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ON SOME PROPERTIES OF SPECTRA AND ESSENTIAL

SPECTRA IN BANACH SPACES

ABDELKADER DEHICI

Abstract. In this paper, we study diverse properties satisfied by the
spectra, Wolf and Weyl essential spectra of bounded linear operators
and their links with the structures of Banach spaces.

1. Introduction and notations

There is no secret that spectral theory is an important part of functional
analysis which plays a key role in the development of pure and applied
mathematics at the same time but it is related closely to the functional
frameworks on which it is defined and their geometrical structures. Leav-
ing from the simple topological framework in which they are used, Banach
spaces and their classification (up to isomorphism) turned out to be a very
difficult subject and out of reach. The first questions that have attracted the
attention of specialists consist whether there exist indecomposable Banach
spaces. This question is not a coincidence because in general Banach spaces
which we are accustomed are crosslinked (functions spaces, sequences space,
. . . ) whose structures are well understood.

Work in this direction began with the relevant results from 1991 and
established by T. Gowers and B. Maurey solving the unconditional bases
problem. Indeed, they constructed a Banach space without an uncondi-
tional basic sequence such that its norm appears to be a fixed point of a
convenable functional. However their space is reflexive (and hence is sepa-
rable), and it possesses a very strange property; it is a H.I. Banach space
(hereditarily indecomposable Banach space), in other words, it does not
contain any decomposable closed infinite-dimensional subspace. Moreover,
this space is not isomorphic to its closed subspaces, in particular it is not
isomorphic to its hyperplanes, this answers negatively a question given by
S. Banach that remained open for a longtime. This discovery has allowed us

2010 Mathematics Subject Classification. 47A10 47A53.
Key words and phrases. Banach space, Spectrum, Wolf essential spectrum, Weyl es-

sential spectrum, Fredholm operator, index.



220 ABDELKADER DEHICI

to divide the structures of Banach spaces into two categories, those which
have subspaces that have an unconditional basis and those which contain
hereditarily indecomposable subspaces.

The purpose of this paper is to study and make the rounds on a lot of
questions within the scope of bounded linear operators theory and Fred-
holm, semi-Fredholm perturbations by exploiting the two directions of the
geometry of Banach spaces.

The paper is organized as follows: In Section 2, the surjectivity of the
spectra, Wolf and Weyl essential spectra maps are discussed. Section 3 is
devoted to the description and characterization of lifting sets for various
Banach spaces while the Section 4 deals with the problem of Salinas (also
called West-Stampfli decomposition) and its extension to the case of semi-
Fredholm perturbations and finally, we close this work by some comments
and interesting questions.

Let X be a complex infinite-dimensional Banach space and let L(X)
the space of all bounded linear operators on X while K(X) designates
the subspace of all compact operators on X. If A ∈ L(X), we write
N(A) ⊆ X and R(A) ⊆ X for the null space and range of A. We set
α(A) := dimN(A), β(A) := codim R(A). Let A ∈ L(X) have a closed range.
Then A is a Φ+-operator (A ∈ Φ+(X)) if α(A) <∞, and A is a Φ−-operator
(A ∈ Φ−(X)) and if β(A) < ∞. For A ∈ Φ∓(X) = Φ−(X)

⋃
Φ+(X), the

index of A is defined by i(A) = α(A)−β(A) ∈ Z
⋃
{±∞}. An operator T is

semi-Fredholm if T has closed range and min .ind(T ) = min{α(T ), β(T )} is
finite. The set of semi-Fredholm operators Φ∓(X) is open, and the index is a
locally constant function invariant under compact perturbations ( [30], The-
orems 16 and 17, p. 161). Operators in Φ(X) = Φ+(X)

⋂
Φ−(X) are called

Fredholm operators. We denote by Φ0(X) the set of Fredholm operators of
indices 0. The spectrum of A will be denoted dy σ(A). The point spectrum
of A, σp(A) is the set of scalars λ ∈ C such that λI − A is not one-to-one
(the set of eigenvalues of A). the residual spectrum of A, σr(A) is the set
of scalars λ ∈ C such that λI −A is one-to-one and R(A) is not dense in X
while the continuous spectrum σc(A) is the set of scalars λ ∈ C such
that λI − A is one-to-one and R(A) is dense but not closed in X. The re-
solvent set of A, ρ(A), is the complement of σ(A) in the complex plane.
A complex number λ is in ϕ+A, ϕ−A, ϕ∓A, ϕA or ϕ0

A if λI − A is in
Φ+(X),Φ−(X),Φ∓(X), Φ(X) or Φ0(X).

