Comparison Study of Metamdels and Models
Co-Evolution Approaches

F. Anguel

Chadli Bendjedid University.
El Tarf, Algeria.
LISCO Laboratory.
Badji Mokhtar University.
Annaba, Algeria
fanguel@yahoo.fr

Abstract—
fields to help managing complexity and represent fiormation in
different abstraction levels according to specificnotation and
stakeholder’s viewpoint. Model-Driven-Engineering MIDE) gives
basic principles for the use of models as primary réefacts
throughout the software development phases. Modetsge defined
using modelling languages defined as metamodels. & a
metamodel evolves, models may no longer conform tb To be
able to use these models with the new modelling lgnage, they
need to be migrated. In fact, several approaches ha been
proposed addressing this problem. Some of these appches
tackle the problem by specifying manual solutionsOthers either
propose matching mechanisms to adapt models or deé coupled
operator for performing migration. In this paper, we introduce
co-evolution problem, we give an overview of diffemt
approaches to the problem and compare
complementary result we conclude with directions offuture
work.

Keywords— Model driven engineering, Model, Metamodel,
Co-evolution, Transforation,

. INTRODUCTION

Modelling is essential to human activity becausergv

action is preceded by the construction (implicitegplicit) of
a model [1]. There are plenty of practical usagesodels;
particularly in computer science where software eledre
constructed. Meta-modelling has become the kelyn@ogy
to define domains specific modelling languages rfurdel-
driven engineering (MDE). MDE is increasingly egieg as
a discipline which strictly prescribes designers develop

A. Amirat

Mohammed Chérif Messaadia University.
Souk-Ahras, Algeria
abdelkrim.amirat@yahoo.com

them. As a

N. .Bounour
LISCO Laboratory.
Badji Mokhtar University.
Annaba, Algeria
nora_bounour@yahoo.fr

Models have been used in various engineering have been proposed. Mostly, focussing on metamaddl

model co-evolution (i.e. model migration). The miode
migration is a crucial activity and is intrinsicaltomplex and
results in a time consuming and error-prone [4kcpss if no
adequate support
migration strategy is not trivial and complicatesl ia has to
ensure the preservation of the meaning of a pgssitknown
set of models.

In this survey, we discuss the state-of the-arh@amodel
and model co-evolution approaches highlighting rthei
strengths and weaknesses, and then we comparecteseset
from the described approaches using general eitbat we
deem important for model migration. This study aka us
defining some guidelines to develop a novel apgrotx
manage metamodel and model co-evolution.

The remainder of this paper is organised as follows
section 2 basic concepts related to model and noztain
co-evolution are defined. In section 3 we presendeerview
of co-evolution approaches in MDE with their categation.
In section 4 we compare them according to geneitaria. In
section 5 we define some guidelines in order tcetigywnovel
model migration approaches. Finally in section 6 pwesent
our conclusion.

II. MODEL AND METAMODEL CO-EVOLUTION

An MDE system basically consists of metamodels, elgd
and transformations. A model represents a view eysiem
and is defined in the language of its metamodel.otimer
words, a model contains elements conforming to eptscand

software in terms of models rather than programk [2 relationships expressed in its metamodel. A metacah be
According to this perspective, models are leveraged given to define correct models. In the same wayaaehis

first-class status. Evolution is unavoidable anea$ the
whole software lifecycle. Analogously to
metamodels are subject to evolutionary pressure [&)o

described by a metamodel, a metamodel in turn babket

software, specified in a rigorous manner; this is done by mseaf meta-

metamodels. This may be seen as a minimal defimiitio

However, changing a metamodel might compromise thsupport of the basic MDE principle “Everything istadel”

related artefacts, whose validity must be restodedfact

modelling languages can change quite frequentlyclwhi

requires the evolution of their metamodels as veall the

migration (or adaptation) of their dependent atef such as

models, editors, interpreters, transformations. eR#yg,
several approaches addressing the problem of doteo

