
Automating the Evaluation of Usability Remotely for

Web Applications via a Model-Based Approach

Nouzha Harrati ∗†, Imed Bouchrika †, Abdelkamel Tari ∗ and Ammar Ladjailia †‡

∗ Department of Computer Science, University of Bejaia, Algeria

† Faculty of Science and Technology, University of Souk Ahras, Algeria

‡ Department of Computer Science, University of Annaba, Algeria

n.harrati@univ-soukahras.dz

Abstract—Usability for software systems has emerged as an

integral part of the continuous commercial success of IT

companies. This is partly due to the vital need to satisfy

customers' goals for systems becoming pervasive and ubiquitous

within our daily life. In this research study, we have explored the

use of task models to define how the user should interact with a

given system. Based on empirical data collected from end-users

participating within the usability evaluation of a web application,

data analysis is conducted to infer the usability degree. This is

carried out in compliance with the defined task model and

usability metrics describing efficiency of use. The proposed

approach is a milestone towards automating usability evaluation

as most of the studies are reporting manual-based methods to

assess the usability of software systems. Experimental results

performed to assess the usability of a website shows the potency

of the system to discover usability setbacks that can be addressed

to improve the user experience.

Index Terms—remote testing, task modeling, usability

evaluation.

I. INTRODUCTION

Positive user experience is of prime importance for

software development playing vital role for the continuous

commercial success of software companies. In fact, the

increase of customers base and loyalty are totally related to the

better design of products. Usability of software products is a

key characteristic to achieve the acceptance of users regardless

of their background, experience or orientation. Usability is

defined as the extent to which a product can be easily used by

specified users to achieve certain goals with effectiveness,

efficiency and satisfaction. In practice, the usability aspect of

software products is marginalized during the classical stages of

software development life-cycles pushing and devoting more

efforts resources into the software back-end to address the

functional requirements. In fact, regardless of how software are

neatly coded or sophisticated, recent studies of software sales

reports that software failures are due to usability reasons where

simply the user does not know how to use the purchased

product [1]. It is no doubt that usability is now recognized as

an important software quality attribute, earning its place among

more traditional attributes such as performance, robustness and

security.

The process of usability evaluation (UE) consists of

methodologies for measuring the ease-of-use aspects of the

user interface for a given software system and identifying

specific problems. In fact, Usability evaluation plays a vital

role within the overall user interface design process which

undergoes continuous and iterative cycles of design,

prototyping and testing. Evaluating the usability of interactive

systems is itself a process involving various activities

depending on the method utilized [2]. Empirical-based

usability methods require the participation of end users who are

instructed to interact with the software system. Meanwhile,

their behavior and interaction with the system are recorded and

observed by an expert. results are obtained from the users

through interviews and questionnaires where they are asked for

their opinions and concerns in addition to possible suggestions

of how to better improve the interface design and its usability.

In fact, one of the challenges in software development is to

involve end users in the design and development stages so as to

observe and analyze their behavior in order to collect feedback

in effective and efficient manner. Alternatively, usability

evaluation can be carried out through inspection methods

which aim to identifying interaction problems within the

interface or a prototype [12] without the involvement of end

users. The interface is assessed by an expert or usability

consultant for compliance to a set of predefined usability

guidelines or conventional set of heuristics [3].

Because of the dearth of approaches devoted to the

automated evaluation of the usability aspect for web

applications, we explore in this research study the use of a task

descriptor to define how the user should interact with a given

system. Based on empirical data collected from end-users

participating within the usability evaluation of the system, data

analysis is conducted to infer the usability level. This is carried

out in compliance with the defined task model and usability

metrics describing efficiency of use. Experimental results

performed to inspect the usability of a website shows the

potency of the system to discover usability issues that can be

addressed to improve the user experience. The proposed

approach is a milestone towards the automation of usability

evaluation as most of the studies are based on manual methods

to assess the usability of software systems.

This paper is organized as follows. The next section

outlines the previous approaches for automated usability

evaluation of software systems. The theoretical description of

the presented approach is described in sections 3. Section 4 is

devoted to show the experimental results attained for the

usability evaluation using the proposed approach on a real case

scenario.

II. RELATED WORK

Usability evaluation of web applications has received

considerable attention since the advent of the web. This is

partly due to the vital need to satisfy customer's goals for

systems becoming pervasive within our daily life. Ivory and

Hearst [2] presented a survey of tools for usability evaluation

according to a taxonomy based on four dimensions: method

class, method type, automation type and effort level. Ivory

argued that the automation of usability evaluation would help

to increase the coverage of testing as well as reduce

significantly the costs and time for the evaluation process.