Let A ∈ L(X). A point λ ∈ σ(A) is in the Kato essential spectrum,
σK(A) if λ /∈ ϕ∓A. A point λ ∈ σe(A) is in the Wolf essential spectrum,
if λ /∈ ϕA. The Weyl essential spectrum σw(A) =

⋂
K∈K(X) σ(A + K) is

nothing else but C\ϕ0
A. All these essential spectra are non-empty compact
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sets in the complex plane with the following inclusions:

∂σe(A) ⊆ σK(A) ⊆ σe(A) ⊆ σw(A) ⊆ σ(A).

(where ∂σe(A) is the boundary of the set σe(A)).
The set of non-smooth points of ϕ∓A denoted by σns(A) is given by

σns(A) = {λ ∈ ϕ∓A : min ind(λI −A) 6= 0}.

Remark 1.1. Noting that the modern names of Kato essential spectrum
and Wolf essential spectrum are respectively, semi-Fredholm essential spec-
trum and Fredholm essential spectrum (see [1, 2]).

Proposition 1.1.

(ı) ϕ+A, ϕ−A, ϕ∓A, ϕA and ϕ0
A are open sets in the complex plane,

(ıı) α(λI − A) and β(λI − A) are constant on any component of ϕA
except at a discrete set of points.

It is known (see [8]) that the set ϕ∓A can be written as a disjoint union
of components

⋃∞
k=0Ck where the components Ck, k 6= 0 are bounded and

only C0 is the unique unbounded component.
Now, we give some definitions and properties of diverse classes of pertur-

bations and some categories of Banach spaces which will be used latter.
Let F ∈ L(X). F is called a Fredholm perturbation if U + F ∈ Φ(X)

whenever U ∈ Φ(X). F is called a upper (resp. lower) semi-Fredholm
perturbation if F +U ∈ Φ+(X) (resp. Φ−(X)) whenever U ∈ Φ+(X) (resp.
Φ−(X)). The sets of Fredholm perturbations, upper (lower) semi-Fredholm
perturbations are denoted by F(X),F+(X),F−(X). It is shown that all
these sets are closed two-sided ideals in L(X) [14,32,33].

Proposition 1.2. ( [14], Proposition 3, p. 70) Let X be a complex infinite-
dimensional Banach space and let F ∈ F(X), then ind(A + F ) = ind(A)
for all A ∈ Φ(X).

Remark 1.2. An operator R ∈ L(X) is called a Riesz operator if σe(R) =
{0}. Let R(X),S(X) and CS(X)(X) denote respectively the class of Riesz
operators, strictly singular and strictly cosingular operators on X (see [26,
32,36]). We recall that Riesz operators satisfy the Riesz-Schauder theory of
compact operators, R(X) is not in general an ideal of L(X) [7] and we have
the following inclusions

K(X) ⊆ S(X) ⊆ F+(X) ⊆ F(X) ⊆ R(X).

and
K(X) ⊆ CS(X) ⊆ F−(X) ⊆ F(X) ⊆ R(X).

The containment S(X) ⊆ F+(X) is due to Kato [26] while the inclusion
CS(X) ⊆ F−(X) was proved by Vladimirskii [36].
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Let {xn}n be a sequence of vectors in a Banach space X. A series
∑∞

n=1 xn
such that

∑∞
n=1 xπ(n) converges for every permutation π of N is said to be

unconditionally convergent. A basis {xn}n of a Banach space X is said to
be unconditional if for every x ∈ X, its expansion in terms of the basis∑∞

n=1 anxn converges unconditionally.
The basis constant of {xn}∞n=1 is defined as the smallest K such that for

any choice of scalars {an}n and any integers m < n, we have

‖
m∑
i=1

aixi‖ ≤ K‖
n∑
i=1

aixi‖.

If {xn}n is an unconditional basic sequence with an unconditional constant
K. Then, for every choice of scalars {an}n such that

∑∞
n=1 anxn converges

and every choice of bounded scalars {λn}∞n=1, we have

‖
∞∑
n=1

λnanxn‖ ≤ 2K sup
n
|λn| ‖

∞∑
n=1

anxn‖.

For more details concerning the unconditional basic sequence and its prop-
erties, we can refer to [27].

Definition 1.1. [4] Let X be a complex infinite-dimensional Banach space
and let A ∈ L(X). We say that A satisfies the problem of Salinas if there
exists K ∈ K(X) such that σ(A+K) = σω(A).

Remark 1.3. Notice that if the problem of Salinas is satisfied for every
bounded linear operator on X, then Riesz operators have the classical West
decomposition [38], in other words, every Riesz operator R can be written as
a sum R = K+Q where K is compact and Q is quasinilpotent (σ(Q) = {0}).

