based on
the same concepts of composition, for the construction of new entities from
existing ones to ensure a consistent approach where any entity can be seen as an
object, agent, component or service. Thus, this approach facilitates incremental
development and exploitation of knowledge.

However, although these four paradigms have the same overall goal, the
concepts behind the notions of objects, components, agents, and services are
different.

Thus, we confront the following four aspects:

• Difference in utilization and owner’s responsibility.

• Difference in coupling.

• Difference in granularity.

• Difference in cooperation and problem-solving.

1.4.1.1. Difference in use and owner’s responsibility

A component is called "off the shelf" [CRN 06, HEI 01] by adopting a piece
of technology, the component, which is available for developers. The latter
recover a block of software component and ensure its incorporation based on
their requirements.

A service focuses on the use of a function provided by a third party [DUS 05,

NIT 08, OAS 08, THE 08]. A service consumer only uses the result from the
invocation of the target service.

These two views seem close at first; however, they have a significant impact

on the allocation of responsibilities between supplier and consumer. To illustrate
this distinction, we take an example of the video game industry on PC. This
industry is mainly based on two models of content distribution:

• Classical model: purchasing a game in a specialist shop or downloading on
the Internet.

• Cloud gaming model: purchasing a subscription to play available games
directly on an Internet platform.

16 Software architecture

The classic model illustrates the object-oriented, component-based and agent-
oriented approach. The said cloud gaming model illustrates the service-oriented
approach.

14.1.1.1. Responsibility of an object, component or agent

The first classic model corresponds to a player who buys a copy of his game.
This copy is collected either on a physical medium, usually a DVD or in a
dematerialized form (cloud) via download platforms such as STEAM5. The
player is then responsible for installing the game on his own machine, i.e. its
deployment. It is only after this installation that he can launch the application
and start playing.

This distribution model corresponds to a component-based approach.
Typically, the game (the component) comes with an instruction manual (the
documentation) that defines a number of consumer-end constraints. These
constraints are of two kinds:

• Deployment constraints: the provider of a PC video game sets the minimum
system requirements in terms of computing power (CPU, graphics card,
RAM, etc.), storage capacity (hard drive), audio resources, etc. The
customer’s system must meet these requirements to be able to install and
run the game. The installation process itself presents constraints whether it
is the exact location on the hard disk or the connections requirements to the
Internet, key authentication, etc. In OOSE, CBSE and AOSE these
installations constraints are typically defined by the chosen component
model [CRN 11]. Each model is associated with a particular system
environment before it can be used. Moreover, this model provides
deployment rules associated to these components.

• Usage constraints: each game provides a list of specific commands that
determines how to interact with it and the resulting actions that are
necessary to progress through the levels (Game play, Level design, etc.).

These elements provide the rules to be complied with if the user wants to take
full advantage of the proposed experiment. In OOSE, CBSE and AOSE these
user constraints are typically defined by the contractual interface of the entity
(object, component and agent). Compliance with this interface is crucial to
ensure the correct use of resources according to the possibilities previously
determined by the supplier of the entity.

5. http://store.streampowered.com.

Object, component, agent and service paradigms 17

1.4.1.1.2. Responsibility of a service

The second distribution model, called Cloud gaming, illustrates the concept
of service-oriented. In this model, the player pays the right to play a game that is
running on a remote platform under the responsibility of the supplier. He only
needs the interface and the appropriate connection to access the platform. In fact,
the player is no longer responsible for operating the game on his own machine.
The only information he requires is how to access this platform and how to play
the game. Hence, deployment constraints no longer exist in relation to the
installation of the game; only usage constraints remain. This lack of operation
has several advantages. On the one hand, it simplifies the exploitation of
resources by removing efforts that accompany the understanding of the
installation phases. On the other hand, it ensures the optimal use of these
resources. In fact, the application runs directly on the provider’s environment.
The latter therefore has full control of its execution. Thus, it is more likely to
ensure the quality promised to its customers.

In our example, the quality of a video game (fluidity, graphics, etc.) varies
depending on the system on which it is installed. Being run on a remote
platform, this game has the same quality for each player connected. In addition,
users who originally did not have the required system configurations will benefit
from this service. Thus, constraints on the customer only decrease to their
communication capacity.

Finally, another significant advantage of this service-oriented model
relationship between customers and suppliers is the transparency of service
developments as long as the latter do not change the initial usage constraints
(connection interface, protocols, etc.). As it is, the new versions are directly
accessible without the need to adapt on the consumer-end. On the contrary, in a
component-based approach, if the customer wants to take advantage of these
developments he must collect and deploy the game himself. Problems associated
with this deployment may occur if the customer’s system no longer supports the
updated component. Cloud gaming illustrates this advantage where different
versions of the same game follow one from the other in a transparent manner to
users. As for the classic distribution, it requires players to collect a particular
patch and then its deployment on their machine in order to develop the version of
the game. These new versions can potentially require a hardware upgrade at the
consumer-end (for example, to support an improved graphics engine) whereas it
is not required in the Cloud gaming. Thus, collecting the patch, its installation
and the ability to use the new version of the game may incur additional costs.
These additional costs are generally not present in the service-oriented approach
where the customer pays for this function whereas in the component-based

18 Software architecture

approach the customer pays for the component at a time and within a given
release version.

However, the main drawback of this service-oriented relationship between
the customer and the service provider is the total reliance of the first system to
the second system as well as the reliance on different media of communication
between them. As it is, a failure of these elements which are outside the sphere
of the customer’s actions sees its inability to act on the issue. In return, it is the
contract previously established with the supplier that characterizes the
consequences of these failures in terms of compensation for the customer.

Within the framework of Cloud gaming, these failures, which are out of the
customer’s control, are, for example, an error in the game’s platform or even loss
of Internet connectivity linked to the ISP. Thus, service-oriented paradigm
pushes the owner’s responsibility to the maximum compared to the component-
based paradigm and therefore decreases the customer's responsibility. Indeed, the
CBSE, the off-the-shelf approach, implies that the supplier is solely responsible
for the development of its component, the associated quality of service required
and its maintenance.

In the SOSE approach, the supplier is also responsible for the deployment,
execution and management of their service. The service consumer is solely
responsible for the communication and for compliance of the usage constraints.

1.4.1.1.3. Multitenant Nature

An application is called “multitenant” [JAC 05] if it offers functionalities to
many users simultaneously. It therefore manages numerous instances at the same
time and allow for hosting multiple isolated instances in order to guarantee
accurate results to its various customers.

Similarly, an instance being run is dedicated to manage multiple parallel
connections. In our example of video games, Cloud Gaming platforms support a
large number of players in parallel. For each of these players, they must maintain
a particular context in order to retain their respective information. This
information is of two kinds:

• Contract groups the set of data related to the contract between the customer
and the supplier that govern the use of the service (in our example: monthly
subscription account number, quality, etc.).

• Runtime groups the set of data required to run the application throughout
the use of the service (in our example: experience gained, games played,

Object, component, agent and service paradigms 19

persistent universes, etc., in order to reproduce exactly the status where the
player stopped in his game).

This multitenant principle is not necessary for an object/component/agent. In
fact, although it may belong to multiple compositions, at runtime, different
instances of the component are created and each are created under the
responsibility of a customer in the context of a particular composition.

To conclude, from a usage and owner’s responsibility point of view, object-
oriented, component-based and agent-oriented paradigms are close.

1.4.1.2. Difference relating to coupling

Coupling is a concept that we identify as one of the key breaking points
between OOSE/CBSE and AOSE/SOSE. This concept expresses all possible
dependencies between conceptual and software entities. Reducing coupling
guarantees a number of intuitive benefits in terms of isolating errors, easing
additions and removal of entities reused, reconfiguration, etc.

In fact, OOSE and CBSE have a broad mandate in the type of applications

they wish to implement, whereas the SOSE and AOSE mechanisms are built to
support the development of applications that run on highly volatile, cooperative
and heterogeneous environments.

This difference is consecutively illustrated by their respective connection for,

on the one hand, the management of heterogeneities, and, on the other hand, of
the automation of other mechanisms.

