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This paper focuses on a four-wire shunt active power filter (APF) control scheme proposed to improve the performance of the APF.
This filter is used to compensate harmonic distortion in three-phase four-wire systems. Several harmonic suppression techniques
have been widely proposed and applied to minimize harmonic effects. The proposed control scheme can compensate harmonics
and reactive power of the nonlinear loads simultaneously. This approach is compared to the conventional shunt APF reference
compensation strategy.Thedeveloped algorithm is validated by simulation tests usingMATLABSimulink.Theobtained results have
demonstrated the effectiveness of the proposed scheme and confirmed the theoretical developments for balanced and unbalanced
nonlinear loads.

1. Introduction

Power electronic equipments are largely used in modern
electrical systems leading to an increase of the harmonics
pollution in the AC main supplies. Thus, harmonic currents
generated by static converter mainly rectifiers have become
a great issue in the field of electrical engineering due to the
adverse effects on all electrical equipments [1]. The intensive
use of nonlinear equipments has increased the demand for
harmonics suppression and reactive power compensation. It
has been proved by many reported work that these nonlinear
loads are the main cause of poor power factor and high
harmonic distortion [2].

The presence of harmonics in the power system results
in numerous drawbacks such as high power loss in distri-
bution network, electromagnetic interference in communi-
cation systems, and failures of power protection devices and
electrical and electronic equipments. These drawbacks can
greatly affect the industrial process and commercial activities
because they can lead to a decrease in the productivity and
can also affect the quality of the products [3]. The harmonics
generated by these nonlinear load cause voltage distortion

affecting other loads connected at the same point of common
coupling.

The APF was deeply studied and applied as an efficient
solution to the problem of harmonics pollution and their
effects [4].This type of filters is proved as an appropriate tech-
nique to suppress harmonic voltage and current disturbances
[5, 6].

The APF injects harmonic current (for shunt active
filter) or voltage (for serie active filter) into the power
source but in opposite direction. Different harmonic current
identification and extraction techniques were studied and
used [7–10] such as synchronous reference (d-q-0) theory,
instantaneous real-reactive power (p-q) theory, modified
instantaneous p-q theory, flux-based controller, notch filter,
and neural network techniques [10]. Though p-q theory has
good transient response time and steady-state accuracy [6],
it is found to be not suitable for estimating reference current
under nonideal source voltage conditions [6, 11]. This paper
presents an analysis and simulation of shunt active filter
under unbalanced nonlinear load. In order to identify shunt
APF reference current a novel p-q theory is used based on
PLL for unbalanced main voltages to control shunt APF.
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Figure 1: Shunt active filter under unbalanced nonlinear load.

Hysteresis controllers are employed to generate switching
signals of the voltage source inverter. The proposed active
filter can compensate both harmonic currents and reactive
power (correcting power factor to the unity) simultaneously.
To validate and confirm the developed algorithms for the
proposed scheme, simulation tests are conducted to show the
effectiveness of this approach.

2. Shunt Active Filter Basic Principle

The shunt active power filter operating principle is to inject
into the power supply network the same harmonics current
as that generated by the nonlinear load but in the opposite
direction. Figure 1 illustrates a typical structure of the shunt
APF connected to a main source [12].

Supposing that linear and nonlinear loads are connected
at common coupling point (CCP) [11], under this condition
the supply current (𝑖

𝑠
) flowing through the transmission line

will be the load current (𝑖
𝑙
) which is nonsinusoidal. The

designed active power filter is a three-phase PWM (pulse
with modulation) voltage source inverter (VSI), connected in
parallel with the AC source through the common coupling
point of (CCP) [12]; the current source equation can be
expressed as

𝑖
𝑠
= 𝑖
𝑙
− 𝑖
𝑓
. (1)

The performance of active power filter depends mainly
on the technique used to identify and extract the reference
current (harmonic current) and the inverter control strategy
[9, 13]. This inverter uses DC voltage capacitor as a supply
and can be switched at high frequency to generate the current
that will eliminate the harmonic current from the main
source. The current waveform used to suppress harmonics
is obtained by VSI in the current controlled mode and the
interface filter [14].

3. Proposed Control Scheme

Theblock diagramof the proposed shuntAPF control scheme
is illustrated in Figure 2. In addition, hysteresis controller is
used to generate switching signals to control SAPF switches to
force the desired current into the system. The compensating
currents of active filter are calculated by sensing the load
currents, peak voltage, and current of AC source.
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Figure 2: Block diagram of the proposed control strategy.

The switching signals based on hysteresis control are
obtained in two stages.

Firstly, by subtracting the real load currents (𝑖
𝑙𝑎
, 𝑖
𝑙𝑏
, and

𝑖
𝑙𝑐
) from the reference current template (𝑖∗

𝑠𝑎
, 𝑖∗
𝑠𝑏
, and 𝑖∗

𝑠𝑐
),

hence, the instantaneous reference current of the APF (𝑖∗
𝑓𝑎
,

𝑖
∗

𝑓𝑏
, and 𝑖∗

𝑓𝑐
) is obtained.