It is well known that Tsirelson space [35] space is the first example of a
Banach space in which neither an lp space nor a c0 space can be embedded.
This Banach space is reflexive. Recently, the construction of this space was
the root for the development of several results in Banach space theory (see
for example [5, 21]).

Remark 1.4. Recall that the problem of Salinas is valid for all bounded
linear operators defined on each one of these Banach spaces (with uncondi-
tional bases)

1. Separable Hilbert spaces;
2. lp(1 ≤ p <∞)

⋃
c0;

3. Lp([0, 1])(1 < p <∞);
4. Tsirelson Banach space.

(See respectively [8, 38–40]).
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Definition 1.2. ( [9–11, 16, 18]) Let X be a complex infinite-dimensional
Banach space

ı) X is said to be decomposable if it is the topological direct sum of two
closed infinite dimensional subspaces.

ıı) X is said to be hereditarily indecomposable (in short H.I.) if it does
not contain any decomposable closed subspace.

ııı) X is said to be quotient hereditarily indecomposable (in short Q.H.I.)
if no infinite dimensional quotient of a closed subspace of X is decomposable.

ıv) X is hereditarily finitely decomposable if the maximal number of (in-
finite dimensional) closed subspaces of X forming a direct sum in X is finite.
For n ≥ 1, X is HDn if this number is equal to n.

v) X is n-quotient decomposable and we write X ∈ QDn, if n is the
maximal number of the integers k such that X has a quotient which is the
direct sum of k closed infinite dimensional subspaces.

Proposition 1.3. ( [9], Lemma 2.1) Let X be a complex infinite-dimensio-
nal Banach space, then

(ı) If X is a H.I. Banach space, then L(X) = CI ⊕ S(X);

(ıı) If X is a Q.H.I. Banach space, then L(X) = CI ⊕ CS(X).

The class of hereditarily indecomposable Banach spaces was first intro-
duced and investigated by T. Gowers and B. Maurey [18]. Notice also that
the hereditarily indecomposable Banach space XGM constructed by the last
authors was the first example of an indecomposable Banach space.

2. Surjectivity of spectra and essential spectra maps in some
Banach spaces

Let C be the complex plane and P(C) the set of all subsets of C. We
denote by K(C) the set of the collection of nonempty compact sets in P(C).

Now, we are ready to give our first result in this section.

Theorem 2.1. Let X be a complex infinite-dimensional Banach space with
unconditional bases, then the map σ : L(X) −→ K(C) is surjective.

Proof. Let K ∈ K(C) and let (xn)∞n=1 be the unconditional bases of X.
Let (λn)∞n=1 be a dense sequence in K. Define T as follows: T (x) =
T (
∑∞

n=1 anxn) =
∑∞

n=1 λnanxn, then ‖T (x)‖ ≤ 2K supn |λn|‖
∑∞

n=1 anxn‖
= M‖x‖ (where M = 2K supn |λn|). It is clear that T is a bounded linear
operator on X and σ(T ) contains K (since {λn}n ⊆ σp(T ) ⊆ σ(T )). Now,
we prove the opposite inclusion, if λ /∈ K, then inf{|λ− β|;β ∈ K} > 0 and
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so S(x) = S(
∑∞

n=1 αnxn) =
∑∞

n=1(λ−λn)−1αnxn is a bounded operator on
X and (λI − T )S = S(λI − T ) = I, yielding λ /∈ σ(T ) and this completes
the proof. �

The following theorem translates in a certain sense the richness of sepa-
rable Hilbert spaces.

Theorem 2.2. Let H be a separable Hilbert space, then the maps σe :
L(H) −→ K(C), σω : L(H) −→ K(C) are surjective.

Proof. This result was announced without proof in [31]. First of all, we
give proofs for the interesting cases of the unit disc and the unit circle in
C. Taking K = D(0, 1) equipped with the Lebesgue measure ν on R2 and
H = L2(D(0, 1)). Define A on H by the following:

(Af)(λ) = λf(λ);λ ∈ D(0, 1), f ∈ H.
Thus σ(A) = K (see [22], Problem 52). To show that σ(A) = σe(A), it
suffices to prove the inclusion σ(A) ⊆ σe(A). Assume that there exists
λ0 ∈ σ(A) and λ0 /∈ σe(A), hence λ0 ∈ ϕA ⊆ ϕ∓A. Since A is normal, the
operators A and A? have SVEP at λ0 (see [2], p. 115), this gives that λ0 is
an isolated point of σ(A) (see [2], Corollary 3.21) which is a contradiction.
Consequently, we conclude that σ(A) = K = σe(A) = σω(A).