1.4.1.2.1. Management of heterogeneities

The aim of the service-oriented paradigm is the independence it has with
implementation technologies. A service must be accessible and usable without
any assumption on its implementation, on the potential users or on how to use
this service. This problem is well known in CBSE but is not as critical as in the
SOSE issue. As it is, there are a large number of component models [CRN 11].
To develop a new system, the designer must choose a particular model and use
only the components complying with this model as the collaboration between
different models is very difficult [CRN 06]. Thus, although the CBSE has proven
its effectiveness in software reuse and maintainability, it does not specifically
target certain difficulties encountered by developers in relation to changes in
platforms, protocols, devices, Internet, etc. [BRE 07].

20 Software architecture

For its part, the SOSE advocates a single homogeneous service-oriented
model [ERI 08], to be standardized and used by all, to encapsulate all types of
resources and hide their heterogeneous nature during development.

1.4.1.2.2. Comparison to on automating mechanisms

Automation contributes to the definition of the SOSE itself, and therefore the
vast majority of research seeks to automate their mechanisms such as service
publication, discovery, selection, composition, etc. As it is the decoupling
between requirements and services used, discovery at runtime, the definition of
collaboration and finally dynamic establishment of communications were the
main goals set from the start in the development of the service paradigm. This
principle of automation is pushed to its maximum by the concept of self-
adaptation [NIT 08], which seeks to coordinate all mechanisms related to the
service-oriented paradigm to allow for reactive or proactive contextual
adaptations.

Although the process automation is a key element of research in CBSE and

represents many of its current challenges, it is not an integral part of the
conceptual origin of the CBSE or the definition of a component model [CRN
11].

Thus, with respect to the heterogeneity and automation, SOSE aims to

produce loose coupling at all levels, from development to execution.

1.4.1.3. Difference in granularity

In the field of software engineering, granularity corresponds to a relative
measurement of the size of architectural elements that make up the applications.
The software engineering community then spoke of coarse-grained systems or
fine-grained systems [BEI 07], which are respectively associated by their
composition by assembly of software blocks of high granularity and low
granularity. These notions of high and low granularity are determined by the
importance of the encapsulated resources by architectural elements. This
importance is relative to the underlying complexity of the implementation and
usage of these resources.

Understanding granularity became prominent with the development of CBSE

[BEI 07, MOH 08]. As it is, the granularity represents one of the first distinctive
points between an object and a component. The object responds to the lack of
clarity, understanding and thus the handling of systems which are decomposed
into too many objects or too large objects. Thus, different component models
offer different granularities [BEI 07], and these proposed varieties for the size of

Object, component, agent and service paradigms 21

the building blocks reinforce the importance of choice in the decoupling of the
application in order to maximize the quality of the resulting architecture.

The concept of granularity is intuitively understandable, which counteracts
with the vagueness of its formalization where the clear delineation between high
granularity and low granularity remains to be defined. However, the current
understanding is sufficient to establish a hierarchy between SOSE, CBSE, AOSE
and OOSE, where service-oriented paradigms are usually described more coarse-
grained than component-based paradigms, in the same way that the component-
based paradigms are typically seen as coarse-grained in relation to agent-oriented
paradigms and fine-grained in relation to object-oriented paradigms.

We justify this comparison of granularity between the service-
oriented/component-based/agent-oriented/object-oriented with two commonly
encountered realities:

• Technical reality: where component-based models are often used to build
new SOSE services from scratch or from legacy systems. CBSE related
technologies can intervene at all phases for SOSE system realization from
the services implementation to their adaptations in order to integrate them
taking care of the heterogeneities (as different runtime environments,
languages, protocols, interfaces, etc.) or even in order to provide the level
of abstraction necessary for the composition of pre-existing services. This
relationship between service-oriented paradigms and component-based
paradigms is the same between component-based/agent-oriented and
object-oriented paradigms, where the object-oriented paradigms are
commonly used to implement components or agents.

• Conceptual reality: linked to the very nature of the service and processes
associated with it. The previous sections have highlighted a set of inherent
properties of the SOSE such as loose coupling, heterogeneity management,
automation degree, the distribution of responsibilities or even the
multitenant. Although these concepts are already present in the CBSE, the
thrust of SOSE is to push them to their maximum. To ensure these
developments, complex processes must be executed. Thus, the coarse-
grained only nature of the service-oriented paradigm comes from a need for
balance or dilemma between the cost of support of the service processes,
the size of the encapsulated resources and the relevance of their placement
on the network.

The technical reality is offset against the component-based approaches such
as [AND 08, OAS 09] which, during the implementation of the SOSE
applications consider the service of the interface of a component as a service
within SOSE term. In this respect, the SOSE service is seen as a subset of the

22 Software architecture

interface. However, the ratio of the implementation of one by the other remains
the same.

1.4.1.4. Difference of cooperation and problem-solving

The concept of cooperation and problem-solving is a concept stemming from
the field of distributed artificial intelligence (DAI) in coordination with the
multi-agent approach. The main problem in the study of cooperation in
distributed problem-solving is to understand how agents wishing to
accommodate each other, may interact with each other to form an effective team.
Two forms of cooperation are defined, the sharing of tasks and sharing of results,
which correspond generally to discerned phases in the study of problem-solving.
In both of these types of cooperation, R. Davis and R. Smith are particularly
interested in its control and communication. In the division of tasks, the control
is directed by the goals and the agents are represented by the tasks they are
committed to perform; the problem lies in the distribution of the tasks. In sharing
results, the control is data-driven, the agents are represented by knowledge
resources, and the problem lies in the communication of the results [BOU 92,
SMI 81].

A cooperative strategy is necessary to perform tasks effectively whose
problem-solving involves several agents. The purpose of a strategy is to ensure
overall consistency from local decisions and enable the effective use of
communication. Two classes of cooperative strategies are defined: organizational
strategies and the distribution of information strategies. The first class deals with
the decomposition of a global task into subtasks and assigning these subtasks to
the agents. They aim to identify the most appropriate agent to decide which plan
to follow. For instance, an organizational strategy chooses an agent, which has
the largest selection of possible actions. Strategies on the distribution of
information indicate how and when agents must communicate. For example, one
of these strategies specifies that we should not repeatedly send the same
information to an agent [BOU 92, CAM 83].

Cooperation refers to a judgment value on the overall activity of a set of
agents. The judgment of cooperation is influenced by several indicators such as
the number and the persistence of conflicts as well as the synchronization of
actions of different agents. The mechanisms which allow us to weigh these
indicators are called cooperation processes.

Edmund H. Durfee has identified the cooperation indicators. These indicators
were empirically determined from the observation of cooperative situations. The
following list of indicators is not exhaustive [DUR 89]:

Object, component, agent and service paradigms 23

• Coordination of actions, this indicator relates to the adjustment of the
direction of the agents' actions over time (synchronization) and in space.

• Parallelization, this indicator is based on the distribution of tasks and their
concurrent execution.

• The sharing of resources, this indicator relates to the use of resources and
skills such as information, results and equipment.

• Robustness, this indicator relates to the ability of the system to compensate
for the failure of an agent.

• Non-redundancy, this indicator reflects the lack of redundant activities, for
instance, selective communication.

• The non-persistence of conflict, this indicator reflects the lack of blocking
situations; it is based on the ability of agents to prevent conflicts or to solve
them by default.

The cooperation and problem-solving concept is absent in the OOSE, the
CBSE and the SOSE because their basic entities are reactive and not proactive
nature as it is in the case of the agents.

1.4.1.5. Summary of conceptual differences

We have shown our conceptual framework for comparison between the four
paradigms. The first purpose is to complete the continuing lack not covered by
the literature about the clear specification of the conceptual differences between
object-oriented, component-based, agent-oriented and service-oriented
paradigms.

We therefore chose a top-down approach, which focuses firstly, on the

conceptual aspects of the different paradigms before developing qualities, which
are derived from them.

24 Software architecture

Figure 1.5. Summary of conceptual differences between the four paradigms
(UOR: Usage and Owner’s Responsibility; RC: Relation to Coupling;

G: Granularity; CRP: Cooperation and Problem-Solving;
L: Low; M: Medium; H: High)

1.4.2. Quantitative dimension

Structural elements and mechanisms, which characterize the four paradigms,
can be classified into two categories: products and processes.