Fernandez [3] surveyed the recent studies related to usability

evaluation where they have categorized the different methods

into broadly two main classes; empirical and inspection

methods. However, the majority of the surveyed research

studies are purely based on the manual or statistical analysis of

recorded activity data for the participants. Automated testing of

interactive systems enables the possibility of remote

evaluation. Tullis [4] conducted a comparative experiment

between remote and laboratory-based testing where they

emphasized the advantages of remote evaluation in terms of

costs and effectiveness.

Paganelli [5] worked on developing a desktop-based

application for recording and analysing interaction logs for

website systems based on a predefined task model. The

activities to be performed on a website are specified using the

notations for the ConcurTaskTrees environment [6] which

provides a graphical representation for the hierarchical logical

structure of the task model. Tiedtke [7] described a framework

implemented in Java and XML for automated usability

evaluation of interactive websites combining different

techniques for data-gathering and analysis. Their system uses a

task-based approach and incorporates usability issues. Atterer

[8] presented an implementation of UsaProxy which is an

application that provides website usage tracking functionality

using an HTTP proxy approach. Recently Vasconceols [9]

implemented an automated system called USABILICS for

remote evaluation based on interface model. Tasks to be

performed by a user are predefined using an intuitive approach

that can be applied for larger web systems. The evaluation is

based on matching a usage pattern performed by the user

against the one conducted by an expert of the system providing

a usability index for the probed application. Muhi [10]

proposed a general framework for usability evaluation that can

be tested in production systems. The framework takes as input

an XML configuration file describing the positioning of the

different interface elements of an application whilst user

activities are logged into a separate XML file. A validator

module is deployed to check the log-files according to

semantic rules that are defined within the usability data model.

Andrica et al. [11] presented the WaRR which is an automated

tool that records and replays with high fidelity the interaction

between users and modern web applications in this tool the

recording functionality is embedded in the web browser, it has

direct access to user keystrokes and clicks.

There are a number of commercially available tools that are

used for recording user traces for usability purposes. CrazyEgg

logs mouse events with the ability to visualize activity maps of

the more popular locations of clicks on a page. Web Criteria

Site Profile is another tool used to assess simple attributes of

usability including page loading time and ease of finding

content. This is based on automated agents browsing the

website to retrieve data making use of the GOM model. Web

TANGO is a software that employs the Monte Carlo simulation

and information retrieval methods to predict the user's behavior

and navigation paths. This is based on data acquired from

extensive experiments conducted against websites nominated

as successful having received higher user ratings.

Figure 1 : Proposed Framework for Remote Usability

Evaluation

III. PROPOSED APPROACH

The acceptability of interactive systems is usually based on

their utility and usability. The utility refers that the application

offers a service or a functionality for the user to achieve some

goal. Meanwhile the usability factor concerns how easy and

efficient the task is performed to achieve such utility. In order

to assess the usability aspect of a given web application, the

proposed system consists of three main phases: i) Task

Modeling ii) Usage Tracking, iii) Data Analysis. An overview

describing the proposed approach is shown in Figure (1).

During the first stage, a task model is laid out to describe how

to interact with the system. The modeling which is based on a

newly proposed tree-based graphical notation, is usually

performed by a usability expert. In the following phase, usage

data is tracked and recorded from users who are usually invited

to test the system remotely. Finally, automated analysis of the

collected usage data is carried out to assess how users data

adheres and complies well with the defined task model. Based

on usability metrics, the system can be trained to infer how

usable the system is.

A. Task-Based Descriptor

Traditionally, usability is measured through monitoring the

completion of certain goals or a task provided by an interactive

system. The satisfaction level can be evaluated by a usability

expert monitoring user's activities or through asking users to

fill in questionnaires. However, automated verification and

usability evaluation for achieving a defined set of tasks are

proven to be a difficult task especially for web applications.

This is partly due to the complex nature of web systems

involving many interaction styles that can vary with different

display hardware in addition to a large number of UI

components and events rendering formal modeling of user

behavior a challenging process. In this study, a fully

automated system for formalizing user interaction with a given

system guided through a set of rules describing certain goals to

be achieved by the end user. This is done through defining a

\textit{task model} by an expert to describe how the user

should interact with the system. The task model is mainly

utilized to capture all the interactions to be carried out by user.