For K = {z ∈ C; |z| = 1}, taking H a separable infinite dimensional
Hilbert space with an orthonormal basis (ξn)n∈Z, we define U(ξn) = ξn+1.
Then U is isometric and surjective, so it is a unitary and it is easy to check
that σ(U) = σe(U) = σw(U) = K (for more details, see ( [22], Problem 68)
and ( [25], Lemma 3.2.13)).

Now, if K is a non-empty compact set in C, let {λn}∞1 be a dense set in
K, then the operator A can be chosen a diagonal operator such that each
λi is repeated infinitely many times. �

The reasoning given above concerning the general case of a non empty
compact set K can be extended to the case of Banach space with uncondi-
tional basis. More precisely, we have.

Theorem 2.3. Let X be a complex infinite-dimensional Banach space with
unconditional basis, then the maps σe : L(X) −→ K(C), σω : L(X) −→
K(C) are surjective.

Proof. Let K ∈ K(C) and let (λn)∞n=1 be a dense set in K. If T ∈ L(X)
given as in the proof of Theorem 2.1 with the additional condition that for
every integer n ≥ 1 there exists an infinite number of integers kn such that
λn = λkn . Thus, in this case each λn is an eigenvalue of T with infinite
algebraic multiplicity and consequently {λn}∞n=1 ⊆ σe(T ). Indeed, assume
that there exists an integer n0 ≥ 1 such that λn0 /∈ σe(T ), hence λn0 ∈ ϕT ,
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this implies that α(λn0I − T ) is finite which is a contradiction. By passage
to the closure and taking account that the set σe(T ) is closed, we obtain
that K ⊆ σe(T ) ⊆ σω(T ). Now, we prove the opposite inclusion, if λ /∈ K,
we argue as in the second part of the proof of Theorem 2.1 by defining the
bounded linear operator S on X by the same expression. Since λ /∈ σ(T ), we
have λ /∈ σe(T ) and λ /∈ σω(T ), hence C\K ⊂ C\σ(T ) ⊆ C\σe(T ) and also
C\K ⊂ C\σω(T ) (since σω(T ) ⊆ σ(T )). By passage to the complements,
these last inclusions give that σe(T ) ⊆ K and σω(T ) ⊆ K and consequently,
we obtain that K = σe(T ) = σω(T ) which is the desired result. �

Remark 2.1. Let X be a complex infinite-dimensional Banach space. It
is easy to observe that if the map σω : L(X) −→ K(C) is surjective and
the problem of Salinas is satisfied for each bounded linear operator on X,
yielding that the map σ : L(X) −→ K(C) is surjective.

Let us note that there exist Banach spaces such that all the spectrum and
essential spectra maps given above are not surjective. This fact is illustrated
by the following two propositions

Proposition 2.1. Let X be a complex infinite-dimensional Banach space
such that the Wolf essential spectrum of every bounded operator on X does
not contain any boundary of a nonempty open set in the complex plane, then
the maps σe, σω, σ : L(X) −→ K(C) are not surjective.

Proof. First of all, it is easy to observe that the range of the map σe :
L(X) −→ K(C) is included in the family of non-empty compact sets with
empty interiors of the complex plane C. Now, we prove that the ranges
of the other maps satisfy this same property, and to do this, it suffices to
consider the spectra map. Let us consider A ∈ L(X). First of all, we prove
that the set Int(σ(A))\σe(A) is empty. Assume that Int(σ(A))\σe(A) 6=
∅, let Ω be a connected component of this set and let λ ∈ Ω such that
λ /∈ Ω; this gives that λ ∈ ∂σ(A). Next, we put Sλ = A − λI; since
λ /∈ σe(A), the operator Sλ is Fredholm with index 0. Indeed, the fact that
0 ∈ ∂σ(Sλ) asserts the existence of invertible operators arbitrary close to Sλ,
the assertion follows from the continuity of the index. Hence, 0 is an isolated
point of σ(Sλ) (see [1], Lemma 7.43), this shows that λ is isolated in σ(A) and
contradicts the fact that λ ∈ Ω\Ω. The set Int(σ(A))\σe(A) must be empty
and consequently Int(σ(A)) ⊆ σe(A) which gives that Int(σ(A)) = ∅. �

Remark 2.2. H.I.,Q.H.I.,HDn and QDn are Banach spaces that are a
good examples of Banach spaces that satisfy the assumption given in the
Proposition 2.1. Indeed, their Wolf essential spectra are finite sets in the
complex plane (see [16]).
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Proposition 2.2. Let X be the Shift Banach space constructed in [19], then
the map σe : L(X) −→ K(C) is not surjective.