1.4.2.1. Product and process

A product is a software or conceptual entity that is the result of an action or

process. A process is an action or series of actions that is used to create or

UOR

G

RC CPS RC

G

CPS

UOR

RC

G

UOR

CPS RC

G

Object Component

Agent Service

H

M

L

UOR

CPS

Object, component, agent and service paradigms 25

modify a product and thus obtain a product as a result. Products are divided into
two subcategories:

• Simple architectural elements: the basic building blocks of a paradigm;

• Composite architectural elements: complex products built from existing
architectural elements. Their structure clearly identifies the reused
architectural elements and their relationships.

Each sub-category is further divided into two groups according to two levels
of abstraction: the design-time and runtime.

Figure 1.6. Abstraction and description levels:
distribution of products and processes

The process category focuses on the principle of reuse, i.e. how to reuse
software entities in order to build new composite ones. Conventionally, a
component can be a single or composite architectural element. These notions of
component and composite define two levels of description. Thus, processes are
grouped according to the levels of abstraction and description:

• In the same level of description: this category groups processes that target

and generate products of the same level of description (Figure 1.6: white
arrows). This category is divided into both design-time and runtime.

• Between levels of description: this category groups processes that target
products of two different levels of description (Figure 1.6: dashed arrows).

• Between levels of abstraction: This category represents the processes that
ensure the transformation of products from the design-time to runtime (see
Figure 1.6: black arrows).

Basic
type

Basic
instance

Description levels

Composite
type

Composite
instance

Design
time

Runtime

 A
b

st
ra

ct
io

n
le

ve
ls

Process
:

In the same description level
 :

Between description levels
 :

Between abstraction levels

26 Software architecture

Figure 1.6 shows the distribution of products and processes on a single
representation. A composite "A" is made up of a set of components such as "B"
which is defined as a simple architectural element. Both products have their
performances at design-time and runtime. The various arrows represent
processes that are being studied. The white arrows are the processes related to
the same level of description and abstraction. The dashed arrows are the
processes that make the link between the levels of description and have their
representation at the design-time and the runtime. The black arrows are the
processes that make the link between the levels of abstraction and thus ensure the
transformation from the design-time to runtime.

1.4.2.2. Comparison between paradigms

1.4.2.2.1. Product

Single Architectural Elements

Single architectural elements of the object-oriented paradigms are the class at
design-time and the instance (object) at runtime. The same distinction is made
for the CBSE between component type and connector type products [AMI 09,
GAR 97] and their component and connector instances.

Connectors [CRN 11] are mediators in connections between components, i.e.
they are used as intermediaries between these constituent components. They
have a two-fold function: (i) enabling indirect compositions between components
and (ii) the introduction of additional functions through the glue code, which
they encapsulate.

In AOSE, we describe an entity that is capable of acting in an environment
that can communicate directly with other agents as a "single agent"; it has its
own resources and skills and provides services to its environment. The concept
of the single agent is used interchangeably in the design-time and runtime
phases.

In SOSE, the boundary between levels of abstraction is much less clear and

most existing work refers to a service as a runtime entity [STO 05, THE 08].
However, a notion of abstract service exists in some approaches [CAV 09]. This
concept is used to distinguish between the requirements sought by the architect
to define its application and services actually available in the system to meet
these requirements. However, an exact clarification between abstract service and
concrete service remains to be defined. We also mention the concept of service
description, which is a major product of the SOSE [OAS 08]. As it is, each
runtime representation of a service is associated with its service description,
which is the target of many processes involved in the exploitation of resources.

Object, component, agent and service paradigms 27

Composite Architectural Elements

The four paradigms share the notion of composite. The object-oriented paradigm
is based on the concepts of composite class and composite object. The CBSE
relies on concepts of configuration and composite component types at the
design-time. For their runtime, it relies on their configuration and composite
component instances.

In the context of this study we consider a composite agent as a multi-agent
system which is composed of a set of single agents representing active entities
of the system with a set of relations that unite the agents between themselves.
However, neither the agents nor the MAS are explicitly composable in contrast
to the Organization-based agent systems which are compositional.

The notion of service composition and, ultimately, of composite service of

the SOSE is mainly at the runtime. Indeed, most of the existing works consider
the composite service as the execution of a collaborative scheme between
services by a composition engine. However, some approaches [GEE 08, ZEN
03] introduce instantiation concepts of a collaborative scheme from abstract
templates that describe them. We choose to consider this similar representation
with OO types of collaborative schemes such as design-time entities, and
instances of collaborative schemes such as runtime entities. In addition, a
collaborative scheme is classically associated with two patterns of coordination
of services, such as choreography and orchestration [RSA 08], which have
technologies that support their representation in design-time and runtime. We
define a composite service encapsulating a composition of services in a similar
manner in the composite service type and composite service instance.

1.4.2.2.2. Process

In order to elaborate the main differences between paradigms, we describe a
selection of the most relevant and widely accepted processes by the community.

At the same level of description:

Design-time. The object-oriented paradigm is primarily based on the process
of association and inheritance. The CBSE is based on the horizontal composition
[BAR 06, CRN 11] between architectural elements of the same level of
description. This horizontal composition corresponds to the process of
establishing connections between components. We can also mention versioning,
selective inheritance and refinement processes. In the same level of description,
the SOSE processes focus mainly on handling collaborative schemes between

28 Software architecture

services. We mention the process of choreography which is one of the principle
supports for reuse and does express direct communications between services;

Runtime. Communication processes between architectural elements are the
major concern in this category. OO and CBSE are based mainly on call function
processes, while the SOSE inevitably includes additional processes. Typically,
services have to be discovered and selected dynamically (process discovery and
selection of services). Then these services coordinate their actions through a
process of choreography that defines the succession of invocations of service. In
addition, a front-end process of service publication is required to make the
service available to potential customers (see Figure 1.4).

Between levels of description:

Design-time. The OO is based on the composition process to produce
composite components. The CBSE is based on vertical composition that links
components and composites. Vertical composition (or hierarchical) [BAR 06,
CRN 11] consists of a sub-component encapsulated in a composite component.
This composition is anti-reflexive to avoid cycles, i.e. that the same component
cannot be found at several levels of the hierarchy. It assumes the consistent
combinations of behavior for the composite with the behavior of its constituents.
Moreover, the constituents are hidden for the requests of the composite
customers. The SOSE is based on the orchestration process that models vertical
communications between the composite service and its constituent services;

Runtime. The communication processes between constituents and composites
are the essence of this category. OO and CBSE are based on different call
processes. In CBSE, these calls are sometimes referred to as the process of
delegation. In SOSE, the coordination of the process of services invocations
from the composite towards its constituents is called orchestration. Similarly, the
process of discovery and dynamic selection of services are required to identify
the constituents of the composite service.

Between levels of abstraction:

The OO and the CBSE are based on the instantiation process to link types to

their instances. The AOSE is based on the concepts of generic role (part of the
design-time) and specific role to a domain (part of the runtime). The SOSE is
based on the concepts of abstract service and concrete service respectively as
elements of design-time and runtime [HOC 11]. However, the transition from
one to the other is based on the discovery process and selection of services
process. The transition from one type of collaborative scheme to an instance of
collaborative scheme is based on instantiation. The transition from one type of

Object, component, agent and service paradigms 29

composite service to an instance of composite service corresponds to the
combination of discovery and selection of its constituent services and the
instantiation of collaborative schemes, which guide their behavior.

Table 1.1 shows a summary of the comparative study between paradigms from
the product and process point of view.

