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Abstract. In this paper, we study some results of existence and uniqueness of fixed points for a class of operators

satisfying an inequality of rational expressions. We prove that they are Picard mappings. Under certain conditions
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1. Introduction

The Banach contraction principle [1] has been the starting point of the development of a very

interesting field which is the fixed point theory and its applications. Banach’s work provided an

abstraction of the classical method of successive approximations introduced by Liouville, used

by Cauchy and developed in a first time by Picard in the proof of the existence and uniqueness
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of solutions of differential equations in the late 19th century. We note that Banach’s work was

established in the case of normed spaces and extended in metric spaces by Caccioppoli. After,

almost a century, this area has become a thriving field, for more details; see [2, 3, 5, 6, 12, 15,

28, 30, 32]. Note that the works of Kirk [14] and Browder [4] have developed the ideas by

introducing the geometry properties of spaces in the subject for the case of nonexpansive self

mappings.

In the mid-sixties ten, other fixed points results dealing with general contractive conditions

with rational expressions were appeared. The early works in this direction were established by

Dass and Gupta [7], Khan [13] and Jaggi [15]. For these contributions, the authors exploited

the continuous and not necessarily continuous cases of selfmappings depending on the nature

of the rational expression. For more details, see Rhoades [20] and the references therein.

In this work, we establish some results of the existence and uniqueness of fixed points con-

cerning a class of selfmappings involving general rational expressions by treating the continuous

and not necessarily continuous cases, this enable us to extend Khan’s [13] theorem. On the other

hand, based on our principal result given by Theorem 2.1, we check the Φ-quasinonexpansive

framework of our context. Moreover, by using Ruiz’s [26] results, we establish the convergence

of Mann and Ishikawa processes and the almost stability of Picard process.

2. Preliminaries

Definition 2.1. Let (X ,d) be a metric space and f a self mapping on X . We say that

(1) f is lipschitzian with constant of Lipschitz k ∈ R+ (or k-lipschitzian) if, for all (x,y) ∈

X2, we have

d( f (x), f (y))≤ kd(x,y);

(2) f is nonexpansive if, for all (x,y) ∈ X2, we have

d( f (x), f (y))≤ d(x,y);

(3) f is a contraction if f is k-lipschitzian with 0≤ k < 1.
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Definition 2.2. A function Φ : [0,+∞[−→ [0,+∞[ is called a comparison function if it satisfies

the following conditions;

(ı): Φ is monotone increasing;

(ıı): lim
n−→+∞

Φ
n(t) = 0; for all t > 0 (Φn stands for the nth iterate of Φ).

Definition 2.3. A function Φ : [0,+∞[−→ [0,+∞[ is called a c-comparison function if it satis-

fies;

(ı): Φ is monotone increasing;

(ıı):
∞

∑
n=0

Φ
n(t)< ∞ for all t > 0.

Remark 2.1. Every comparison function satisfies Φ(0) = 0 and Φ(t)< t,∀t > 0.

In the following we denote by C1 (resp. C2) the classes of comparison (resp. c-comparison)

functions on [0,+∞[. It is easy to observe that C2⊂C1 and the inclusion is strict as the following

example shows.

Example 2.1. Let Φ : [0,+∞[−→ [0,+∞[ defined by Φ(t) =
t

t +1
. Then Φ is a comparison

function but not a c-comparison function since Φn(t) =
t

nt +1
for t ≥ 0.

Definition 2.4. Let (X ,d) be a metric space and T : X −→ X a self mapping. Let x0 ∈ X be

fixed, we define the sequence {xn}n recursively by

xn+1 = T (xn) = T n+1(x0), ∀n ∈ N. (2.1)

The sequence defined by (2.1) is known as the sequence of successive approximations or

Picard iteration. The set of all fixed points of T will be denoted by F(T ).

Definition 2.5. Let (X ,d) be a metric space. A mapping T : X −→ X is called a (strict) Picard

mapping if there exists x? ∈ X such that F(T ) = {x?} and

T n(x0)−→ x? for all x0 ∈ X ;

In other words, the Picard iteration converges to the unique fixed point for any guess x0 ∈ X .