Proof. In fact, the range of this map is included in the family of non-empty
compact connected sets of the complex plane C (fore more details, see [15],
p. 9). �

3. Lifting sets in Banach spaces

We start this section by giving the definition of lifting sets.

Definition 3.1. [31] Let X be a complex infinite-dimensional Banach space
and Ω ∈ K(C). We say that Ω is a lifting set for X if for every A ∈ L(X)
with σe(A) = Ω, there exists K ∈ K(X) satisfying that σ(A+K) = Ω.

Theorem 3.1. Let X be a complex infinite-dimensional Banach space such
that for all A ∈ L(X), A satisfies the problem of Salinas, then Ω is a lifting
set if and only σe(A) = σω(A) for every A ∈ L(X) such that σe(A) = Ω.

Proof. Assume that Ω is a lifting set and A ∈ L(X) for which σe(A) = Ω,
then there exists K ∈ K(X) such that σe(A) = σ(A + K) = Ω. Since
σe(A) ⊆ σω(A) = σω(A + K) ⊆ σ(A + K) = Ω = σe(A), we obtain that
σe(A) = σω(A). Conversely, let Ω ∈ K(C) such that σe(A) = σω(A) for
each A ∈ L(X) satisfying σe(A) = Ω. The fact that A satisfies the problem
of Salinas implies the existence of K ∈ K(X) with σ(A + K) = σω(A) =
σe(A) = Ω and hence Ω is a lifting set. �

Definition 3.2. Let K ⊂ C be a compact subset of the complex plane. The

polynomially convex hull of K denoted by K̂, is defined by

K̂ = {z ∈ C : |P (z)| ≤ max
ξ∈K
|P (ξ)| for all polynomials}.

A compact set K is said to be polynomially convex if K = K̂. If K ( K̂, a

connected component of K̂\K (considered as a topological space) is called
a hole of K.

Let Ω ∈ K(C) and denote by Ω̂ the polynomially convex hull of Ω in
the complex plane C. Let ΓΩ runs through the set of holes of Ω (if Ω is
polynomially convex, we take ΓΩ = ∅) and let Ψ the subset of K(C)×P(C)
given as follows:

Ψ = {(Ω,ΓΩ),Ω ∈ K(C) and ΓΩ is a hole of Ω}
The following theorem gives a characterization of lifting sets for some classes
of Banach spaces having a rich structure in a certain sense.

Theorem 3.2. Let X be a complex infinite-dimensional Banach space such
that the following conditions are satisfied:
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1) The map σe : L(X) −→ K(C) is surjective;
2) Every T ∈ L(X) satisfies the problem of Salinas;
3) The function Λ from L(X) to Ψ given by Λ : L(X) −→ (σe, σω\σe)

is surjective.

If Ω 6= ∅, then Ω is a lifting set if and only if Ω is polynomially convex.

Proof. Assume that Ω is not polynomially convex, it follows that the set Ω̂\Ω
is not empty. Let ΓΩ be any hole in Ω, by the assumption 3, there exists A ∈
L(X) such that σe(A) = Ω and σω(A)\σe(A) = ΓΩ which is a contradiction
by taking account Theorem 3.1. Conversely, if Ω is a polynomially convex set

in the complex plane, then Ω = Ω̂. Then the use of the assumption 1 implies
the existence of B ∈ L(X) such that σe(B) = Ω. On the other hand, the
second assumption gives the existence of K ∈ K(X) with σω(B) = σ(B+K).

Moreover, we know that σω(B) ⊆ σ̂e(B) (see for example [23]), this shows

that σω(B) ⊆ σ̂e(B) = Ω̂ = Ω = σe(B) and consequently σω(B) = σe(B)
which completes the proof. �

As an application of this theorem, we have

Proposition 3.1. Let X one of these Banach spaces:

1) Separable Hilbert spaces;
2) lp(1 ≤ p <∞)

⋃
c0 Banach spaces;

3) Lp([0, 1]), (1 < p <∞).

Then Ω is a lifting set for X if and only if Ω is polynomially convex.

Proof. It suffices to prove that the three assumptions of the above theorem
hold.

1. In the case of separable Hilbert spaces, the assumption 1 of Theorem
3.2 is given by Theorem 2.2, the second one is established by C. Apostol [4]
while the third one is an immediate consequence of the results obtained by
Berger and Shaw [6].

2. The first assumption is an immediate consequence of Theorem 2.3, for
the assumption 2 of Theorem 3.2 (see [8]), while the third one, it can be
established by some interpolation techniques (see for example [28]).