The compliance with the defined model by users infers that the

system model believed to be the optimal use set by a usability

expert matches the user model. This can reflect better usability.

There are several approaches and notations for defining a task

model for usability evaluation such as ConcurTaskTree (CTT)

[6], Goals Operator Method and Selection rules (GOMS) [13]

and Hierarchical Task Analysis (HTA) [14].

The tree-based graphical representation introduced by

Harms et al. [15] for creating a task model from collected

usage traces of users is being adopted as the basis throughout

this research. In the same way as the CTT notation, task

models should offer the designers only with high level details

in order to focus on the overall interaction and flow of a user

interface without becoming distracted by the low-level details

by which the user interface is presented on various platforms

and styles of interaction. In this research study, we propose a

tree-based graphical representation for defining a task model

that should describe the tasks, actions and goals to be

performed by the user. The resulting task model tree represents

all interactions a user can perform on given software interface.

Tasks can be combined to describe higher level tasks. Using

the tree-based visual notation, the task model is an ordered

hierarchy of tasks or other elements to be performed in order to

satisfy a specific goal for a task. In order to enable automation

at later stages, goals for actions should have a way to infer

automatically whether a task is completed successfully based

on conditions and events. Consideration is made towards the

expressiveness of the visual notation which defines the

capability of the model to express user activities [16]. The

proposed task modeler is implemented as online application for

usability experts to create a task model for evaluating the

designed interface of their software systems.

A task consists of actions to be performed to achieve a

specific goal. This can be a basic task consisting mainly of

simple actions such as clicking a submit button, page scrolling

or typing a text into a text field. For each basic action, there

should be a mapping to an event caused by performing the

action. In addition, it can be a complex task composed from

other subtasks and advanced control blocks such as filling a

payment checkout form for an online shopping cart containing

many widgets with a number of options and conditions to be

verified. Various control blocks are employed for expressing

the temporal relationship for task children which determines

the number and order in which the subtasks must be performed

by the user to achieve a goal. Control blocks include sequence,

iteration and choice. The different notations used to describe

visually the different modeling blocks are explained as follows:

 Task : refers to a complex or basic task to be performed

by a user to achieve a goal. The syntax for creating a task

is given as:

Task : Goal Name

 Sequence : it describes an aggregated set of tasks that

must be performed by the user through the specified

order in which they appear.

 NoOrder : As opposed to the Sequence clause, this is

used to define that the subtasks can be executed

regardless of the specified order.

 Iteration : This refers to the case where the enclosed set

of tasks must be executed by the user zero or more times

depending on the specified cardinality.

 Choice : This is to specify that the user must choose a

task among a list of given tasks.

 Success : This control block is employed to deduce that a

task is completed successfully by the user. Criteria for

inference include different checking conditions including

simple event triggers to advanced verification as the use

of regular expression matching. The syntax for using the

Success clause is given as:

Success : KeyUp : Enter

To show that the parent task is performed successfully

when the enter key is released after being pressed. Other

event triggers include scroll, keyPress, mouseClick,

mouseOver ... etc. The following example illustrates the

use of regular expression using the pattern keyword to

verify the validity of an email address:

Success : pattern : [a-z0-9]+@[a-z]+.[a-z]{2,4}

 Action : This is the leaf of the hierarchical task tree

referring to simple events.

 ElementName : It is used to specify the HTML

component name that can be mapped to a given task

where the Success can use to verify completion of the

event. Other equivalent clauses can be used

including ElementID or ElementType.