Example 2.2. Let (X ,d) be a complete metric space, the following examples are Picard self

mappings.
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(1) ( Banach 1922) [1]: Any contraction self mapping T on X ;

(2) ( Edelstein 1962) [9]: If (X ,d) is a compact metric space and f : X −→ X satisfying that

d( f (x), f (y))< d(x,y) for all (x,y) ∈ X2;

(3) ( Kannan 1968) [12]: T : X −→ X is a mapping for which there exists a ∈ [0,
1
2
[ such

that

d(T (x),T (y))≤ a[d(x,T (x))+d(y,T (y))] for all (x,y) ∈ X2;

(4) ( Boyd-Wong 1969) [3]: T a Φ-contraction, i.e.,

d(T (x),T (y))≤Φ(d(x,y)) for all (x,y) ∈ X2;

where Φ is a comparison function.

(5) ( Meir-Keeler 1969) [17]: T : X −→ X satisfying the following condition: given ε > 0,

there exists η > 0 such that

ε ≤ d(x,y)< ε +η =⇒ d(T (x),T (y))< ε.

(6) ( Zamfirescu 1972) [33]: T : X −→ X is a mapping for which there exist real numbers

α,β and γ satisfying 0≤ α < 1,0≤ β <
1
2

and 0≤ γ <
1
2

such that, for each x,y ∈ X ,

at least one of the following is true

(ı): d(T (x),T (y))≤ αd(x,y);

(ıı): d(T (x),T (y))≤ β [d(x,T (x)+d(y,T (y)]);

(ııı): d(T (x),T (y))≤ γ[d(x,T (y)+d(y,T (x)]).

(7) ( Ciric 1981): T : X −→ X satisfying the following condition:

d(T (x),T (y))< d(x,y) for all (x,y) ∈ X2,x 6= y;

and given ε > 0, there exists η > 0 such that

ε < d(x,y)< ε +η =⇒ d(T (x),T (y))< ε

Remark 2.2. We note that the conditions indicated in 1, 2 and 4 of the above example ensures

that the self mapping T is continuous at any point of X which is not the case for the other self

mappings.
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Example 2.4. Let (X ,d) = ({−1,0,1,2}, |.|) and T a self mapping on X defined by

T (x) =

 0 if x 6= 2,

−1 if x = 2.

Thus, T is a Kannan mapping. Indeed, we have

d(T (x),T (y))≤ 1 =
1
3

d(2,T (2))≤ 1
3

d(x,T (x))+
1
3

d(2,T (2)).

But it is easy to observe that T is not continuous at the point 2.

3. Main results

We start our results by the following theorem

Theorem 3.1. Let T be a continuous selfmapping defined on a complete metric space (X ,d)

satisfying the following condition:

d(T (x),T (y))≤ Φ1[d(x,T (x))]Φ2[d(x,T (y))]+Φ4[d(y,T (y)),d(y,T (x))]
Φ2[d(x,T (y))]+Φ3[d(y,T (x))]

(3.1)

for all x,y ∈ X. Here, without loss of generality, we assume that

Φ2[d(x,T (y))]+Φ3[d(y,T (x))] 6= 0, (?)

where:

H1): Φ1,Φ2,Φ3 : [0,+∞[−→ [0,+∞[ such that
+∞

∑
n=1

Φ
n
1(t)<+∞ together with Φ1 nondecreasing

and Φ2(t) = Φ3(t) = 0 if and only if t = 0.

H2): Φ4 : [0,+∞[×[0,+∞[−→ [0,+∞[ and Φ4(t1, t2) = 0 if t1 = 0 or t2 = 0.

Then T is a Picard mapping on X.

Proof. First, we show the uniqueness. Suppose there exist u,v ∈ X with u = T (u) and v = T (v)

satisfying (?) with u 6= v. Then:

d(u,v) = d(T (u),T (v))≤ Φ1[d(u,T (u))]Φ2[d(u,T (v))]+Φ4[d(v,T (v)),d(v,T (u))]
Φ2[d(u,T (v))]+Φ3[d(v,T (u))]

=
Φ1[d(u,u)]Φ2[d(u,v)]+Φ4[d(v,v),d(v,u)]

Φ2[d(u,v)]+Φ3[d(v,u)]

= 0.
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The fact that d(u,v) 6= 0 implies that d(u,v)< 0 which is a contradiction, consequently u = v.