3. It suffices to take p > 2, the case 1 < p < 2 is deduced by duality since
σe(A) = σe(A

∗) and σω(A) = σω(A∗). If p > 2, then the space Lp([0, 1]) con-
tains a complemented subspace denoted by M which is isomorphic to l2 [24],
thus Lp([0, 1]) = M⊕N whereN is an infinite dimensional closed subspace of

Lp([0, 1]). The fact that σe

(
A 0
0 A

)
= σe(A) and σω

(
A 0
0 A

)
= σω(A)
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where A ∈ L(M) proves that assumptions 1 and 3 are satisfied. For the
second assertion (see [39]). �

In the next result, we give a description of lifting sets for the case of
hereditarily indecomposable Banach spaces.

Proposition 3.2. Let X be a H.I. Banach space, then

1) If X is a Argyros-Haydon space [5], then the lifting sets are the
subsets of the form {λ} (λ ∈ C);

2) The lifting sets are the sets {λ} (λ ∈ C) if and only if strictly singular
operators on this space have West decompositions.

Proof. 1. If X is a H.I. Banach space of Argyros-Haydon, then L(X) =
CI ⊕ K(X) , this implies that for each A ∈ L(X), there exists λ ∈ C
and K ∈ K(X) such that A = λI + K, hence σe(A) = {λ} = σ(λI) =
σ(λI +K −K) = σ(A−K), which gives the result.

2. In this case, we have L(X) = CI ⊕ S(X), thus for each A ∈ L(X), there
exist λ ∈ C and S ∈ S(X) such that A = λI+S, this gives that σe(A) = {λ}.
If there exists K ∈ K(X) such that σe(A) = {λ} = σ(λI + S + K) =
λ+σ(S+K), we infer that σ(S+K) = {0}, which implies that S = K ′+Q
where K ′ ∈ K(X) and Q is quasinilpotent. Conversely, let A = λI + S
where S ∈ S(X), then there exists K ′ ∈ K(X) such that S = K ′ + Q′

where Q′ is quasinilpotent, we obtain that σ(A −K ′) = σ(λI + S −K ′) =
σ(λI+K ′+Q′−K ′) = σ(λI+Q′) = λ+σ(Q′) = λ+{0} = {λ} = σe(A). �

4. Semi-Fredholm perturbation decomposition

To prove the fundamental result of this section, we recall some definitions
and preparatory results.

Definition 4.1. Let X be a complex infinite-dimensional Banach space and
let A ∈ L(X), λ ∈ C, the point λ is called a Riesz point of σ(A) if λ ∈ ϕ0

A
and λ is an isolated point in σ(A). The set of all Riesz points of σ(A) is
denoted by RA.

Definition 4.2. Let X be a complex infinite-dimensional Banach space and
Let A ∈ L(X). We denote by σs(A) the set σK(A)

⋃
σns(A).

ı) A is called a generalized Riesz operator, if σns(A) = RA;

ıı) If there exists S ∈ F+(X)
⋂
F−(X) such that σ(A + S) = σ(A)\RA,

A is said to have the semi-Fredholm perturbation decomposition;

ııı) If there exists S ∈ F+(X)
⋂
F−(X) such that σ(A+S) = σω(A), then

A is said to make semi-Fredholm perturbation theorem true;
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ıv) If there exists S ∈ F+(X)
⋂
F−(X) such that σ(A+ S) = σω(A) and

the set σns(A + S) has no inner points, then A is said to make the strong
semi-Fredholm perturbation theorem true;

v) If there exists S ∈ F+(X)
⋂
F−(X) such that σs(A + S) = σK(A),

then A is said to have semi-Fredholm perturbation correction.

Lemma 4.1. ( [34], Corollary 3.1) Let X be a complex infinite-dimensional
Banach space and let B ∈ L(X). If each cluster point of σs(B)\σK(B) is on
the boundary of σK(B), then for any ε > 0, there is K ∈ K(X), ‖K‖ < ε,
such that B +K is a generalized Riesz operator and ρ(B) ⊆ ρ(B +K).

Now, we extend the fundamental result given in ( [34], Theorem 3.2) to
the case of semi-Fredholm perturbations.

Theorem 4.1. Let X be a complex infinite-dimensional Banach space.
Then, the following statements are equivalent:

(ı) Every generalized Riesz operator on X has the semi-Fredholm pertur-
bation decomposition;

(ıı) Every bounded linear operator on X makes the strong semi-Fredholm
perturbation theorem true;

(ııı) Every bounded linear operator on X has the semi-Fredholm pertur-
bation correction.