Product Object Component Agent Service

Single
Element

Design-
time

Class

Component
type,

Connector
type

Agent Abstract service

Runtime Object
Component,
Connector

Specific role
to a domain

Concrete service,
Description
of service

Composite
Element

Design-
time

 Composite
class

Type of
configuration,

Type
of composite
component

SMA /
Organization

Type of
collaborative

scheme,
Type of composite

service

Runtime
Composite

Object

Configuration
,

Composite
component

Composite
role

Instance of
collaborative

scheme,
Instance of

composite service

Process Object Component Agent Service

In the
same level
of
abstraction

Design-
time

Association,
Inheritance

Horizontal
Composition,

Selective
inheritance,
Versioning,
Refinement

Multiple roles Choreography

Runtime Call method Call function
Call

transmission

Choreography,
Discovery

and selection,
Invocation,
Publication

Between
levels of
description

Design-
time

Composition
Vertical

Composition
Composition

of roles
Orchestration

Runtime Call method
Call function;

Delegation
Call

transmission

Orchestration,
Invocation,
Discovery

and selection

Between
levels of
abstraction

 Instantiation Instantiation

Specific role
to a domain +

Individual
knowledge

Discovery
and selection,
Instantiation
of scheme

Table 1.1. Product and process: comparison between paradigms

30 Software architecture

1.4.3. Qualitative dimension

Existing research studies related to software quality define a number of
criteria such as performance, safety, robustness, flexibility, development, etc.
[BIA 07, KIT 96]. Each of these studies has outlined their own organization of
these criteria. The definition of these quality criteria and the way to apprehend
them are being shaped based on the perspective of the target user via these
measurement frameworks. Indeed, understanding a quality can vary between the
stakeholders involved; whether they are architects, designers, developers or
others. In addition, the scope of the system directly influences the importance of
these criteria. We therefore try to cover all of these variations by offering the
ability for users to define their own vision of the qualities that interest them
most. In the first instance, we identify the set of factors of these paradigms that
influence software quality. Then we compare OOSE, CBSE, SOSE and AOSE
approaches following these factors. Secondly, the user defines the quality criteria
that they want to measure by combining the previous results.

Using the various previous analyzes and by placing the four object-oriented,

component-based, agent-oriented and service-oriented paradigms within the
conceptual framework, it emerges that they share the following quality factors in
common:

• Reusability: support and easiness of a product or a process related to a
software development paradigm to be reused in the same way or through a
number of changes.

• Composability: support and ease of a software development paradigm to
safely combine architectural elements to construct new systems or
composite architectural elements.

• Dynamicity: support and ease of a paradigm to develop applications that
can adapt their behavior dynamically, automatically and autonomously to
meet changing requirements and changing contexts as well as the
possibilities of errors.

These three factors represent the qualitative nature that led to the definition of

the object-oriented, component-based, service-oriented and agent-oriented
development paradigms. Figure 1.7 illustrates this analysis and provides a high-
level view of their primary points of interest and traces the chronological
evolution of the concerns for the software engineering community.

Reusability is the oldest of the three concerns. The earlier developers quickly

became aware of code repetition in an application and have therefore sought to
define mechanisms to limit repetition. The object-oriented paradigm focuses on

Object, component, agent and service paradigms 31

this concern and its development is one of the outcomes of this research. The
object-oriented concept facilitates the conservation and the transfer of experience
gained across different systems. It further deepens reuse, which, at the outset it
was intended to reuse the code as it is through the inheritance process that helps
to evolve saved data and behavior in order to meet special requirements. Thus,
the object-oriented paradigm provides high reusability which paved the way for
applications to more complex applications and thus to the identification of new
limits in terms of granularity, of software architecture, communication
abstraction, etc. These limits have therefore led to a shift of concern to
composability.

Thus, the software engineering community has developed and introduced the

CBSE to overcome this new challenge. The famous sentence of Szyperski [SZY
02] "Components are for composition" illustrates this case perfectly. By
definition, a component must have a design specifically established to support
the potential composition to allow interoperability. Component models and
associated technologies (CORBA Component Model CCM [OMG 12], COM +
[MIC 13], Fractal [BRU 06], etc.) exist to provide specific development and
deployment frameworks needed to support composition patterns. Such models
impose component formats in terms of construction of codes and deployment
rules [CRN 11]. Thus, the CBSE strengthens the control of composability and
clearly formalizes the associated processes. Ultimately, this formalization raises
the solid foundation needed for opportunities of automation. Part of the software
community has therefore been redirected to the dynamicity concern as the
predominant aspect. Thus, SOSE has been developed from the experience gained
of objects and components; however, at the outset, it focused on how to improve
the dynamicity. The SOSE seeks to provide an appropriate response to highly
volatile environments and thus overcome the constraints imposed by the general
purpose of the CBSE.

Figure 1.7 summarizes these displacement-related concerns. Research from

the OOSE focuses mainly on reuse and discusses some composability and
dynamicity. The CBSE focuses on composability, which strengthens reusability
and also seeks to automate its processes. The SOSE focuses mainly on the
dynamicity of existing processes to ensure reuse and composition. As for the
AOSE, it gave more importance to the dynamicity without significant
improvement of composability factors and reusability factors; however, it
focuses on cooperation and coordination of agents to solve a problem.

The direct comparison following these three quality factors between object-

oriented, component-based, agent-oriented and service-oriented paradigms
(which is the more reusable, more modular, and more dynamic) is very difficult
to establish because it depends on the perspective of the one who compares. The

32 Software architecture

results vary depending on the contexts in which he is positioned and he positions
each of the four paradigms namely; object-oriented, component-based, agent-
oriented and service-oriented software entities. For example, from the point of
view of a low-level developer, an object will be easier to reuse than a service,
whereas conversely, from a business perspective, a very high level service will
be more easily reusable.

Thus, our conceptual comparison framework attempts to take this reality into

account by providing these users with all the information required to express
their own analyzes and qualitative comparison. These qualitative factors are
based on a classification of the material provided by the paradigms, which we
grouped by their qualitative criteria.

Figure 1.7. Evolution of overall concerns between paradigms (L: Low, M: Medium, H:
High)

Component

Dynamicity

Composability

Reusability

Object

Service Agent

Dynamicity

Composability

Reusability

Dynamicity

Composability

Reusability

Dynamicity

Composability

Reusability

L
M

H

M
H

L

M

H

L

M
H

L

Object, component, agent and service paradigms 33

1.4.3.1. Qualitative criteria for comparing development paradigms

We have identified eight main qualitative criteria that are common to all
software development paradigms. These criteria have a significant impact on the
overall quality of the system development process produced as a result:

• Explicit architecture: capacity of a paradigm to define clear architectural
views of an application, i.e. to provide the means to identify and explain the
functions associated with the products that make up the application as well
as the processes between these products.

• Communication abstraction: capacity of a paradigm to abstract the
communication between functions of applications and to learn and
understand these communications from one tenant so they can be easily
handled.

• Expressive power: is the expressive potency of a paradigm in terms of
capacity and optionality of creation. It is based on the number of concepts
and processes provided to specify, develop, handle, implement and execute
applications;

• Loosely coupling: is the potential reduction between product-process
dependencies.

• Evolution capacity: this is the potential of a paradigm to evolve its products
and processes. It is based on analysis and judgment value considered on the
different processes that support these evolutions and their targets.

• Owner’s responsibility: this corresponds to the assignment of
responsibilities between suppliers and consumers. These responsibilities
focus on the reused software entities in terms of development, quality of
service, maintenance, deployment, execution and management. This
distribution reflects the degree of freedom granted to consumers by the
supplier.

• Concurrency: in resource-intensive applications that have a demanding
need of computational power, concurrency is the most promising solution.
Further, concurrency is also highlighted by the recent progress on the
hardware side such as the introduction of multi-core processors and graphic
cards with parallel processing capabilities. Mainly, the challenges of
concurrency are preserving consistency, prevention against deadlock as
well as prevention of race condition dependant behavior.

• Distribution: different classes of distributed applications exist according to
where the data, the users or computation are distributed. As an example of
these classes, we have the client/server applications (CS) as well as peer-to-
peer (P2P) computing applications. The challenges of distribution are

34 Software architecture

manifold. Among the major concerns of distribution we have future
extensions and interoperability, which are often hampered by
heterogeneous infrastructure component. In addition, the different scenarios
of most applications are nowadays increasingly dynamic with a flexible set
of interacting components.

1.4.3.2. Comparison between paradigms

Table 1.2 shows the values assigned to the eight criteria to assess the

differences between the OOSE, the CBSE, the SOSE and the AOSE. The results
are given following three levels of importance (high, medium, low), which are
awarded for each criterion and express our analysis of the four paradigms. This
comparison establishes a relative assessment between the paradigms (relative to
each other).