To show the existence, Let us select x0 ∈ X and define the sequence xn = T (xn−1) = T n(x0).

For n≥ 1, we have

d(xn,xn+1)≤
Φ1[d(xn−1,xn)]Φ2[d(xn−1,xn+1)]+Φ4[d(xn,xn+1),d(xn,xn)]

Φ2[d(xn−1,xn+1)]+Φ3[d(xn,xn)]
,

which implies that

d(xn,xn+1)≤Φ1[d(xn−1,xn)]

≤Φ
(2)
1 [d(xn−2,xn−1)]

...

≤Φ
(n)
1 [d(x0,x1].

For m > n≥ 0, we obtain

d(xn,xm)≤ d(xn,xn+1)+d(xn+1,xn+2)+ ...+d(xm−1,xm)

≤Φ
(n)
1 [d(x0,x1)]+Φ

(n+1)
1 [d(x0,x1)]+ ...+Φ

(m−1)
1 [d(x0,x1)]

=
m−1

∑
k=n

Φ
(k)
1 [d(x0,x1)].

The fact that Φ1 ∈C2 implies that

d(xn,xm)−→ 0 as m,n−→+∞.

This gives that {xn}+∞

n=0 is a Cauchy sequence and since X is complete, there exists x∗ ∈ X with

xn −→ x∗ if n−→+∞. Moreover, the continuity of T yields that

x∗ = lim
n−→+∞

xn+1 = lim
n−→+∞

T (T n(x0)) = T (x∗).

Therefore x∗ is a fixed point of T.

Remark 3.1. In the case where there exist x,y∈X for which Φ2(d(x,T (y)))+Φ3(d(y,T (x))) =

0, we add the assumption d(T (x),T (y)) = 0. For this situation, the existence of the fixed point is

obvious. Indeed, we obtain that d(x,T (y)) = d(y,T (x)) = 0, which gives that y = T (x) = T (y)

and hence y is a fixed point of T .

In the next theorem, we study the existence of unique fixed points of T without the continuous

hypothesis.
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Theorem 3.2. Let T be a selfmapping defined on a complete metric space (X ,d). Under

assumptions H1) and H2) of Theorem 3.1 and, if one of the following cases hold:

(1)
Φ4(t3, t4)

Φ3(t4)
≤ Φ̃(t3),∀t3, t4 ∈]0,+∞[ where Φ̃ : [0,+∞[−→ [0,+∞[ satisfying that

I− Φ̃ : [0,+∞[−→ [0,+∞[ is bijective and strictly nondecreasing.

(2) Φ1,Φ3 and t −→ Φ4(., t) are continuous at 0 together with the continuity of Φ2 on

]0,+∞[.

Then T is a Picard mapping on X.

Proof.

(1) The uniqueness part is obvious. To prove the existence, let x0 ∈ X , and xn = T n(x0),n≥

1. Assume that xn 6= xn+1. By (3.1) and (?), we have

d(xn,xn+1) = d(T (xn−1),T (xn))

≤ Φ1[d(xn−1,T (xn−1))]Φ2[d(xn−1,T (xn))]+Φ4[d(xn,T (xn)),d(xn,T (xn−1))]

Φ2[d(xn−1,T (xn))]+Φ3[d(xn,T (xn−1))]
,

= Φ1[d(xn−1,T (xn−1))],

which implies d(xn,xn+1)≤Φ
(n)
1 [d(x0,x1)] Thus, for m > n, we deduce that

d(xn,xm)≤
m−1

∑
k=n

Φ
(k)
1 [d(x0,x1)].

Since Φ1 ∈C2, it follows that d(xn,xm)−→ 0, ( n,m−→+∞), which shows that {xn}+∞

n=0

is a Cauchy sequence. But (X ,d) is a complete metric space, therefore {xn}+∞

n=0 con-

verges to some x∗ ∈ X .

On the other hand, if y 6= T (x), we have

d(T (x),T (y))≤ Φ1[d(x,T (x))]Φ2[d(x,T (y))]+Φ4[d(y,T (y)),d(y,T (x))]
Φ2[d(x,T (y))]+Φ3[d(y,T (x))]

≤Φ1[d(x,T (x))]+
Φ4[d(y,T (y)),d(y,T (x))]

Φ3[d(y,T (x))]

≤Φ1[d(x,T (x))]+ Φ̃[d(y,T (y))].