Symposium on Complex Systems and Intelligent Computing (CompSI C)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http: /Amww. univ-soukahras.dz/en/publication/article/413

[1]. The two corerelations associated to this principle are

called representation “representedBy” and confoaan
“conformTo”. In this respect, OMG [5] has introckt the
four level architecture whichorganizes artefacts ina

hierarchy of model layers (MO, M1, M2, and M3). Mxdsl at
every level conform to a model belonging to the amlevel.

is provided. Building an automated

http://www.univ-soukahras.dz/en/publication/article/413

MO is not part of the modelling world, so the folavel
architecture should more precisely be named 3+iitaature
[2] as depicted in Fig.1. One of the best-knownameidels in
the MDA is the UML metamodel; MOF (Meta-Object Hag)
is the metametamodel of OMG that defines UML [5].

Due to changing requirements and technological nessy
and like other software artefacts, metamodels evoler time
during their life cycle [3]. The addition of newafeires and/or
the resolution of bugs may change metamodels, ¢ausing
possible problems of inconsistency to existing nieaehich
conform to the old version of the metamodel and megome
not conform to the new version. Therefore to mamta
consistency, metamodel evolution requires modepiadian,
i.e., model migration, as shown in Fig. 2; so thege steps
are referred as model and metamodel
Furthermore, model adaptations should be done nmef
model transformations. A model transformation ta&esnput
a model conforming to a given metamodel and proslae
output another model conforming to a given metarhode

The
modelling
™M o | meta-medel | world
conformantTo
i ‘ 4 | maodel
representedBy
The
. system real
world

Fig.1. The 3+1 MDA organisation [2]

a1 evolution (e . 2471
l Metamodel | { = | Metamodel’ |
)

conforms to w conforms to

nugration

Model |= = = = = = = = Model' |
| J)

Fig.2. Metamodel and model co-evolutif].

Il. EXISTING APPROACHES

Over the last few years, the problem of metamodemodel evolution

evolution and model co-evolution has been investideby
several works [6-13]. Each approach presents dinengnd
some limits. Firstly we present a categorisation tloése
approaches and then we provide an overview of eaeh

A. Classification of approaches

The Actual Categorisations of evolution and co-atioh
approaches focuses either on the information typesidered
during evolution either on the technique used fagration
strategy. Some works classify kinds of model evofutasks
into two categories: syntactic model evolution asinantic
model evolution [6]:

Symposium on Complex Systems and Intelligent Computing (CompSI C)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http: /Amww. univ-soukahras.dz/en/publication/article/413

co-evolutionapproaChes into three categories:

* Syntactic model evolution: Basically, this mathwill
modify the existing domain models such that the etod
obey the syntactic rules of the new language (medmh.
One drawback to a syntactic evolution is that thes data
models will not necessarily reflect the intendedhastics
of the old domain. However, syntactic migration dam
fully automatable.

*« Semantic model evolution is a transformation osea of
transformations that rewrites a model to have thees
meaning in its new language that it had in its iodg
language. Semantic migration requires manual atiapta
from the evolver.

Other researches [14], classify model migration
manual speaifica

Operator-based and matching metamodel approaches.

* In manual specification, the migration strategyencoded
manually by the metamodel developer, typically gsa
general purpose programming language (e.g. Java or
model-to-model transformation language (such as (8];T
or ATL [15]. Approaches classified as manual
specification are essentially Sprinkle approach, [6]
Narayanan approach [6] and Rose approach [7].

e Operator-based approaches specify metamodel teolu
by a sequence of operator applications. Each aperat
application can be coupled to a corresponding model
migration strategy. In these approaches a librdrgm
evolutionary operators is provided. By composing co
evolutionary operators, metamodel evolution can be
performed and a migration strategy can be generated
without writing any code. The significant approashsf
this category are Wachsmuth approach [12]
Herrmannsdoerfer approach [13].

and

« In metamodel matching, a migration strategy ferired by
analyzing the evolved metamodel and the metamodel
history [8]. Metamodel matching approaches use aihe
two categories of metamodel history; either thegiogl
metamodel (differencing approaches) or the changgde
to the original metamodel to produce the evolved
metamodel (change recording approaches).In thegoay
we find several approaches like Gruschko appro@ih [
Cicchetti approach [10] and Garcés approach [11].