Secondly, by subtracting (𝑖∗
𝑓𝑎
, 𝑖∗
𝑓𝑏
, and 𝑖∗

𝑓𝑐
) from the real

harmonic current (current generated by the SAPF), therefore,
the switching pulses for voltage source inverter (active power
filter) are obtained.

The reference currents are obtained from the instanta-
neous power and voltages of AC source. The instantaneous
voltages of AC source are expressed as follows:

𝑉
𝑠𝑎
(𝑡) = 𝑉

𝑠𝑚
sin (𝜔 ⋅ 𝑡) ,

𝑉
𝑠𝑏
(𝑡) = 𝑉

𝑠𝑚
sin(𝜔 ⋅ 𝑡 − 2𝜋

3
) ,

𝑉
𝑠𝑐
(𝑡) = 𝑉

𝑠𝑚
sin(𝜔 ⋅ 𝑡 − 4𝜋

3
) .

(2)

The source instantaneous power (at Kth sample) is written as
presented below:

𝑃
𝑠𝑎V𝑔 (𝑡) = 𝑉𝑠𝑎 (𝑡) 𝑖𝑠𝑎 (𝑡) + 𝑉𝑠𝑏 (𝑡) 𝑖𝑠𝑏 (𝑡) + 𝑉𝑠𝑐 (𝑡) 𝑖𝑠𝑐 (𝑡) . (3)

The required source current is given by the following equa-
tion:

[
[

[

𝑖
∗
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𝑖
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𝑖
∗
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]
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]

=
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2
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]
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V
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V
𝑠𝑏

V
𝑠𝑐

]
]

]

. (4)

The reference currents (harmonic current) of SAPF is
obtained by subtracting the load current from the reference
source current as illustrated in the equation below [15]:

𝑖
∗

𝑓𝑎
= 𝑖
∗

𝑠𝑎
− 𝑖
𝑙𝑎
,

𝑖
∗

𝑓𝑏
= 𝑖
∗

𝑠𝑏
− 𝑖
𝑙𝑏
,

𝑖
∗

𝑓𝑐
= 𝑖
∗

𝑠𝑐
− 𝑖
𝑙𝑐
.

(5)
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Figure 3: Diagram of hysteresis current control.

4. Modeling of Hysteresis Current Controller

Several harmonic current control strategies were proposed
and used for shunt active filter control. Hysteresis current
control strategy can be easily implemented in real-time
applications [16]. The scheme of this control strategy used to
control the shunt active filter is shown in Figure 3 [15, 17].

This subsystem of hysteresis current controller was devel-
oped to generate the switching pulses to control VSI switches
by comparing the real current to the reference current. The
control scheme gives the switching pattern of active filter
switches in order to maintain the real injected current within
a desired hysteresis band (HB) as illustrated in Figure 3 [15–
18]. In the case of positive input current 𝑖

𝑓
, the current error

exceeds the upper limit of the hysteresis band; thus inverter
output should be set as zero, so current error will be forced
to the opposite direction without reaching the other outer
limit. If this zero condition does not provide the opposite of
current error, it will keep forwarding through inner limit to
the other outer hysteresis limit. At this time, a reverse polarity
of inverter output will be controlled and therefore current
direction will be reversed [14, 15, 17].

The switching frequency of hysteresis current control
strategy described and presented above depends mainly on
how fast the current changes from upper limit to lower
limit of hysteresis band and inversely. Thus, the switching
frequency does not remain constant throughout the switch-
ing operation but changes along with the current waveform
[15, 17, 18].

Figure 4 shows two-level hysteresis current control
method implementation using S-R flip-flop circuits for a
three-phase inverter.

The comparator outputs go into flip-flop and the positive
inner band limit output goes to set input (S) while the
negative inner band limit output goes to reset input (R)
of flip-flop. The output of the flip-flop is used to gate the
transistors; Q gates the upper transistor and Q bar gates the
lower transistor [19, 20].

5. Simulation Results

MATLAB Simulink software is used to develop and simulate
the mathematical model in order to validate and confirm

Table 1: Model parameters for unbalanced load.

Loads 𝑅 (Ω) 𝐿 (mh) 𝐶 (F)
Nonlinear load 150 100 0.01
Unbalanced load
Load 1 150 100 0
Load 2 80 200 0
Load 3 100 50 0
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Figure 4: Simplified model of a fixed hysteresis-band control.

the effectiveness and the feasibility of the proposed control
algorithm for both balanced and unbalanced nonlinear load
conditions. The simulation of active filter operation with
different types of loads is conducted using a balanced and
sinusoidal three-phase voltages system as shown in Figure 5.
The parameters values used in the simulation tests are
presented below.