Proof. (ı) =⇒ (ıı) Let A ∈ L(X), then there exists K ∈ K(X) such that
A+K is a generalized Riesz operator (see [34], Theorem 3.1). Since (ı) is sat-
isfied, A+K has the semi-Fredholm perturbation decomposition, then there
exists S ∈ F+(X)

⋂
F−(X) such that σ(A+K+S) = σ(A+K)\RA+K . Let

S′ = S +K, then S′ ∈ F+(X)
⋂
F−(X) because K(X) ⊆ F+(X)

⋂
F−(X).

We show that σ(A + S′) = σω(A) which is equivalent to proving that
σ(A+S′)

⋂
ϕ0
A = σ(A+S′)

⋂
ϕ0
A+S′ = ∅. Indeed, assume that σ(A+S′) =

σω(A) and σ(A + S′)
⋂
ϕ0
A 6= ∅, then there exists λ0 ∈ σ(A + S′)

⋂
ϕ0
A.

Hence, λ0 ∈ σ(A + S′) and λ0 ∈ ϕ0
A, then λ0I − A ∈ Φ0(X), this shows

that λ0 /∈ σω(A) = σ(A + S′) which is a contradiction. Consequently the
first implication is proved. On the other hand, if σ(A + S′)

⋂
ϕ0
A = ∅, we

will prove that σ(A + S′) = σω(A) = σω(A + S′) (since the Weyl essential
spectrum is invariant by perturbation by any element in F+(X)

⋂
F−(X)).

It suffices then to prove that σ(A + S′) ⊆ σω(A + S′). Assume that there
exists λ1 ∈ σ(A+S′) and λ1 /∈ σω(A+S′), hence λ1I−A−S′ ∈ Φ0(X), this
gives that (λ1I − A − S′) + S′ = λ1I − A ∈ Φ0(X) (since the set Φ0(X) is
invariant by perturbation by elements in F+(X)

⋂
F−(X)), we obtain that

λ1 ∈ ϕ0
A which implies that λ1 ∈ σ(A + S′)

⋂
ϕ0
A which is a contradiction.

Hence the second implication is proved.
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Now, assume that there exists λ ∈ σ(A+S′)
⋂
ϕ0
A+S′ = σ(A+S′)

⋂
ϕ0
A+K

= [σ(A+K)\RA+K ]
⋂
ϕ0
A+K . Since A+K is a generalized Riesz operator,

then λ ∈ σ(A + K)\RA+K implies that min .ind(A + K − λI) = 0 and
ind(A+K−λI) = α(A+K−λI)−β(A+K−λI) = 0, thus α(A+K−λI) =
β(A+K − λI) = 0 which gives that λ ∈ ρ(A+K). This is a contradiction
since λ ∈ σ(A + K). Now, we prove that the set σns(A + S′) is empty.
Indeed, if λ ∈ σns(A+ S′), then λ ∈ Φ±(A+K). Moreover, since A+K is
a generalized Riesz operator, we have σns(A + K) = RA+K . On the other
hand, if λ /∈ σns(A + K) = RA+K , then λI − A −K ∈ Φ0(X) and λ is not
isolated in σ(A+K) which gives that λ ∈ ρ(A+K) which is a contradiction.
Thus σns(A+S′) ⊆ σns(A+K) = RA+K which also is a contradiction, thus
σns(A+ S′) is empty.

(ıı) =⇒ (ııı) Let A ∈ L(X), then there exists S ∈ F+(X)
⋂
F−(X) such

that σ(A + S) = σω(A) and σns(A + S) has no inner points. We prove
that all possible cluster points of σns(A + S) are only in ∂σK(A + S) (the
boundary of σK(A+S)). Denote by acc(σns(A+S)) the set of cluster points
of σns(A + S). Let λ ∈ acc(σns(A + S))\σK(A + S), then λ ∈ Φ∓(A + S),
the use of Proposition 1.1 implies the existence of a small neighborhood Λλ
of λ such that for any ζ ∈ Λλ\{λ}, we have min .ind(ζI−A−S) is constant.
We have two possibilities, if the constant is zero, then λ /∈ acc(σns(A+ S))
which is a contradiction; also, if the constant is non-zero, then λ is in the
interior of the set σns(A+ S) which is a contradiction.