B. Approaches Overview

1) A domain specific visual language (DSVL) foméin
Sprinkle’s approach [6],[16] defines a
domain specific visual language (DSVL) developegdregsly
for the evolution of domain specific visual laages. It
provides an interface that is specialized for dbsw an
algorithm to transform domain models from one DSWL
another. The migration of domain models is perfantegy
using syntactic patterns of domain concepts that@pped to
patterns of evolved domain concepts through mappihes;
these rules follow a “pattern implies consequerfoeih. The
mapping are associations between pattern and cossees,
or attributes of a pattern or consequence, andoamged from
a fundamental set of operations such as “Creat€tedte
within”, “Becomes” and “Delete”. The Transformatiois
made up of sequenced Transforms that are usedctoiloe the

http://www.univ-soukahras.dz/en/publication/article/413

specific differences between metamodels. Each foamswill

generate an XSL document. The model of computafion
sequenced transforms operates on the input domaitels
with the first transform and continues on througttiluthere
are no further transforms to apply. In this apphpafkcthe user
is familiar with metamodeling concepts with venttld

guidance that can create a domain evolution tramsftion
that will evolve the domain models in the evolve8\[L. [16].

The powerful of the provided language is creatiygtax
patterns in any form, since the pattern languagdeisved
from the metamodeling language. However efficien€yhe
conceived transformation algorithm depends on thiktya of

the modeler. We note also that the language islenalzheck
for the correctness of the transformed domain nsog!

2) Automatic Domain Model Migration to Manage
Metamodel evolution: Narayanan’'s approach defines MCL

epsilon that allow Flock to use models represeineMDR,
XML, and CZT and Flock is able to be extended tppsut
further modelling technologies. However encodingynaiion
strategy becomes more difficult for larger metant®dence
there is no tool support for analyzing the changetveen
original and evolved metamodel.

4) Towards synchronizing models with evolving
metamodels: Gruschko’s approach [9] is model-to-model
transformation. Envisioned steps of the proposeddeho
migration approach are: firstly model versions eoenpared
and the differences are translated into the debaeh The
found changes are classified into categories. Tihenuser
input needed for not automatically resolvable clegihg
migration is gathered. Finally an appropriate atbon for
model migration has to be determined, and the ridgras
executed. The proposed approach minimizes the rhaffoa

language “Model change language” [7] using a MOF-required to perform model migration in face of nmatalel

compliant metamodel. MCL is a high-level visualdaage for
describing metamodel evolution. MCL defines a datioms
and a composition approach for specification ofrthigration
rules. Rules can be used to specify most of thenoom
metamodel
modifying an element, deleting an element, addireyv n
subtypes and modifying local, and automate the atiign of
instance models.
migration scenarios that consists of an LHS elenfram the
old metamodel, an RHS element from the new metamod
and a “MapsTo” relation between them. Another sgdaik,
called the "WasMappedTo” link, in the pattern isedsto
match a node that was previously migrated, by atieea
migration rule. As opposed to providing a genera
transformation interface for the migrator like ipriskle
approach [16], MCL provides a Domain specific maugl
language DSML as the specification language, so MEL
more efficient. We note that MCL provide straightfard
graphical syntax and semantics is rather simple,LME
modular, expressive and allow reusing of knowledg
migration. MCL can also specify complex relatioretvbeen
meta-entities. But, in MCL some rules must be ne=l
manually and there are cases that depend on thetion of
the transformation developer.