In the case y = T (x), we obtain that d(T (x),T (y))≤Φ1[d(x,T (x))]. By combining the

two cases, we get

d(T (x),T (y))≤Φ1[d(x,T (x))]+ Φ̃[d(y,T (y))]
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for all x,y. It follows that

d(x∗,T (x∗))≤ d(x∗,xn)+d(xn,T (x∗))

= d(x∗,xn)+d(T (xn−1),T (x∗))

≤ d(x∗,xn)+Φ1(d(xn−1,T (xn−1)))+ Φ̃(d(x∗,T (x∗))).

Thus,

d(x∗,T (x∗))≤ (I− Φ̃)−1[Φ1(d(xn−1,xn))+d(x∗,xn)]

≤ (I− Φ̃)−1[Φ1(Φ
(n−1)
1 d(x0,x1))+d(x∗,xn)]

= (I− Φ̃)−1[Φ
(n)
1 (d(x0,x1))+d(x∗,xn)].

The fact that I − Φ̃ is bijective and strictly nondecreasing implies that I − Φ̃ is con-

tinuous with Φ̃(0) = 0, hence (I− Φ̃)−1 is bijective, strictly nondecreasing and con-

tinuous mapping. Using this with the fact that C2 ⊆ C1 and letting n −→ +∞, we get

d(x∗,T (x∗)) = 0. This gives that T (x∗) = x∗. This gives the result for the first case.

(2) By the same analysis given above, assume that T (x?) 6= x?. Then

d(xn,T (x∗))≤
Φ1[d(xn−1,xn)]Φ2[d(xn−1,T (x∗))]+Φ4[d(x∗,T (x∗)),d((x∗,xn)]

Φ2[d(xn−1,T (x∗))]+Φ3[d(x∗,xn)]
.

Taking the limit as n −→ ∞ and following our assumptions, yields d(x?,T (x?)) ≤ 0,

which is contradiction. Thus x? is a fixed point of T . This completes the proof for the

case 2.

Example 3.1. In the case Φ1(t) = kt,Φ2(t) = t,Φ4(t1, t2) = kt1t2 and Φ3(t) = t with 0≤ k < 1,

we find Khan’s fixed point theorem [13].

Example 3.2. Let X = {z ∈ C/z = eiθ (0 ≤ θ ≤ π)} equipped with the metric d(x,y) =

d(eiθ1,eiθ2) = |θ1−θ2|. Let (0≤ α < 1) and let T be a self mapping on X satisfying that

d(T (x),T (y))≤ αd(x,T (x))(ed(x,T (y))−1)+(1− cos(d(y,T (y))))(1− cos(d(y,T (x))))
(ed(x,T (y))−1)+ ln(1+d(y,T (x)))

togeth-

er with (?). Then T has a unique fixed point in X .

4. Applications
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We start this section by to give the concept of ϕ-quasinonexpansive mappings.

Definition 4.1. Let T be a selfmapping defined on a metric space (X ,d). We say that T : X −→

X is a ϕ-quasinonexpansive mapping if F(T ) 6= /0 and there exists a function ϕ : [0,+∞[−→

[0,+∞[ such that

d(T (x),z)≤ ϕ(d(x,z)),

for all x ∈ X ,z ∈ F(T ).

Example 4.1. Let (X ,d) be a complete metric space, the following mappings are ϕ-quasinonexpansives:

(1) k-lipschitzian mappings, by taking ϕ(t) = kt, t ∈ R+.

(2) Kannan mappings, by taking ϕ(t) =
a

1−a
t, t ∈ R+.

(3) Zamfirescu mappings, by taking ϕ(t) = ξ t, t ∈ R+, here ξ = max{α,
β

1−β
,

γ

1− γ
}.

Fore more details on the class of ϕ-quasinonexpansive mappings, we refer to [26].

Definition 4.2. A function Φ : [0,+∞[−→ [0,+∞[ is called subadditive if for all t1, t2 ∈ [0,+∞[,

we have Φ(t1 + t2)≤Φ(t1)+Φ(t2).