The same operators defined in the CTT are implemented

within the proposed task modeling platform to add further

flexibility and control for the defined task model. In the same

way as the CTT tool, the same icons are added within the

graphical notion. This includes as an example Task Enabling

which refers that a task cannot be started until another task is

completed successfully. For better expressiveness, the

cardinality for a task can be specified indicating the possible

repetition of a task using the conventional syntax using for

UML modeling. For instance, 1..* refers to at least one or

more. The placement of cardinality condition is done at the left

side of the task box. As opposed to the work described by Long

<!DOCTYPE Usability [

<!ELEMENT Usability (Name, Website, Task*) >

<!ELEMENT Name (#PCDATA) >

<!ELEMENT Website (#PCDATA) >

<!ELEMENT Task

(Sequence*,NoOrder*,Choice*,Iteration*,Action*))>

<!ATTLIST Task URL CDATA #IMPLIED >

<!ATTLIST Task Description CDATA #IMPLIED >

<!ELEMENT Sequence

 (Task*,NoOrder*,Choice*,Iteration*,Action* >

<!ELEMENT NoOrder

 (Task* Sequence*,Choice*,Iteration*,Action*>

<!ELEMENT Choice

 (Task*,Sequence*,NoOrder*,Iteration*,Action*>

<!ELEMENT Iteration

 (Task*, Sequence*,NoOrder*,Choice*,Action*>

<!ELEMENT Action Success>

<!ATTLIST Action name CDATA #REQUIRED >

<!ELEMENT Success Trigger,

(ElementName|ElementID|ElementType|URL)?,CondArg*)

<!ELEMENT Trigger (#PCDATA) >

<!ELEMENT ElementName (#PCDATA) >

<!ELEMENT ElementID (#PCDATA) >

<!ELEMENT ElementType (#PCDATA) >

<!ELEMENT Condition (#PCDATA) >

<!ELEMENT CondArg (#PCDATA) >

]>

[17] where an alike of programming language is presented for

task modeling, procedures can be created within this study to

encapsulate certain business logic. However, the main focus is

devoted towards simplicity and usability hence avoid the

necessity to re-invent a fully programming language that needs

further training. Figure (2) shows an example for a task model

creating a for login page.

Figure 2 : Tree-based Task Descriptor Example

The graphical diagram for the tree-based task model can be

exported to XML format for portability, openness and

interoperability reasons as an initial step for a transformation

process to other models. Therefore, the XML file can be parsed

to assist with for automation of the usability evaluation (UE).

The Document Type Definition (DTD) of an XML document

describing the structure or format is considered for its

simplicity. Listing (1) shows the structure for the generated

XML document of the proposed task descriptor.

B. Usability Data Collection

Because of the setback that computer applications have not

been designed with an eye to user modeling [18], it becomes

vital and crucial to gain access to the stream of user actions to

get an insight for their experience. Consequently, various

research studies and software tools were proposed to devise

ways to extract and analyze useful usability information from

user interfaces. For usability analysis, it is typical to

automatically collect clicks, page views and visit duration in

order to determine conversion rates and website traffic. For the

course of this research, a JavaScript program is implemented to

log all user activities performed when browsing a given

website to get its usability assessed. To avoid the need to

install third party software on the client machine such as Java

virtual machine. This is one of merits of the approach to move

towards unintrusive automated testing of web applications. The

proposed tool is integrated by appending a single line of

JavaScript code into the web page without the need for the

website programmer to modify their existing application code.

The appending can be done either from the server side or by

using a custom browser plugin to automatically add the script

code into the browsed website.

Listing 1: DTD for the proposed task descriptor

Once the web page is loaded, the JavaScript tool is invoked

registering event handlers which are called for all events of

interest triggered by the user when interacting with the

interface. The events include typing, cursor movement and

mouse clicking. Recorded events should be always associated

with the browser timestamps that describes the date and time

information as timing is considered important for

understanding the order of events performed by the user. For

the events of typing and mouse clicking, identifying attributes

for the HTML element of interest that triggered the event are

Event:{

 "Timestamps": "1436717509880",

 "Type": "MouseClick",

 "ElementID": "button2",

 "ElementName": "double click",

 "ElementNodeName": "input",

 "ElementType": "button",

 "CursorX": "200",

 "CursorY":"310",

 "URL": www.usability.ws

}

recorded for every action to ease later matching between the

task descriptor and user data. These attributes include the node

name, id, name and type. The type attribute is used to

distinguish between form components such as radiobox, button

and input text. Example of logged data for a mouse click is

shown in Listing 2. The choice to record cursor movements is

to measure the traveled distance of the mouse. For a continuous

cursor motion, the starting and end points are recorded along

with their timestamps in order to estimate the traveled

Euclidean distance.

Listing 2: Example of logged data for a mouse click

The logged data is collected by the browser without

interfering with any existing JavaScript code. Because the data

is stored centrally on a remote server, the data is encoded in

JSON format and transmitted back at regular intervals to the

server for permanent storage. The submission into the server is

based on a buffer of a particular size to avoid bandwidth bottle

neck and network problems. A client session key is created for

every user with an expiry time of ten minutes. This is used to

map received data to their respective user. The IP address is

also recorded for geographical analysis in case is needed. The

data is stored into a relational database so that it can be

exported easily to other formats.