3) Model Migration with Epsilon Flock: In Rose
approach, Flock is a domain-specific language facgying
and executing model migration strategies [8]. Flades a
model connectivity framework, which decouples miigna
from the representation. Flock has a compact symaxch of
its design and implementation is focused on thémen Flock
automatically maps each element of the original ehad an
equivalent element of the migrated model using aeho
conservative copying algorithm and user-defined ratign
rules, when original model elements conform to ¢kwelved
metamodel The conservative copy algorithm copieslgho
elements from original to migrated model. Hence tser
specifies migration only for model elements whiahlanger
conform to the evolved metamodel. Flock migrastmategies
are organized into modules, which inherit from E@bdules.
Modules comprise any number of rules. Flock dekegat
conformance checking responsibilities to EMC. kres clear
that approach gets its strength from the connégtiaiyer of

Symposium on Complex Systems and Intelligent Computing (CompSI C)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http: /Amww. univ-soukahras.dz/en/publication/article/413

evolution cases (e.g. adding new concept

MCL used basic pattern for typica

changes. But, the changes are assumed to occuidinaliy,
and using relations instead of difference modelesdoot
allow distinguishing meta-element updates from
deletion/addition patterns.

'’ 5) Transformational approach to model co-evolution:
Cicchetti's approach [10] is a co-adaptation apphogiven as
a higher-order model transformation which takes the
difference model recording the metamodel evolutamd

Jenerates a model transformation able to produee ctiv

evolution of models. The approach consists of tilwing
steps: firstly automatic decomposition of the diffece
model (J) in two disjoint (sub) models, which denote

|breaking resolvable’(R) and unresolvable changes-R); if

(UR) and (-R) are parallel independent then the
corresponding co-evolutions are generated sepgratel
however if (JR) and (U-R) are parallel dependent, they are
further refined to identify and isolate the intgudadencies
causing the interferences. This approach is imptéeeand

eavailable for download [17]. This approach does spcify

explicitly how the difference models are calculatedly that
they can be obtained by using a tool such as EMF@2oenor
SiDiff. We note that isolation of the interdepencies
between changes is not always possible.

6) Managing Model Adaptation by precise Detection of
Metamodel Changes: Garcés approach [11] consists of a
three-step adaptation in order to adopt models heir t
evolving metamodels and thus follow a matching apph to
co-evolution. Firstly a matching process computes
automatically the equivalences and differences eetwmtwo
metamodels versions by incrementally executing & e
heuristics. The computed equivalences and diffegenare
saved in a matching model. Secondly an adaptation
transformation is derived by a higher-order transfation
tacking as input the matching model. The produced
transformation is written in a particular transfetion
language (e.g. ATL, XSLT, SQL-like). This transfation
preserves unchanged model elements and migrategethan
ones. Finally, the adaptation transformation is ceked.
Authors prove that the proposed approach achievegyla
accuracy in detecting simple and complex changdsaagood
performance of matching strategies is also protles . family
of heuristics to design the constructs of the Adad

http://www.univ-soukahras.dz/en/publication/article/413

Matching Language (AML), a Domain-Specific Languageidentifying

(DSL) for expressing matching strategies [18]. Wl fthat
this approach is powerful, because it allows cormmgut
equivalences and differences between any pair tdmadels,
and matching step executes modularized heurigtatsmay be
plugged or unplugged on demand. The approach isrigen
heuristics are described in terms of KM3 concepis i& can

be implemented using other formalisms such as M@F oMany approaches

EMFEcore. However, user assistance is required oimes
strategies, and we note that semantically invatichizination
of heuristics can cause a runtime error, while Beoiirect
combination results in the generation of an inadrreigration
transformation. Using heuristics is also ambiguous.

7) Metamodel Adaptation and Model Co-Adaptation:
Wachsmuth’s approach is a transformational apraac
assist metamodel evolution by stepwise adaptati@j. [The
steps are implemented as transformations in QVTatiRels.
Each step forms a metamodel adaptation. Transfaymas
classified according to its semantics and instgreservation
properties in three groups, namely refactoring,stroction,
and destruction. This approach is characterized tiy
possibility to reuse adaptation scripts in simikdaptation
scenario and it prevents inconsistencies. Butfimebthat this
approach is very limited because of the atomicifytle
changes, which is far from being realist.

requirements for co-evolution approactue
decided to explore in this analysis only these gareziteria.