Now, according to the Lemma 4.1, there exists K ∈ K(X) such that
A + S + K is a generalized Riesz operator and ρ(A + S) ⊆ ρ(A + S + K).
Let S′ = S + K. We will prove that the set σns(A + S′) is empty. Since
A + S′ = A + S + K is a generalized Riesz operator, it suffices to show
that σns(A + S′) = RA+S′ = ∅. If RA+S′ is not empty, then, there exists
λ ∈ RA+S′ . Since ρ(A+S) ⊆ ρ(A+S′), we infer that σ(A+S′) ⊆ σ(A+S),
this gives that λ ∈ σ(A+S)

⋂
ϕ0
A+S′ = σ(A+S)

⋂
ϕ0
A+S . Moreover, we have

σ(A+S) = σω(A) = σω(A+S), this implies that λ ∈ σω(A+S)
⋂
ϕ0
A+S = ∅

which is a contradiction.
(ııı) =⇒ (ı) Let A be a generalized Riesz operator, then by ııı), there

exists S ∈ F+(X)
⋂
F−(X) such that σs(A + S) = σK(A), we will prove

that σ(A+ S) = σ(A)\RA.
1) Let λ0 ∈ σ(A+ S).
a) If λ0 ∈ σs(A + S) = σK(A), then λ0 ∈ σ(A) (since σK(A) ⊆ σ(A)).

Now assume that λ0 ∈ RA = σns(A), thus λ0 ∈ ϕ∓A which is a contradiction
since σK(A)

⋂
ϕ∓A = ∅. This gives that λ0 /∈ RA and consequently λ0 ∈

σ(A)\RA.
b) If λ0 /∈ σs(A + S), then λ0 ∈ ϕ∓A+S and min .ind(λ0I − A − S) = 0.

Assume that λ0 ∈ ρ(A), then λ0I − A is invertible, hence i(λ0I − A) =
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i(λ0I−A−S) = 0, this gives that λ0 ∈ ρ(A+S) which is a contradiction. It
follows that λ0 ∈ σ(A). Now if λ0 ∈ RA, hence λ0 ∈ ϕ0

A, thus i(λ0I − A) =
i(λ0I − A − S) = 0, which implies also that λ0 ∈ ρ(A + S). This is a
contradiction, consequently λ0 /∈ RA, this leads that λ0 ∈ σ(A)\RA.

From 1), we conclude that σ(A+ S) ⊆ σ(A)\RA.
2) Now, assume that λ0 ∈ σ(A)\RA.
c) If λ0 ∈ σK(A) = σs(A + S), then λ0 ∈ σ(A + S) (since σs(A + S) ⊆

σ(A+ S)).
d) If λ0 /∈ σK(A) = σs(A+S). The fact that λ0 /∈ RA gives the following

two situations:
Or λ0 ∈ σω(A) = σω(A + S) ⊆ σ(A + S) and hence λ0 ∈ σ(A + S) or

λ0 ∈ ϕ0
A and λ0 is not an isolated point in σ(A). Since min .ind(λ0I−A) = 0

and i(λ0I − A) = 0, we get that λ0 ∈ ρ(A) which is a contradiction. Thus
λ0 ∈ σω(A) = σω(A+ S) ⊆ σ(A+ S).

From 2), we conclude that σ(A)\RA ⊆ σ(A+ S).
Finally, from 1) and 2), we obtain that σ(A + S) = σ(A)\RA which is

the desired result. �

Remark 4.1. Notice that in general K(X)  F+(X)
⋂
F−(X). Indeed if

X if one of the following Banach spaces:

1. X = Lp([0, 1])(1 ≤ p <∞);
2. X is the hereditarily indecomposable Banach space of Gowers-Mau-

rey;

then K(X) ( F+(X)
⋂
F−(X) = S(X)

⋂
CS(X) = S(X) = CS(X) (see

[3, 14,29,37]).

5. Comments and some questions

The dichotomy theorem of T. Gowers (1996) [17] was the source of the
classification of Banach spaces. In (2002), the same author [20] refined this
result by using the Ramsey theory which enabled him to establish the four
”inevitable” list of Banach spaces. A few years later, classification programs
for separable Banach spaces by means of the descriptive theory were con-
structed, giving birth to subdivisions to these classes [12, 13]. We do not
know yet if these four list are nothing else but a complicated interpretation
of category of Banach spaces for which the maps spectrum and Wolf essen-
tial spectrum are surjective or not, since the origin of the difficulty is the
same, which lies in the complexity to give a good comprehension in general
to the structure of Calkin algebra L(X)/F(X) or L(X)/K(X) .

In finalizing this study, the first question that may come to our mind is
the following:
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Question 1: Does there exist Banach spaces X such that some of the
maps σ, σe, σω : L(X) −→ K(C) are surjective but the other do not possess
this property?

On the other hand, it is easy to observe that all known Banach spaces
for which the problem of Salinas is satisfied for all bounded linear operators
have unconditional basis, this pushes us to ask the following questions

Question 2: Does the problem of Salinas hold for all bounded linear op-
erators on Banach spaces with unconditional bases noting that the problem
in abstract Banach spaces is open?

Question 3: Is the result of Proposition 3.1 true for the case of Tsirelson
space, or more general for Banach spaces with unconditional bases?
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