Paradigms

Quality criteria Object Component Service Agent

1
2
3
4
5
6
7
8

Explicit architecture
Communication abstraction
Expressive power
Loose coupling
Evolution capacity
Owner’s responsibility
Concurrency
Distribution

L
L
H
L
L
L
L
L

M
M
M
M
H
M
M
M

M
H
L
M
M
H
H
H

L
M
M
H
M
M
H
H

Table 1.2. Comparison of development paradigms (L: Low, M: Medium, H: High)

Software architecture is the cornerstone criterion for the CBSE and the
SOSE, unlike the OOSE and the AOSE, which have not taken this concept in
their initial definition. To fill this gap, in UML 2.0, OMG introduced the concept
of component and connector to describe a software architecture based on the
object-oriented mechanisms.

In communication abstractions, the SOSE provides the best communication
abstraction based on the encapsulation provided by the services in addition to the
isolation of communications in a collaborative scheme. In CBSE,
communications are located within different connectors that share the overall
behavior. The fine granularity of the object-oriented paradigms worsens this
drawback due to the explosive number of collaborations between objects, which
is mainly due to the multiple method calls between objects.

Object, component, agent and service paradigms 35

Loose coupling is a key issue for the different paradigms. Object-oriented
systems involve a set of strongly coupled classes while the CBSE, the SOSE and
the AOSE target a reduction of this coupling to make it looser.

Regarding the expressive power, the OOSE handles a large number of
concepts such as inheritance, levels of abstraction, levels of description,
granularity, reflection, etc. These concepts are expressed through different
programming languages such as Java and C++. The CBSE is largely inspired by
the object-oriented paradigm, but it has not yet reached the same level of
maturity. Finally, the SOSE has the lowest expressive power, because it
combines the same shortcomings, plus inaccuracies on levels of abstraction, as
the component-based paradigm.

The evolution capacity is directly related to the notion of explicit
architecture. Software architecture can be depicted on a graph of nodes and
edges. Evolution processes can be grouped according to their target: nodes,
edges, or the graph. Typically, the OOSE does not have this notion of explicit
architecture. The OOSE evolution process focuses only on nodes and edges.
Instead, the CBSE and the SOSE handle the concept of explicit architecture and
therefore offer evolution process on three targets. However, the most important
maturity of the CBSE and the explicit management of the levels of abstraction
have enabled the community to go further and to propose evolution processes at
the meta-architecture and meta-meta-architecture levels.

Owner’s responsibility: The SOSE pushes the owner’s responsibility to the
maximum where the service provider is responsible for the development, quality
of service, maintenance, deployment, execution and management. On the
contrary, the CBSE shares responsibilities at the deployment level where the
customer becomes responsible for instantiating the component in its
implementation, execution and management. In OOSE, the class is typically in
white box implementation where the customer is free to manipulate it at will but
they have full responsibility of the class.

Concurrency and distribution: AOSE is built around the aspects of
concurrency and distribution. These two criteria have appeared in a number of
important research studies and have led to the emergence of distributed artificial
intelligence (DAI). With this new approach, the work is done by a group of
agents, which act in the same environment and must sometimes resolve conflicts
caused by this distribution of expertise.

The analytical method used can only establish a relative order between the
paradigms compared, where one paradigm is more effective than the other on a
particular criterion. However, in the current framework, the results obtained are

36 Software architecture

limited to relative hierarchies. We believe that this comparison framework
between the four paradigms is a step in their qualitative assessment process.

Figure 1.8. Comparison of criteria with respect to the four paradigms (EA: Explicit
Architecture; CA: Communication Abstraction; ExP: Expressive Power; LC: Loose Coupling;

EvC: Evolution Capacity; OR: Owner’s Responsibility; C: Concurrency; D: Distribution)

Figure 1.8 shows the use of the eight criteria to assess differences between
OOSE, CBSE, SOSE and AOSE. The results are given in three levels of
importance (low, medium, high), which are awarded for each criterion and
express our analysis of the current status of the three paradigms. Also note that
this figure (1.8) represents a graphic interpretation of data displayed in Table 1.2.

ExP

CA

EvC

EA

LC

C

Object

D

C

OR LC

CA D

OR

ExP

Component EvC

EA

EA

CA

ExP

LC

EvC

OR

C

D

Agent

EA

D

C

CA

ExP

LC

EvC

OR

Service

Object, component, agent and service paradigms 37

1.4.3.3. Perspective of qualitative analysis

The conceptual framework that we propose is built to make way for the
definition of the user's own assessment of qualitative perspectives. The chosen
approach is that the user expresses their knowledge by specifying the perspective
through which they want to study the four paradigms being compared. A
particular perspective corresponds to the user’s focus on a specific factor. It
defines a formula for evaluating this factor by combining the results received
from the previous comparison, i.e. following the steps of our eight quality
criteria.

A qualitative perspective is the combination of:

• The chosen factor to compare the paradigms.
• The expression of the user’s expertise in relation to this factor.

Thus, we define a standard formula, which models this ability to customize:

Quality = Q (α1, α2, α3, α4, α5, α6, α7, α8)

The αi coefficients express the importance of the eight quality criteria, which
is given by the user with the target factor. The Q function defines how the
coefficients are combined along with the measurements of properties.

A perspective is therefore a qualitative window based on the eight criteria

and their results. As an illustration, we assess the four paradigms following our
personal viewpoint on the three selected quality factors: reusability,
composability and dynamicity that represent the core concerns of OOSE,
CBSE, SOSE and AOSE paradigms.

1.4.3.3.1. Example of qualitative perspectives: reusability, composability,
dynamicity

In Figure 1.9 we divide the quality criteria based on the impact they have on
the different quality factors.

38 Software architecture

Figure 1.9. Perspectives expressions of reusability, composability and dynamicity

Reusability is mainly influenced by the expressive power and evolution
capacity with an "a" coefficient, followed by the communication abstraction, the
explicit architecture and low coupling with a "b" coefficient, the owner’s
responsibility with a "c" coefficient and finally the concurrency and the
distribution with a "d" coefficient, where (a, b, c, d) represent coefficients of
importance of each criterion with respect to a quality factor, with (a> b> c> d).
From there, we define a set of formulas that combines this distribution and the
results of the previous classification of the four paradigms. To calculate a
numerical measure, we associate a weight to each level of Figure 1.8 of 1, 2 and
3 for low, medium and high levels respectively. For example, for the reusability
of the factor (r) of each paradigm, we obtain the assessment of the quality
function Qr:

Qr, object = bα1 + bα2 + 3aα3 + bα4 + aα5 + cα6 + dα7 + dα8

Qr, component= 2bα1 + 3bα2 + 2aα3 + 2bα4 + 3aα5 + 2cα6 + 2dα7 + 2dα8

Loose coupling
Evolution capacity

Communication abstraction

Owner’s responsibility
E

xp
re

ss
iv

e
po

w
e

r
O

w
n

e
r’s

 r
e

sp
on

si
bi

lit
y

Owner’s responsibility
Explicit architecture

Expressive power

Communication abstraction
Explicit architecture
Loose coupling

Expressive power
Evolution capacity

C
o

m
m

un
ic

at
io

n
ab

st
ra

ct
io

n
E

vo
lu

tio
n

 c
ap

ac
ity

E
xp

lic
it

a
rc

h
ite

ct
u

re
Lo

o
se

 c
ou

p
lin

g

Composability

Dynamicity

Reusability

Concurrency
Distribution

Concurrency
Distribution

C
on

cu
rr

en
cy

D
is

tr
ib

ut
io

n

a>b>c>d

a

b

c

d

d c b a

a

b c

d

Object, component, agent and service paradigms 39

Qr, agent = bα1 + 2bα2 + 2aα3 + 3bα4 + 2aα5 + 2cα6 + 3dα7 + 2dα8

Qr, service = 2bα1 + 3bα2 + aα3 + 2bα4 + 2aα5 + 3cα6 + 3dα7 + 3dα8

Composability is generally influenced by the communication abstraction and
evolution capacity with an "a" coefficient, then, by the explicit architecture and
loose coupling with a "b" coefficient, the owner’s responsibility and expressive
power with a "c" coefficient and finally the concurrency and distribution with a
"d" coefficient where (a> b> c> d). From there, we define a set of formulas that
combines this distribution and the results of the previous classification of the
four paradigms. To calculate a numerical measure, we associate a weight to each
level of Figure 1.8 of 1, 2 and 3 for low, medium and high levels respectively.
For example, for the composability factor (cp) of each paradigm we obtain the
assessment of the quality function Qcp:

Qcp, object = bα1 + aα2 + 3cα3 + bα4 + aα5 + cα6 + dα7 + dα8

Qcp, component= 2bα1 + 3aα2 + 2cα3 + 2bα4 + 3aα5 + 2cα6 + 2dα7 + 2dα8

Qcp, agent = bα1 + 2aα2 + 2cα3 + 3bα4 + 2aα5 + 2cα6 + 3dα7 + 2dα8

Qcp, service = 2bα1 + 3aα2 + cα3 + 2bα4 + 2aα5 + 3cα6 + 3dα7 + 3dα8

Dynamicity is mainly influenced by concurrency and distribution with an "a"
coefficient, then the communication abstraction and evolution capacity and loose
coupling with a "b" coefficient, the explicit architecture and owner’s
responsibility with a "c" coefficient, and finally the expressive power with a "d"
coefficient where (a> b> c> d). From there, we define a set of formulas that
combines this distribution and the results of the previous classification of the
four paradigms. To calculate a numerical measure, we associate a point at each
level of Figure 1.8 with 1, 2 and 3 for low, medium and high levels respectively.
For example, for the dynamicity factor (d) of each paradigm, we obtain the
assessment of the quality function Qd:

Qd, object = bα1 + aα2 + 3cα3 + aα4 + aα5 + bα6 + aα7 + aα8

Qd, component= 2bα1 + 3aα2 + 2cα3 + 2aα4 + 3aα5 + 2bα6 + 2aα7 + 2aα8

Qd, agent = bα1 + 2aα2 + 2cα3 + 3aα4 + 2aα5 + 2bα6 + 3aα7 +2aα8

Qd, service = 2bα1 + 3aα2 + cα3 + 2aα4 + 2aα5 + 3bα6 + 3aα7 + 3aα8

In summary, the conceptual framework provides a comparative picture
between object-oriented, component-based, agent-oriented and service-oriented
paradigms. These categories identify the important software development
paradigm characteristics and provide a common applicable framework to assess
the OOSE, the CBSE, the AOSE and the SOSE in a fair manner. This assessment

40 Software architecture

is quantitative and qualitative in nature and offers an overall understanding of
their similarities and differences. However, the quantitative assessment described
is only relative, i.e. it establishes a relationship of superiority between the
paradigms but does measure neither their values nor their differences. The
example of perspectives shown above resulting from this relative assessment
provides therefore relative results.

Figure 1.10 summarizes the functioning of our conceptual framework for
comparison. The quantitative aspect represents the processes and products of the
corresponding paradigms that are the pillars of the eight properties. These
properties characterize the quality criteria and serve as vocabulary to users to
express their own perspectives on the qualities that concern them.

Figure 1.10. Overall functioning of the conceptual framework

1.5. Approaches for integrating development paradigms

Several alternative approaches for integrating paradigms were categorized by
the entities they aim to combine (object, agent, component, and service). These
approaches are based either on conceptual proposals or combinations of technical
and conceptual proposals (e.g., middleware see Table 1.3).

The active object-oriented model is an example object-oriented and agent-

oriented combination which represents an object that conceptually runs on its
own thread and provides an asynchronous execution of method invocations. It
can thus be considered as a higher-level concept for concurrency of the object
oriented systems [SUT 05]. Further, language extensions to support concurrency
and distribution were proposed. Eiffel [MEY 93] is an influential proposal in this
direction.

Hight Properties
Qualitative

aspects

Products and
Processes

Quantitative
aspects

Characterize

Support

Qualitative
perspectives

Object, component, agent and service paradigms 41

Also in the area of agent-oriented and component-based paradigms,

combinations proposals can be found. CompAA [ANI 08], SoSAA [DRA 09]
and Agent Components [KRU 03] try to extend the agent-oriented paradigm with
the concepts and mechanisms of the component-based paradigms. In CompAA, a
component-based model is extended with adaptation points for services. These
adaptation points allow for service selection at runtime according to the
specifications of the functional and non-functional properties in the model. This
flexibility is achieved by the addition of an agent for each component, which is
responsible for selecting the service at runtime. The SoSAA architecture consists
of a base layer with standard component system, and a layer of agents, which
controls the base layer to perform reconfigurations as an example of control. In
Agent Components, the agents are slightly rendered as components connected
together using ports with predefined communication protocols.

Approaches that combine the agent-oriented paradigm with SOA are

primarily motivated by the need for dynamic service composition where agents
are used to dynamically search and select services during the execution. These
approaches deal mainly with aspects linked to the semantic description and
research of services, but do not aim at a paradigm integration by itself. As
examples, we have the agent-oriented invocation of services using the WSIG6
component (Web Service Integration Gateway) of the JADE platform, or the
code generation approach led by the PIM4Agents model [ZIN 08] and workflow
approaches such as WADE or JBees [EHR 05]. Agents are useful in achieving
flexible and adaptable workflows using dynamic composition techniques based
on negotiation and planning mechanisms.

We also find other approaches that combine the agent, component and object

paradigms. ProActive [BAU 09] and AmbientTalk [VAN 07] are two recent
approaches in this category, which provide strong conceptual foundations and
ready-to-use framework.

An approach in the context of software engineering has emerged under the

name of Service Component Architecture (SCA) [MAR 09]. It was proposed by
several major suppliers of the software industry, including IBM, Oracle and
TIBCO. The SCA combines service-oriented architecture (SOA) with the
component-based paradigms to provide SCA components that communicate via
services.

Braubach and Pokahr [BRA 12] propose the concept of active components

during the development of a distributed system project. The active component-

6. http://jade.tilab.com/.

42 Software architecture

based paradigm is proposed in the framework of an approach to reconcile ideas
as well unifying the contributions of the object-oriented, component-based,
service-oriented and agent-oriented concepts using a common conceptual
perspective. The proposed paradigm is supported on one side by a programming
model, which allows the development of systems with active components using
XML and Java, and on the other hand by a middleware infrastructure, which
directs a transparent distribution of the components and provides useful
development tools. The active components are an upgrade of the SCA by adding
the agent-oriented element in the SCA. The general idea is to transform passive
components of the SCA to providers and service consumers, who act
independently to better reflect real-world scenarios that are made up of different
active stakeholders.

Aboud [ABO 12] proposes a metamodel combination approach called

CASOM (Component Agent Service Oriented Model) allowing the specification
of applications composed from a set of interoperable agents, components and
services in coherent scheme.

 Combined Paradigms

Approaches and Languages Object Component Agent Service

Programming languages, Java, C#, etc. x

Application Server (JBOSS, Glassfish)
Component Specification by ADL

 x

Web service and
Business Process Specifications

x

FIPA Agent specifications,
Agent-oriented platforms (JADE,
Cougaar, etc.)

 x

Eiffel, active objects x x

WSIG, WADE, PIM4Agents, JBees,
etc.

 x x

Fractal, Java EE, OSGI, .Net x x

Service Component Architecture
(Passive SCA)

x x

CompAA, SoSAA, AgentComponents x x

Active Components [BRA 12],
CASOM [ABO 12]

x x x

Table 1.3. Approaches for integrating paradigms

Object, component, agent and service paradigms 43

1.6. Summary and discussion

We recall that our purpose through this chapter is to provide a cross-sectional
view of the four paradigms namely OOSE, CBSE, SOSE and AOSE.

The CBSE and the SOSE have two different points of view on the

relationship between the customer and the supplier. The SOSE comes from
certain functional requirements of specific application domains that have specific
needs in terms of agility and adaptability, while the CBSE is defined for a larger
purpose. The Service-oriented and component-oriented paradigms have a very
high granularity. However, a service-oriented paradigm is generally of higher
granularity than a component-based paradigm.