A. Criteria of comparative Analysis

1) Evolution Specification: The evolution of a

metamodel is implicitly specified by the originahch the
evolved version of the metamodel or it is specifagblicitly.
are based on explicit evolution
specifications. We distinguish two styles of such
specifications [20]: Imperative specifications dése the
evolution by a sequence of applications of charugrations.
In contrast, declarative specifications model thel@ion by a
set of differences between the original and evoledion of
a metamodel. The specification criterion indicaiésthe
evolution is imperative, declarative or implicit.

2) Evolution source: Explicit evolution specifications
can have different sources. So, the evolution canuker-
defined where the user specifies the evolution raiywu
Another way is recording evolution while the usatit®
metamodel changes. The prominent source evolugothe
automated detection of the evolution based on tiggnal and
evolved version of a definition. We distinguish tkimds of
detections: First, detections which are only aldedetect
simple changes like additions and deletions. Fomeso
approaches, this includes the detection of movesvels
Second, detections which can also detect more empl

8) COPE-automating coupled evolution of metamodel3hanges, for example extracting and in-lining afsteucts.

and models:Herrmannsdoefer's approach [13]
evolution as a sequence of coupled operations iexgpficit
history model. Each coupled operation encapsuléieth
metamodel adaptation as well as reconciling modgtation.
Existing models can be automatically migrated ® d@ldapted
version of the metamodel. When no co-evolutiongsgrator
is appropriate COPE allows metamodel developerpéxify
custom migration strategies, using a general

support to inspect, refactor and recover the calipislution.

This approach facilitates metamodel analysis, itersf a

greater degree of reusing recurring coupled opmratiin

model migration, and it uses large libraries ofesmlutionary

operators [19] and improves their navigability byakimg

clearer communication of operators. We note alsd @OPE

is open source. However, determining which sequeofce
operations will produce a correct migration is radtvays

straightforward specifically for large metamoddlbe custom
migration in COPE is specified in general
programming language which differs from migratidraegy
language.

IV. COMPARATIVE ANALYSIS

In this section we present a comparative analysimanel
and metamodel co-evolution approaches.
described are compared with respect of the gengtatia that
represent features of these approaches: spedficati the
evolution, evolution source, migration target, raigwn
language and migration extensibility. The seleciéria are
general and could be used to evaluate any co-éeplut
approach in MDE. Other evaluation criteria,
performance and conciseness are also feasible dtuate

perpos
programming language. COPE provides additional toobef

Approaches

records the

3) Migration Target Migration might be performed
either in-place or out-of-place. In the first cadee target of
the migration is the original model itself which risodified
during migration. In the second case, the targe& inew
migrated model which is created during migratiomheT
original model is preserved.

4) Migration Language: Migration might be custom
ined as a domain specific migration languagéerAhtively,
an existing transformation language (TL) can besedu
Another way is to add migration support to a gelRpuapose
programming language (GPL) in form of an API or an
embedded domain specific language.

5) Migration Extensibility: This criterion defines if
extensions are supported by the studied approaditese
kinds of extensibility can be supported. The fixadyration
can be completely defined by the developer and dhéy

purposedeveloper can add new parts in the migration gjyat¬her

kind of migration is the over-writable strategy wéehe user
can overwrite and customize single applicationa ofigration.
The third kind consists of an extendable migratidrere the
user can add completely new parts in the migradtoategy.

B. Co-Evolution Approaches Comparison
The table 1 lists approaches presented in secti@amd3
shows their comportment relatively to studied cigte

Manual specification approaches Sprinkle, Narayaavath
Rose provide custom model transformation languatpes
manually specify the model migration. Which redute

such asffort for building a migration specification Fonstance;

migrations automatically copy model elements whose

model migration. Therefore, due to our aim which ismetamodel definition has not changed [8].