Theorem 4.1. Assume that the assumptions of Theorem 3.1 (resp. Theorem 3.2) are satisfied.

If in addition Φ1 is a subadditive strictly nondecreasing function with Φ1 ≤min{Φ2,Φ3}, then

T is Φ2-quasinonexpansive selfmapping.

Proof. We have proven that T has a unique fixed point x∗. Let x ∈ X with x 6= x∗, then

d(T (x),x∗) = d(T (x),T (x∗))≤ Φ1[d(x,T (x))]Φ2[d(x,x∗)]+Φ4[d(x∗,x∗),d(x∗,T (x))]
Φ2[d(x,x∗)]+Φ3[d(x∗,T (x))]

=
Φ1[d(x,T (x))]Φ2[d(x,x∗)]

Φ2[d(x,x∗)]+Φ3[d(x∗,T (x))]
.

The triangle inequality gives that

d(x,T (x))≤ d(x,x∗)+d(x∗,T (x)).

Since Φ1 is nondecreasing, we find that

Φ1(d(x,T (x)))≤Φ1(d(x,x∗)+d(x∗,T (x))).
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Following the subadditivity of Φ1, we get

Φ1(d(x,T (x)))≤Φ1(d(x,x∗))+Φ1(d(x∗,T (x))).

The fact that Φ1 ≤min{Φ2,Φ3} gives that

Φ1(d(x,T (x)))≤Φ2(d(x,x∗))+Φ3(d(x∗,T (x))).

Consequently, we have

d(T (x),x∗)≤ Φ1[d(x,T (x))]Φ2[d(x,x∗)]
Φ1[d(x,T (x))]

= Φ2[d(x,x∗)],

which gives the result.

Now, we give the definition of convex metric spaces introduced by Takahashi [31] which play

an important role in the development of the fixed point theory as an extension of Banach spaces.

Definition 4.3. A convex metric space (X ,d,⊕) is a metric space (X ,d) together with a con-

vexity mapping ⊕ : X×X× [0,1]−→ X satisfying

d(z,(1−λ )x⊕λy)≤ (1−λ )d(z,x)+λd(z,y),

for all x,y,z ∈ X ,λ ∈ [0,1].

Example 4.2. Normed spaces, Hilbert ball and R-trees are good examples of convex metric

spaces.

Mann iteration ([16]): If (X ,d,⊕) is a convex metric space. The normal Mann iteration proce-

dure or Mann iteration, starting from x0 ∈ X is the sequence defined by

xn+1 = (1−αn)xn⊕αnT (xn), for all n ∈ N, (4.1)

where {αn}n ⊂ [0,1].

Originally, the Mann iteration was defined in a matrix formulation (see Chapter 4 of [2]).

This iterative process was introduced in 1953 by Mann, its convergence was established in the

framework of Banach spaces and extended to the locally convex Haussdorff linear topological

spaces setting by Dotson [8].



66 NADJEH REDJEL, ABDELKADER DEHICI

Ishikawa iteration ([11]): The Ishikawa scheme is given by yn = (1−βn)xn⊕βnT (xn),

xn+1 = (1−αn)xn⊕αnT (yn), for all n ∈ N,
(4.2)

where x0 ∈ X and {αn}n and {βn}n are sequences in [0,1]. It can be seen as a sort of two-step

Mann iteration with two different parameters sequences. This iterative process was first intro-

duced by Ishikawa in 1974, in order to approximate fixed points of some classes of operators

for which Mann iteration does not converge as the following examples shows.

Hicks and Kubicek (1977): Let H be the complex plane, K = {z ∈H : |z| ≤ 1} and T : K −→ K

given by

T (reiθ ) =


2rei(θ+ π

3 ), if 0≤ r ≤ 1
2

;

ei(θ+ 2π

3 ), if
1
2
< r ≤ 1.

The above example shows that T is not continuous, its unique fixed point is the point (0,0), but

the Mann iteration with αn =
1

n+1
does not converge to this fixed point.

In the case where bn = 0, Ishikawa iteration reduces to the Mann iteration. There is not

a general dependence between convergence results for Picard, Mann and Ishikawa iterations.

However, some partial results on the equivalence of these processes have been given by Rhoades

and Soltuz (see [21, 22, 23, 24, 25, 29]).