C. Automated Analysis of Usability Data

Despite longstanding research in data extraction and

mining, there is a dearth of automated methods for usability

evaluation based on user interaction traces. The described

approach falls under the category of benchmark usability test.

A set of benchmark tasks are predefined within the task based

descriptor which is created by a usability expert to describe the

goals to be achieved by the user. The task model is thereafter

compared to the collected usage data which includes all user

actions such as recorded mouse clicks and cursor movement.

The matching process is based on well-defined and

conventional metrics that reflect better usability. The chosen

metrics are chosen on the basis they can be quantified

automatically without the cooperation of the participants. The

usability metrics considered in this study include:

 Time spent per task : is defined as the total time taken to

achieve a particular task by a user. This metric is usually

used to measure the efficiency rate. Based on the task

descriptor, task duration is approximated through a

sequential search within the user traces for the Success

condition being met corresponding to the defined task.

 Completion rate: is also called the success rate which is

considered one of the most fundamental usability metrics.

The completion rate is typically measured as a binary

value for task success (coded as 1) or task failure (coded

as 0). Although, it is possible to define criteria for partial

task success, but for simplicity reasons, binary values are

considered. This is estimated in the same way as the task

duration.

 Mouse Clicks and Movement : This is to measure the

efforts undertaken by the user reflected through the use of

hand to moving or clicking the mouse. In practice, larger

number of clicks or longer distances of the cursor are

indication of poor usability and lower satisfaction level.

 Errors: defined as Unintended actions or fail actions

made by a user while doing a task in order to attempt a

specific goal. The automated process for discovering

error is to search the data log for non-compliance against

the task-descriptor. This provides a good criteria to

evaluate usability of the interactive system and infer the

correlation between the user and task model.

In fact, recent studies [9] have proposed to produce a

usability index. However, we believe that producing a number

that reflect the degree of good usability is a complex and

intricate task that should involve many factors. However,

automated evaluation can be achieved through statistical

analysis of data measuring the intra-correlation of estimated

metrics for collected data against optimal data by an expert.

Statistical analysis can be sufficient to identify major usability

problems. This includes cases where there is higher variance of

metrics among users.

IV. EXPERIMENTAL RESULTS

In order to explore the effectiveness of the proposed

approach for evaluating usability of web applications,

experiments are conducted using a newly developed website

where users are invited to use the site remotely. The web

application is an interactive online quiz containing questions

related to the tourism sector for the City of Souk Ahras. The

task descriptor is made to contain 4 consecutive tasks. During

the first task, the user is presented with a landing welcome

page containing a button to start the quiz. Subsequently,

participants would be taken throughout 5 different questions

with a single question on each page. Choices of multiple

answers are provided with each question. Thirdly, the user is

taken to a page to show them the score they have attained when

answering the questions with a button to continue the quiz. In

the last task, a form asking anonymously the user for personal

information such as gender, age range and their opinion

regarding how easy to use the website. The script for logging

user activities is hosted on an Amazon Cloud Services EC2 to

account for faster access. For legal and privacy concerns, users

are being told in advance that their traces are recorded for

improving user experience and analyzing website usability.

During the usability evaluation process, 44 participants

agreed to take part of the experiment. The rest of users did not

want to disclose their gender and age. Upon testing the

application, users are not required to install any software apart

from using their preferred browser to test the interface. All

actions and events performed by the users are recorded

automatically and non-intrusively into the log data-set. To

assess the usability evaluation, the discussed metrics are

computed automatically based on reading the task descriptor

and user traces. Metrics include number of clicks, duration and

cursor distance. This is computed individually for every higher

level task.

Figure 3: Estimated Usability Metrics for the four Tasks

Figure (3) shows the summative results obtained based on

the derived metrics for the four tasks. The user data is

estimated as the mean of measurements derived automatically

of all participants for the three shown dimensions: Task

duration, cursor distance and mouse clicks. The error bars in

the plot on the users data correspond to the standard deviations

of the measurements. It is observed that there is always a

considerable gap between the expert and users logged data with

the expert having always lower values compared to the average

user. For the case of task 2, there is a high variance among

users in terms of time in addition to the fact that there is a

remarkable difference between the expert and users which is

the same for task 4. This can be an indicative to a usability

drawback of the designed interface at this phase of the

application that needs to be addressed. Conversely, the number

of clicks seems to be consistent between the two parties for

most of the cases.