Symposium on Complex Systems and Intelligent Computing (CompSI C)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http: /Amww. univ-soukahras.dz/en/publication/article/413

http://www.univ-soukahras.dz/en/publication/article/413

TABLE 1. COMPARISON OFCO-EVOLUTION APPROACHES

Approach Evolution Migration
specification source Target Languag Extensibility
Sprinkle Declarative User-defined Out custom Owetable
Narayanan Declarative User-defined Out custom Qwéable
Rose Implicit - Out custom Over-writable
Gruschko Declarative Detected-simple Out TL/ETL Oweitable
Cicchetti Declarative Detected-complex Out TL/ATL ixéd
Garces Imperative Detected-complex Out TL/ATL Extizinle
Wachsmuth Imperative User-defined Out TL/QVT Fixed
Herremmandoerfer Imperative recorded in TL/Groovy xteRdable

The user then overwrites this default behavior witte
intended migration. Visual languages introducedSipyinkle
[6], [16] and Narayanan [7] specify the differendestween
two versions of a GME-based and defines a modetatiamn
based on these differences. Migration algorithmiscovered
by MCL can be specified imperatively using a C+H ARock
is a textual migration language for EMF-based me§&l.

Manual specification approaches Sprinkle, Narayaarzth
Rose provide custom model transformation languatpes
manually specify the model migration. Which redute
effort for building a migration specification Fonstance;
migrations automatically copy model
metamodel definition has not changed [8]. The usanual
specification approaches Sprinkle, Narayanan andeRo
provide custom model transformation languages touaby
specify the model migration. Which reduce the effor
building a migration specification For instance;gmaitions
automatically copy model
definition has not changed [8]. The user then oviéew this
default behavior with the intended migration. Visua
languages introduced by Sprinkle [6], [16] and Narean [7]
specify the differences between two versions ofMEGhased
and defines a model migration based on these diftas.
Migration algorithms not covered by MCL can be sfied
imperatively using a C++ API. Flock is a textualgnation
language for EMF-based models [8].

Here, only the model migration is specified. Diffeces
between metamodel versions are not made explititead,
Flock automatically copies only those model elementich
conform to the evolved metamodel. The user thenatitesly
redefines the migration specification to migrate nno
conforming elements. Manual specification approade not
provide a construct for the reuse of migration kleage
across metamodels [20]. The unique feature of manu
specification approaches is a custom migration uagg for
overwriting a default migration manually. This fest
increases the expressivity of these approaches.

Metamodel Matching approaches automatically deteet
differences between two metamodel versions. Thesstared
in a declarative difference model from which a ratgn
specification is generated. Gruschko approach stipihe
automatic detection of simple changes in Ecore metkels
[9]. However, Cicchetti et al. also detect comptbanges [10],
[17] the migration specification consists of a sétmodel

Symposium on Complex Systems and Intelligent Computing (CompSI C)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http: /Amww. univ-soukahras.dz/en/publication/article/413

?)erform out-of-place

transformations to be executed consecutively. Sii is
prevented by interdependent changes. AML (Atlasciiiat
Language) allows the user to parameterize the tieteof
complex changes [11]. Therefore, the user combéaxésting
or user-defined heuristics to a matching algoritifrom a
difference model obtained by such an algorithm, Adr_

transformation specifying the migration is automailty

generated. For matching approaches, the uniquarées a
declarative evolution specification which is eitliecorded or
detected. This feature permits increasing autoibatiby

automatic generating migration strategy.