By using Theorem 4.1 together with ([26], Theorem 3.7), we obtain the following result for

the convergence of the iterative schemes of Mann and Ishikawa.

Proposition 4.1 Let (X ,d,⊕) be a convex complete metric space. Let {αn}n and {βn}n be two

real sequences in [0,1] such that {αnβn}n converges to some positive real number, let x0 ∈ X.

Under the assumptions of Theorem 4.1 with Φ2 a continuous comparison function. Then, the

Ishikawa sequence given by (4.2) converges to the unique fixed point of T . Moreover, if {βn}n

is the constant sequence equal to 0, the Mann iteration given by (4.1) converges to the same

unique fixed point of T .

Remark 4.1. Notice that for Picard, Mann and Ishikawa iterations, each of them has its peculiar

advantage. The merit of the Picard iteration is that is simple. Also, if we make a mistake during

computation of fixed points when using this process, the particular point (at which error is
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introduced) will be converted to another initial point there by needing more time to reach the

solution but this is not true for other techniques.

Recall that for the case of numerical stability, we say that a fixed point iteration process

is numerically stable if small perturbation in the initial data induces a small influence of the

computed value of the fixed point. For the remainder of our study, we need the following two

definitions about stability of a general iterative processes.

Definition 4.4. Let (X ,d) be a metric space, T : X −→ X a self mapping of X . Let {xn}n ⊂ X

be the sequence generated by an iteration involving T and defined by

xn+1 = f (T,xn), for all n ∈ N (4.3)

where x0 ∈ X and f is some function. Assume that {xn}n converges to a fixed point z0 of T .

Let {yn}n ⊂ X and we define

εn := d(yn+1, f (T,yn)) for all n ∈ N

Then

(ı): the iteration process (4.3) is said to be T -stable if lim
n−→∞

εn = 0 implies lim
n−→∞

yn = z0.

(ıı): the iteration process (4.3) is said to be almost T -stable if ∑
n∈N

εn <∞ implies lim
n−→∞

yn =

z0.

For more informations and interesting comments on these notions of stability, we can see [18].

On the other hand, it is easy to observe that an iterative process (4.3) which is T -stable is

almost T -stable but the converse is not true in general (see the counter example given in [19]).

Furthermore, the iterative processes can converge without being stable. Indeed, the following

example given in [10, 19] confirms this.

Example 4.3. Let (X ,d) = ([0,1], |.|) and T : [0,1] −→ [0,1],T (x) = x. It is easy to observe

that F(T ) = [0,1].

The case of Picard iteration: Let z0 ∈]0,1] and xn+1 = T (xn) = T n+1(x0) is a stationary

sequence which equal to x0, this implies that its limit is x0. On the other hand, if we take y0 = 0
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and yn =
1
n

for n≥ 1, we obtain that

|yn+1−T (yn)|=
1

n(n+1)
−→ 0.

but lim
n−→+∞

yn = 0 6= z0. This shows that Picard iteration converges but not T -stable.

The case of Mann iteration: Let z0 ∈]0,1] , {αn}n ⊆ [0,1] and xn+1 = (1−αn)xn +αnxn =

xn = x0 for all n≥ 1. Let x0 = y0 and yn =
1

n+1
. Thus

εn = |yn+1− (1−αn)yn−αnT (yn)|=
1

(n+1)(n+2)
−→ 0.

but lim
n−→+∞

yn = 0 6= z0. This shows that Mann iteration converges but not T -stable.

In the following result, we establish the almost stability of Picard’s iterative process for our

context of self mappings.

Corollary 4.1. Let (X ,d) be a complete metric space. Assume that T : X −→ X is a self

mapping of X satisfying the assumptions of Theorem 3.1 with Φ2 a continuous comparison

function. If z0 is the unique fixed point of T . Let x0 ∈ X and xn+1 := T (xn),n ∈ N be the Picard

process. Let {yn}n ⊂ X and define {εn}n by

εn := d(yn+1,T (yn)) for all n ∈ N

If ∑
n∈N

εn < ∞, then lim
n−→∞

yn = z0. In other words, the Picard process is almost T - stable.

Proof. The result is established by combining the fact that T is Φ2-quasinonexpansive together

with Theorem 4.5 in [26].
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