An ad hoc distinction between the agent-oriented and object-oriented

paradigms is that:

• The agent-oriented paradigms are more independent than the object-
oriented paradigms.

• The agent-oriented paradigms have a flexible, reactive, proactive and social
behavior.

• The agent-oriented paradigms have at least one control thread but may have
more.

Agent-oriented paradigms can be considered as active objects that
encapsulate both their state and behavior, and they can communicate by
exchanging messages. The agent-oriented paradigms represent a mechanism of
natural abstraction to decompose and organize complex systems just as the
object-oriented did before them. An agent-oriented paradigm is a system of
rational decision-making: we need an agent to be able to have a reactive and
proactive behavior and to be able to perform the interweaving of these two types
of behavior, if necessary.

Object-oriented paradigms are generally passive in nature: they need to

receive a message before they become active. Although object-oriented
paradigms encapsulate their state and behavior, they do not encapsulate
behavioral activation. Thus, any object-oriented can call any another object’s
public method. Once the method is called, the corresponding actions are
performed.

While this approach is sufficient for small applications in cooperative and

well-controlled environments, it is not suitable for large, concurrent or
competitive environments because the entire burden of invocation behavior will
be charged to the customer. However, it will be better if the invocation action
becomes a process of mutual consent.

44 Software architecture

According to these relevant observations, under the control of a single

organization, software systems must move from one environment towards an
open environment in which the system contains organisms that compete with
each other.

The object-oriented paradigm fails to provide an adequate set of concepts and

mechanisms for modeling complex systems. Individual objects have a fine-
grained behavioral granularity and the invocation method is a mechanism too
primitive to describe the different types of interactions that may occur.

An approach that is closely linked to that of the object-oriented approach is

based on software components. The most important factor behind the component
systems is the ultimate goal of software reuse. Essentially, a component-based
model enables developers to create and combine software as units of
deployment.

According to the description introduced for the component-based approach,

we can say that it is a top-down approach to the object-oriented approach;
therefore, it inherits all the properties of the object-oriented paradigms. The
similarities between the object-oriented and agent-oriented paradigms are also
present between the agent-oriented and component-based paradigms.

However, the components are not autonomous in the sense of the definition

of the independence of agents; in addition, just as the object-oriented paradigms,
the component-based paradigms do not have direct notions of responsiveness,
pro-activity and social behavior. The service-oriented approach is considered an
evolution of the component-based approach enriched by the principles of
dynamicity, discovery and composition. To sketch the basic ideas of
development we propose a characterization tree map shown in Figure 1.11.

Object, component, agent and service paradigms 45

Figure 1.11. Development of paradigms

1.7. Conclusion

In this chapter, we have shown a conceptual comparison framework between
the four software development paradigms (object-oriented, component-based,
agent-oriented and service-oriented). The main objective of this chapter is to
provide a clear specification of the conceptual differences between these
paradigms and their contribution to the description of software architectures.

Our analysis is carried out through a top-down approach, which focuses first

on the conceptual aspects of the different paradigms before developing the
qualities that result from them. Decisions and choices on this comparison
framework have a common goal to make it as generic as possible and
independent of any description of software architecture paradigm. Therefore, we
endeavor to increase its potential for reusability and ability to be applied to other
areas of software engineering.

The proposed framework is based on two dimensions: quantitative and

qualitative, where product and process represent the quantitative dimension. This
dimension introduces the concepts defined by each paradigm required in the
description of a software architecture. Meanwhile, the qualitative dimension
defines eight properties, which groups the elements that influence the quality of
software architecture.

Finally, the qualitative dimension allows users to express their own quality

factors using the eight selected quality criteria. This capacity to customize is

Encapsulation Reusability

Objects
Autonomy +

Encapsulation of
action choice

Composability

Components
Agents

Services

Dynamicity

46 Software architecture

provided by the notion of qualitative perspective that reflects the expertise of the
user. In fact, a perspective allows him to communicate their understanding of a
target quality through the way that they exploit and combine these properties.

1.8. Bibliography

[ABO 12] ABOUD N. A., Services-oriented integration of component and organizational
multi-agents models, Thèse de doctorat, Université de Pau et des pays de l’Adour,
2012.

[AMI 09] A MIRAT A., OUSSALAH M., « First-class connectors to support systematic
construction of hierarchical software architecture », Journal of object technology,
vol. 8, n° 7, p. 107-130, 2009.

[AND 08] ANDRÉ P., ARDOUREG., ATTIOGBÉC., « Composing components with shared
services in the KmeliaModel », Software composition, p. 125-140, 2008.

[ANI 08] ANIORTÉ P., LACOUTURE J., « CompAA : A self-adaptable component model for
open systems », 15th IEEE International conference and workshop on engineering of
computer based systems (ECBS’08), p. 19-25, 2008.

[BAR 06] BARBIER F., « An enhanced composition model for conversational
enterprise JavaBeans », Proceedings of the 9th international conference on
component-based software engineering (CBSE’06), p. 344-351, 2006.

[BAU 09] BAUDE F., CAROMEL D., DALMASSO C., DANELUTTO M., GETOV V., HENRIO L.,
PREZ C., « Gcm: a grid extension to fractal for autonomous distributed components »,
Annals of Telecommunications, vol. 64, p. 5-24, 2009.

[BEI 07] BEISIEGEL M., BOOZ D., EDWARDS M., HERNESS E., KINDER S., « Software
components: coarse-grained versus fine-grained », IBM Developer Works, 2007.

[BIA 07] BIANCO P., KOTERMANSKI R., MERSON P., Evaluating a services-oriented
architecture, Technical report, Software engineering institute, Carnegie Mellon
University, 2007.

[BOU 92] BOURON M.T., Structures de communication et d’organisation pour la
coopération dans un univers multi-agents, Thèse de doctorat de l’université Paris 6,
1992.

[BRA 12] BRAUBACH L., POKAHR A., « Developing distributed systems with Active
Components and Jadex », Scalable computing: practice and experience, vol. 13, n°2,
2012.

[BRE 07] BREIVOLD H.P., LARSSON M., « Component-based and services-oriented
software engineering: Key concepts and principles », Proceedings of the 33rd
EUROMICRO conference on software engineering and advanced applications, p. 13-
20, 2007.

Object, component, agent and service paradigms 47

[BRU 06] BRUNETONE., COUPAYET., LECLERCQM., QUÉMA V., STEFANIJ.B., « The
FRACTAL component model and its support in Java », Software practice and
experience, vol. 36, n° 11-12, p. 1257-1284, 2006.

[CAM 83] CAMMARATA S., MCARTHUR D., STEEB R., « Strategies of cooperation in
distributed problem-solving », International joint conference on artificial intelligence
(IJCAI), p.767-770, 1983.

[CAS 03] ALONSO G., CASATI F., KUNO H., MACHIRAJU V., Web services: concepts,
architectures and applications, Springer, Berlin, 2003.

[CAV 09] CAVALLARO L., NITTOE.D., PRADELLAM., « An automatic approach to enable
replacement of conversational services », ICSOC/ServiceWave, p. 159-174, 2009.

[COX 91] COX B.J., NOVOBILSKI A.J., Object-oriented programming: An evolutionary
approach, 2nd edition, Addison Wesley, Boston, 1991.

[CRN 06] CRNKOVIC I., CHAUDRON M., LARSSON S., « Component-based development
process and component lifecycle », International conference on software engineering
advances, p. 44, 2006.

[CRN 11] CRNKOVIĆ I., CHAUDRON M., SENTILLES S.,VULGARAKIS A., « A classification
framework for software component models », Journal : IEEE Transactions on
software engineering, vol. 37, n° 5, p. 593- 615, 2011.

[DRA 09] DRAGONE M., LILLIS D., COLLIER R., O’HARE G., « SoSAA: A framework for
integrating components & agents », Symposium on applied computing, ACM Press,
2009.

[DUR 89] DURFEE E.H., Coordination of distributed problem solvers, Kluwer Academic,
Boston,1989.