V. CONCLUSIONS

Usability which concerns the easiness of use for interactive

systems, is recognized as an important software quality

attribute, earning its place among more traditional attributes.

Because of the scarce nature of methods devoted to the

automated evaluation of the usability of web applications, this

research study is carried out to demonstrate the use of a newly

proposed task descriptor for automated remote evaluation.

Empirical data recorded from end-users participating in a case

study shows that usability metrics can be easily derived and

analyzed to infer further insights about the usability of

interactive systems.

REFERENCES

[1] M. Christine Roy, O. Dewit, and B. A. Aubert, “The impact

of interface usability on trust in web retailers,” Internet

research, vol. 11, no. 5, pp. 388–398, 2001.

[2] M. Y. Ivory and M. A. Hearst, “The state of the art in

automating usability evaluation of user interfaces,” ACM

Computing Surveys, vol. 33, no. 4, pp. 470–516, 2001.

[3] A. Fernandez, E. Insfran, and S. Abrah ao, “Usability eval-

uation methods for the web: A systematic mapping study,”

Information and Software Technology, vol. 53, no. 8, pp. 789–

817, 2011.

[4] T. Tullis, S. Fleischman, M. McNulty, C. Cianchette, and M.

Bergel, “An empirical comparison of lab and remote usability

testing of web sites,” in Usability Professionals Association

Conference, 2002.

[5] L. Paganelli and F. Patern`o, “Intelligent analysis of user

interactions with web applications,” in International con-

ference on Intelligent user interfaces, 2002, pp. 111–118.

[6] F. Patern`o, C. Santoro, and L. D. Spano, “Improving support

for visual task modelling,” in Human-Centered Software

Engineering. Springer, 2012, pp. 299–306.

[7] T. Tiedtke, C. M artin, and N. Gerth, “Awusa–a tool for

automated website usability analysis,” in Workshop on

Interactive Systems. Design, Specification, and Verification.

Rostock, Germany June, 2002, pp. 12–14.

[8] R. Atterer and A. Schmidt, “Tracking the interaction of users

with ajax applications for usability testing,” in Pro- ceedings of

the SIGCHI conference on Human factors in computing

systems. ACM, 2007, pp. 1347–1350.

[9] L. G. de Vasconcelos and L. A. Baldochi Jr, “Towards an

automatic evaluation of web applications,” in Proceedings of the

27th Annual ACM Symposium on Applied Computing. 2012,

[10] K. Muhi, G. Sz oke, L. J. F ul op, R. Ferenc, and A. “A semi-

automatic usability evaluation framework,” in Computational

Science and Its Applications–ICCSA 2013.

[11] S. Andrica and G. Candea, “Warr: A tool for high-fidelity web

application record and replay,” in 41st International Conference

on Dependable Systems & Networks, 2011.

[12] I. Bouchrika, L. Ait-Oubelli, A. Rabir, and N. Harrathi.

"Mockup-based navigational diagram for the development of

interactive web applications." In Proceedings of the 2013

International Conference on Information Systems and Design of

Communication, pp. 27-32. ACM, 2013..

[13] B. E. John and D. E. Kieras, “The goms family of user interface

analysis techniques: Comparison and contrast,” ACM

Transactions on Computer-Human Interaction (TOCHI), vol. 3,

no. 4, pp. 320–351, 1996.

[14] N. A. Stanton, “Hierarchical task analysis: Developments,
applications, and extensions,” Applied ergonomics, vol. 37, no.

1, pp. 55–79, 2006.

[15] P. Harms and J. Grabowski, “Usage-based automatic detection

of usability smells,” in Human-Centered Software Engineering.

Springer, 2014, pp. 217–234.

[16] S. Caffiau, D. Scapin, P. Girard, M. Baron, and F. Jambon,

“Increasing the expressive power of task analysis: Systematic

comparison and empirical assessment of tool-supported task

models,” Interacting with Computers, vol. 22, no. 6, pp. 569–

593, 2010.

[17] L. T. Long, N. T. Binh, and I. Parissis, “A new test modeling

language for interactive applications based on task trees,” in

Proceedings of the Fourth Symposium on Information and

Communication Technology. ACM, 2013, pp. 285–293.

[18] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K.

Rommelse, “The lumiere project: Bayesian user modeling for

inferring the goals and needs of software users,” in Conference

on Uncertainty in artificial intelligence, 1998