Three-phase source with line-to-line voltage is equal to
380V and a frequency of 50Hz. The source impedance
with Rs = 0.001Ω and Ls = 0.25mH. The shunt APF is
a three-phase MOSFET-based current controlled voltage
source inverter with an output AC filter (Lf = 35mH, Rf =
3.5Ω) and two DC voltage ±2𝑉dc = ±650V.

The load is an uncontrolled three-phase bridge rectifier
with R-L-C load with three-phase unbalanced loads as
presented in Table 1.

Figures 5 and 6 have shown the voltage source, and
the obtained results have shown a high filtering quality of
harmonic currents. The different waveforms obtained by the
proposed control method are illustrated in Figures 7–21.

From these waveforms, it can be noted that the behavior
of the active filter is analysed and studied in steady-state
operation. Figures 16, 17, and 18 show load currents, active
filter compensation currents, and source currents for 3 phases
with a neutral wire.TheTHDof the source current is the same
as that of the load current when the filter is not connected
(12.55% for phase-a, 10.58% for phase-𝑏, and 10.53% for
phase-c); these values are well above the IEEE 519 standards.
In order to reduce the harmonic pollution within the IEEE
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Figure 5: Power system phase voltages.
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Figure 6: Zoom of power system phase voltages.
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Figure 7: Balanced nonlinear load currents waveforms.
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Figure 8: Three-phase unbalanced nonlinear and neutral load cur-
rents waveforms.
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Figure 9: Total load currents waveform.

519 standards, the proposed algorithm based on SAPF is
introduced and the real active filter current is illustrated in
Figure 13. By injecting the required harmonic current to the
main source, the source current becomes sinusoidal as shown
in Figure 14. Connecting the active filter with the proposed
control algorithm, the THDof the source current is improved
to reach 1.69% in phase-a, 1.89% in phase-𝑏, and 1.85% in
phase-c, which is within the IEEE 519 standards. However,
with the use of conventional method pq, the THD of the
source current is still unsatisfactorywith the following values:
6.84% in phase-a, 6.09% in phase-𝑏, and 5.56% in phase-𝑐.
This indeed shows the potency of the proposed method to
performwell compared to conventional methods in reducing
the value of THD. The harmonic frequency spectrum of the
compensated source current is shown in Figures 19–21.

Table 2 outlines comparative results obtained using the
proposed approach against conventional methods.

6. Conclusion

Thework presented in this paper has demonstrated and con-
firmed the effectiveness of the proposed control method for
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Figure 10: Frequency spectrum of phase-a load current.

0 2 4 6 8 10 12 14 16 18 20
0

10
20
30
40
50
60
70
80
90

100
110

Total harmonic spectrum of phase-b load current

Harmonic order

I l
a

(%
)

M
ag

ni
tu

de
 o

f f
un

da
m

en
ta

l

Figure 11: Frequency spectrum of phase-b load current.

Table 2: The comparative results of THD.

Without
APF

With conventional
method pq

With the
proposed
method

THD
Phase-𝑎 12.55% 6.84% 1.69%
Phase-𝑏 10.58% 6.09% 1.89%
Phase-𝑐 10.53% 5.56% 1.85%

a shunt active filter application under unbalanced nonlinear
loads. The tests carried out by computer simulation have
verified the efficiency of the proposed control scheme. The
obtained results prove that the purpose of proposed control
algorithm has been successfully achieved under unbalanced
or balanced load. The THD of the source current is reduced
below 5% which is the limit imposed by the IEEE 519
standards (1992) for both balanced and unbalanced loads
using the APF. Furthermore, the proposed control strategy is
very simple and robust.
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Figure 12: Frequency spectrum of phase-c load current.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Active filter compensation currents waveforms 

Time (s)

4

3

2

1

0

−1

−2

−3

−4

i f
a
b
c

(A
)

Figure 13: Active filter currents waveform with the proposed con-
trol.
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Figure 15: Zoom of source currents waveform.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Source, load, and active filter currents waveforms

Time (s)

5

4

3

2

1

0

−1

−2

−3

−4

−5

i s
a
i l
a
i f
a

(A
)

(a) With conventional method pq

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Source, load, and active filter currents waveforms 

Time (s)

5

4

3

2

1

0

−1

−2

−3

−4

−5

i s
a
i l
a
i f
a

(A
)

(b) With the proposed control scheme

Figure 16: Source, load, and active filter currents of phase-a waveforms.
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Figure 17: Source, load, and active filter currents of phase-b waveforms.
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Figure 18: Source, load, and active filter currents of phase-c waveforms.
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Figure 19: Frequency spectrum phase-a source current.
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Figure 20: Frequency spectrum phase-b source current.
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Figure 21: Frequency spectrum of phase-c source current.
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