elements whose Operation-based approaches provide a set of reusabl

coupled operations that work at the metamodel lagekell as
at the model level. Wachsmuth presents an operatidga for
the MOF metamodeling formalism, operations are stfiesl
according to language and model preservation ptiegdrl2]
for migration, and the evolution specification riartslated into

elements whose metamodel QVT Relations model transformation. This appro&chot

expressive enough to capture all kinds of migraoanarios,
due to the restricted set of high-level primitij@8]. COPE
[13] is a model migration tool that records the aneddel
adaptation as a sequence of operations in a histmgel.
COPE wuses an imperative language and its migrating
transformations are executed in-place. Reuse dfrriag
migration specifications through parameters andstamts
restricting allows reducing the effort associatethviuilding
a model migration [22]. Migration specificationancbecome
so specific to a certain metamodel that reuse makesense
[22]. To express these complex migrations, COP&wallthe
user to define a custom coupled operation by manual
encoding a model migration The unique feature adration-
based approaches is an imperative evolution spatidh as a
sequence of operation applications. This featueustes the
reuse which is a mean to reduce effort. Most appres
migration. Model transformatio
languages generally do not support in-place transitons
with different source and target metamodels. Howe@©OPE
[13] supports in-place migrations with a new transfation
language.

V. REQUIREMENTS

After analysing existing approaches and referewngther
works comparing migration approaches [21-22], windethe
following requirements of model and metamodel cohation
approach:

http://www.univ-soukahras.dz/en/publication/article/413

e The first one is increasing automaticity of modeid
metamodel co-evolution in response
evolution as far as possible. For that, It seenefuligo
combine reusing feature of recurred operations ras i
operator based approach and copying feature ofaungysd
elements like in manual specification approached, aso
introducing matching techniques to improve co-etiofu
process [24].

e The second requirement is
understandability of migration strategy by usingtuned
language of migration [22]. For example, It is bign®
use the Eclipse Modelling Framework (EMF) [23] hesa
it is a well-known and widely used technology argl a
transformation language ATL [15]. The use of stadda
tools allows interoperability with other systems

e The third requirement is
migration strategy by assuring user driven solutioone
hand and permitting extensibility in the other hand

e The fourth requirement is to assure the flextipieipproach
by using either recorded evolution or detected gkarif
only the two versions of metamodel are given.

VI. CONCLUSIONS

The main purpose of this paper is to put the light
metamodel and model co-evolution. Firstly we hawelg the
existing approaches that treat model migrationesponse to
metamodel evolution. We have seen different clesdibn of
these approaches. Then we have selected soméactiitat we
consider significant to evaluate the studied apghes, after
the comparison analysis process we find that noromgp
cover the overall criteria.

Therefore driven by this analysis, we have defined

guidelines to solve co-evolution problem with more

expressivity and clarity and supporting change and

extensibility of migration strategy to ensure itsrrectness.
Furthermore, using standard tools like EMF and Adllow

large diffusion of the solution and facilitate itéeroperability
with other systems.

REFERENCES

J., Bézivin, 2005. On the Unification Power of MtzeSoftware and
Systems Modeling (SoSyM.), vol. 4(2), pp. 171-188.

Bézivin, J.: In search of a basic principle for rabdriven engineering.
UPGRADE Eur. J. Inf. Prof. 5(2), 21-24 (2004)

J.M., Favre, 2003. Meta-model and model co-evotutiithin the 3D
software space. In Proc. ELISA’03 Workshop. pp $8-1

M., Herrmannsdoerfer, S., Benz and E., Juerger@8.28utomatability
of Coupled Evolution of Metamodels and Models iad®ce” in Proc.
MoDELS’08. LNCS Springer, vol. 5301, pp. 645-659.
OMG, "MOF QVT Final Adopted Specification,”
www.omg.org/docs/ptc/05-11-01.pdf , 2005.

(1
(2
(3]
(4]

[5] Availéh

Symposium on Complex Systems and Intelligent Computing (CompSI C)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http: /Amww. univ-soukahras.dz/en/publication/article/413

to metamodel

increasing clarity and

increasing expressivity of

(6]
(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

J. Sprinkle, 2003. Metamodel driven model migmati®hd. thesis,
Vanderbilt University.

A. Narayanan, T. Levendovszky, D. Balasubramaaiath G. Karsai,
“Automatic domain model migration to manage metaeh@yolution,”
in Proc. MODELS'09, 2009, LNCS Springer, vol. 579#. 706-711.