[DUS 05] DUSTDAR S., SCHREINER W., « A survey on web services composition »,
International journal of Web and grid services, vol. 1, n° 1, p. 1-30, 2005.

[EHR 05] EHRLER L., FLEURKE M., PURVIS M., TONY B., SAVARIMUTHU R., « Agent-based
workflow management systems », Journal of information systems and e-business
management, vol. 4, p. 5–23, 2005.

[ERI 08] ERICKSON J., SIAU K., « Web services, services-oriented computing, and
services-oriented architecture: separating hype from reality », Journal of database
management (JDM), vol. 19, n° 3, p. 42-54, 2008.

[FER 03] FERBER J., GUTKNECHTO., MICHELF., « From agents to organizations: An
organizational view of multi-agents systems », Agent-oriented software engineering
(AOSE), p. 214-230, 2003.

[GAR 97] GARLAN D., MONROE R.T., WILE D., « Acme: an architecture description
interchange language », Proceedings of the 1997 conference of the centre for
advanced studies on collaborative research (CASCON’97), p. 7, 1997.

[GAS 92] GASSER L., BRIOT J. P., « Object-based concurrent programming and
distributed artificial intelligence », in N. Avouris, L. Gasser (dir.), Distributed
artificial intelligence: Theory and praxis, p. 81-107, Kluwer, Norwell, 1992.

48 Software architecture

[GEE 08] GEEBELENK., MICHIELSS., JOOSENW., « Dynamic reconfiguration using
template based web service composition », Proceedings of the 3rd workshop on
middleware for service oriented computing (MW4SOC’08), p. 49-54, 2008.

[GOL 83] GOLDBERG A., ROBSON D., Smalltalk-80: The language and its
implementation, Addison-Wesley, Boston, 1983.

[HEI 01] HEINEMAN G.T., COUNCILL W.T., Component-based software engineering:
Putting the pieces together, Addision Wesley professional, Boston, 2001.

[HEW 73] HEWITT C., BISHOP P., STEIGER R., « A universal modular actor formalism for
artificial intelligence », In the 3rd International joint conference on artificial
intelligence (IJCAI’73), 1973.

[HEW 77] HEWITT C., « Viewing control structures as patterns of passing messages »,
Journal of artificial intelligence, vol. 8, n°3, p. 323-364, 1977.

[HEW 11] HEWITT C., « Actor model of computation: Scalable robust information
systems », Proceedings of inconsistency robustness, 2011.

[HOC 11] HOCK-KOON A., Contribution à la compréhension et à la modélisation de la
composition et du couplage faible de services dans les architectures orientées services,
Thèse de doctorat, Université de Nantes, 2011.

[HYA 96] HYACINTH S. N., « Software agents: An overview », Knowledge engineering
review, vol. 11, n°3, p. 205-244, 1996.

[JAC 05] JACOB D., « Enterprise software as service », Queue - enterprise distributed
computing, vol. 3, n° 6, p. 36-42, 2005.

[JEN 01] JENNINGS N.R., « An agent-based approach for building complex software
systems », Communications of the ACM, vol. 44, n° 4, p. 35-41, 2001.

[KAY 93] K AY A. C., « The early history of Smalltalk », ACM SIGPLAN Notices, vol. 28,
n° 3, p. 69-95, 1993.

[KIT 96] KITCHENHAM B., PFLEEGER S.L., «Software quality: the elusive target», IEEE
Software, special issues section, n° 1, p. 12-21, 1996.

[KRU 03] KRUTISCH R., MEIER P., WIRSING M., « The agent component approach,
combining agents, and components », 1st German conference on multi-agent system
technologies (MATES), p. 1-12, Springer, Berlin, 2003.

[MAR 09] MARINO J., ROWLEY M., Understanding SCA (Service component
architecture), 1st edition, Addison Wesley professional, Boston, 2009.

[MCI 68] MCILROY D., « Mass-produced software components », in J.M. Buxton, P.
Naur, B. Randell (dir.), Software engineering concepts and techniques, p. 88-98,
NATO Science Committee, 1968.

[MEY 93] MEYERB., « Systematic concurrent object-oriented programming »,
Communication ACM, 36, p. 56-80, 1993.

[MIC 13] MICROSOFT COM (Component Object Model) Technology, www.micro-
soft.com/com/default.mspx, 2013.

Object, component, agent and service paradigms 49

[MOH 08] MOHAMED A., ZULKERNINE M., « At what level of granularity should we be
componentizing for software reliability? », 11th IEEE High assurance systems
engineering symposium (HASE’08), p. 273-282, 2008.

[NIT 08] NITTOE.D., GHEZZIC., METZGERA., PAPAZOGLOUM., KLAUS P., « A journey to
highly dynamic, self-adaptive service-based applications », Automated software
engineering, vol. 15, n° 3-4, p. 313-341, 2008.

[OAS 08] OAS, Reference architecture for service oriented architecture, version 1.0,
2008, http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[OAS 09] OAS, Service component architecture assembly model specification, version
1.1, 2009, http://docs.oasis-opensa.org.

[OMG 12] OMG, Common object request broker architecture (CORBA), formal/2012-11-
16, www.omg.org/spec/CORBA/.

[OUS 99] OUSSALAH M. et al., Génie objet, Lavoisier, Paris, 1999.

[OUS 05] OUSSALAH M. et al., Ingénierie des composants : Concepts, techniques et
outils, Vuibert, Paris, 2005.

[PAP 07] PAPAZOGLOU M.P., HEUVEL W.J., « Service-oriented architectures: Approaches,
technologies and research issues », The VLDB Journal, vol. 16, p. 389-415, 2007.

[PES 00] PESCHANSKI F., MEURISSE T., BRIOT J.P., « Les composants logiciels : Evolution
technologique ou nouveau paradigme? », Actes de la conférence objets, composants,
modèles (OCM’00), Nantes, France, p. 53-65, 2000.

[SMI 81] SMITH R.G., DAVIS R., « Frameworks for cooperation in distributed problem-
solving », IEEE Transactions on systems, man and cybernetics, vol. 11, n° 1, p. 61-
70, 1981.

[SOM 04] SOMMERVILLE I., Software engineering, 7e edition, Addison Wesley, Harlow,
2004.

[SUT 05] SUTTER H., LARUS J., « Software and the concurrency revolution », ACM
Queue, vol. 3, n° 7, p. 54-62, 2005.

[STO 05] STOJANOVIC Z., DAHANAYAKE A., Services-oriented Software System
Engineering: Challenges and Practices, IGI Publishing, Hershey, PA, 2005.

[SZY 02] SZYPERSKI C., Component software: Beyend object-oriented programming,
Addison-Wesley Professional, Harlow, 2002.

[TAY 09] TAYLOR R.N., MEDVIDOVIC N., DASHOFY E., Software architecture:
Foundations, theory, and practice, Wiley-Blackwell, Chichester, 2009.

[THE 08] TheSeCSETeam, Service centric system engineering, EU Integrated Project,
2008, www.secse-project.eu/.

[VAN 07]V AN CUTSEM T., MOSTINCKX S., BOIX E.G., DEDECKER J., DE MEUTER W.,
« AmbientTalk: Object-oriented event-driven programming in mobile ad hoc
networks », Chilean computer science society, p. 3-12, 2007.

50 Software architecture

[VIN 97] V INOSKI S., « CORBA: Integrating diverse applications within distributed
heterogeneous environments », IEEE Communications magazine, vol. 14, 1997.

[WEI 91] WEISER M., The computer for the 21st century, p. 94-104, Scientific american,
New York, 1991.

[WOO 09] WOOLDRIDGE M., An introduction to multi-agent systems, 2de edition, John
Wiley & Sons, New York, 2009.

[ZEN 03] ZENGL., BENATALLAH B., DUMASM., KALAGNANAM J., SHENGQ.Z., « Quality
driven web services composition », Proceedings of the 12th international conference
on World Wide Web (WWW’03), p. 411-421, 2003.

[ZIN 08] ZINNIKUS I., HAHN C., FISCHER K., « A model-driven, agent-based approach for
the integration of services into a collaborative business process », Proceeding of
AAMAS, IFAAMAS’08, p. 241-248, 2008.