L.M. Rose, D.S.Kolovos, R.F.Paige and F.A.C. Blgl2010. Model
migration with Epsilon Flock. In Proc ICMT'10, 20, LNCS
Springer, vol. 6142, pp. 184-198.

B., Gruschko, D.S., Kolovos and R.F, Paige, 2007%awards
synchronizing models with evolving metamodels. IProc. the
International Workshop on Model-Driven Software Enmn.

A., Cicchetti, D.Di., Ruscio, R., Eramo and A., iigtonio, 2008.
Automating co-evolution in MDE. In Proc. EDOC’08HE Computer
Society. pp 222-231.

K., Garcés, F., Jouault, P., Cointe and J., Bézi209. Managing
Model Adaptation by Precise Detection of Metamo@élanges. In
Proc ECMDA-FA’09. LNCS Springer, vol. 5562. pp 39-

G. Wachsmuth, 2007. Metamodel adaptation and mumedaptation.
In Proc. ECOOP’07.LNCS Springer, vol. 4609, pf0-624.

M., Herrmannsdoerfer, S., Benz, and E.Juergens9.2@DPE -
automating coupled evolution of metamodels and fsoda Proc.
ECOOPO09. LNCS Springer, vol. 5653, pp. 52-76.

L.M. Rose, D.S. Kolovos, R.F. Paige, and F.A.C.aBk] 2009. An
analysis of approaches to model migration. In Pdmint MoDSE-
MCCM Workshop,.

F. Jouault and |. Kurtev, 2005. Transforming medeith ATL. In
Proc. Satellite Events at MODELS. LNCS Springet, 8844, pp. 128-
138.

J. Sprinkle and G. Karsai, 2004. A domain-spedcifsual language for
domain model evolution. Journal of Visual Langusagad Computing.
vol. 15, pp. 291-307.

A., Cicchetti, 2008. Difference Representation ar@onflict
Management in Model-Driven Engineering. Phd. TheS§lsmputer
science Dept University of L'Aquila.

K., Garcés, F., Jouault, P., Cointe and J., Bézi2009. A Domain
Specific Language for Expressing Model Matching. Rroc. IDM09.

M. Herrmannsdoerfer, S. D. Vermolen, and G. Wacehbm“An
Extensive Catalog of Operators for the Coupled &iah of
Metamodels and Models,” In SLE’'10: LNCS, vol. 65@®, 163-182.
Springer,Berlin 2011.

M.Herrmannsdoerfer, “COPE - A Workbench for the pled
evolution of metamodels and models in Proc. SLE2D10, pp. 286-
295.

L.M. Rose, D.S.Kolovos, R.F.Paige and
Comparaison of Model migration Tools,. In
LNCS Springer, vol. 6394,pp. 61-75.

L.M. Rose, M. Herrmannsdoerfer, S. Mazanek, P.\orpG S.
Buchwald, T. Horn, E. Kalnina, A.Koch, K. Lano, Bchatz, M.
Wimmer, “Graph and model transformation tools fardal migration,”
Software and System Modelling, 2012.

D. Steinberg, F. Budinsky, M. Paternostia, Merks,: “EMF: Eclipse
Modeling Framework 2.0,” Addison-Wesley , 2009.

M.Herrmannsdorfer, G. Wachsmuth: “Coupled I&tion of Software
Metamodels and Models”. Book chapter pp 33-63. Evdiving
Software Systems”. Mens, Tom, Serebrenik
Cleve, Anthony (Eds.), 404 p, Springer, 2014.

F.A.C. Rala2010.
ProcOMELS’10.

Alexander,

http://www.univ-soukahras.dz/en/publication/article/413

