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Abstract—The 0-1 Multidimensional Knapsack Problem
(MKP) is a widely-studied problem in combinatorial optimization
domaine which has been proven as NP-hard. Various approximate
heuristics have been developed and applied effectively to this
problem, such as local search and evolutionary methods. This
paper proposes the Stochastic Local Search-Simulated Annealing
(SLSA) approach that combines the stochastic local search (SLS)
and the simulated annealing (SA) to solve the MKP. Three main
techniques are introduced in SLSA which are: the neighborhood
creation, the solution reparation and the mutation strategy. We
validate the effectiveness of the proposed approach through an
experimental study performed on several benchmark problems
commonly used in the literature. The obtained results show that
the SLS and SA, when combined appropriately can provide better
results than either SLS or SA alone.

I. INTRODUCTION

The Multidimentional Knapsack Problem (MKP) is a NP-
hard combinatorial optimization problem [1] which has been
widely studied in the literature [2]. The MKP has been
extensively discussed because of its theoretical importance
and wide range of applications. Many practical engineering
design problems can be formulated as MKP, such as: the
capital budgeting problem [3], the project selection [4], the
cargo loading problems [5] and so on. MKP is similar to
the winner determination problem in multi-unit combinatorial
auctions (WDP-MUCA) [6].

Since its beginning, several approaches have been proposed
to solve the MKP. The existing approaches can be classified
into exact and non-exact. Among the exact approaches, we
cite: Branch and Bound [7], Dynamic Programming [8], Hy-
brid Constraint and Integer Linear Programming [9]. These
approaches have the advantage of efficiency to solve MKP
problems of small size and provide exact results. However, the
execution time increases in exponential manner with the size
of the studied problem. In this fact, the non-exact appoaches
have been preferred. Indeed, several non-exact approaches
have been proposed to the MKP, all of them are based on
heuristic methods. These approaches provide results close to
exact results within a reasonable time. The most popular local
search heuristics have been used to solve the MKP such
as: Tabu Search [10], Simulated Annealing (SA) [11] and

Variable Neighborhood Decomposition [12]. Also Evolution-
ary and hybrid heuristics have widely been used such as:
Genetic Algorithm [13], [14], Neural and Neurogenetic [15],
Ant Colony Optimization [16], Harmony Search [17], [18],
Evolutionary Algorithm [19], Particle Swarm Optimization
[20], [21], Lagrangian Relaxation [22], Cuckoo Search [23],
Artificial Fish Swarm Algorithm [24] and Core base heuristics
[25], etc.

It is known that the local search heuristics converge quickly
but in a local optimum. The Simulated Annealing (SA) [26]
is one of the famous local search methods because of its
simplicity and effectiveness. Similarly the stochastic local
search (SLS) is an efficient local search method. SA has the
capacity to find zones not yet visited thanks to its neighborhood
creation strategy. But the searching process in SA can visit
the same solution several times. Comparatively Stochastic
Local Search (SLS)[27] is effective in term of diversification
capacity due to its neighborhood creation strategy. But this
strategy based on the random and the hill-climbing require
a lot of time to get good results. In this paper, we propose
the Stochastic Local search-Simulated Annealing algorithm
(SLSA) to solve MKP. SLSA is a hybridization between SLS
and SA. Three main modifications are proposed. These three
modifications are used in the proposed SLSA. Furthermore,the
first modification is used to perform SA and SLS. The first
modification concerns the reparation technique of SLSA, SA
and SLS. The reparation operation based on iterative removing
of the worst item is modified by adding the remove of an item
chosen randomly according to a probability P . The second
and the third modification concerns the neighborhood creation
strategies of SLSA. Here, it is proposed the combination of SA
and SLS strategies. Also the hill-climbing of SLS is replaced in
SLSA by a mutation technique. The proposed SLSA approach
is compared with SA and SLS methods for solving MKP using
the available test data sets in the OR-Library [28].

The rest of the paper is organized as follows: a brief
background about the MKP is presented in section 2. The SA
and SLS methods are explained in section 3 and 4 respectively.
The proposed SLSA algorithm for solving MKP is detailed in
Section 5. Section 6 describes the simulation and evaluation
results of the proposed algorithm on the test data sets. Finally,
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we draw the conclusions of this study in Section 7.

II. THE MULTIDIMENSIONAL KNAPSACK PROBLEM
(MKP)

The MKP problem is composed of N items and a knapsack
with m different capacities bi where i ∈ M = {1, . . . ,m}.
Each item j where j ∈ N = {1, . . . , n} has a profit cj and
can occupy aij of the capacity i of the knapsack. The goal is
to pack the items in the knapsack so as to maximize the profits
of items without exceeding the capacities of the knapsack. The
MKP is modeled as the following integer program:

Maximize

n∑
j=1

cjxj xj ∈ {0, 1} (1)

Subject to :

n∑
j=1

aijxj ≤ bi i ∈M ={1 . . .m} (2)

xj ∈ {0, 1} j ∈ {1 . . . n} (3)

The feasible solution for the MKP is represented by X , where
X is a vector of size n. X contains the selected items to be
packed in the knapsack. Decision variables xj are binary where
xj = 1 means that the item j is packed in the knapsack, and
xj = 0 means that it is not packed. aij represents the space
in the dimension i occupied by the item j.

III. THE SIMULATED ANNEALING (SA)

The simulated annealing (SA) is an old heuristic method
largely used because of its facility and efficiency. This method
has been presented for the first time in [26]. In this work, we
applied the SA for the MKP. SA can be decomposed into two
steps. First step consists in preparing the data by generating
an initial feasible solution X , which we do using the Random
Key method (RK) [29]. Second step is the optimization of
the initial solution. This operation is based on the temperature
parameter T fixed initialy as T0.

The optimization includes four operations given as follows:

1) Creating a neighbor solution X ′ of X . For that, one
item I is chosen arbitrary. If I increases the objective
function f(X) then it will be accepted i.e. added to
the solution X ′, otherwise it will be added if the
comparison exp−(∆f()/T ) > R is true. Where R is a
random value and ∆f() = f(X ′)− f(X).

2) The first modification: The first step may cause a
conflict. In order to eliminate all conflicts, and make
X as a feasible solution, it is repaired by removing
an item. The item to be removed is chosen in two
manners according to the probability P (P = 0.7).
Either an item is randomly chosen or the worst one
in X is found and removed. This process is repeated
until the elimination of all conflicts.

3) During the process, among the neighbors, every solu-
tion that increases the objective function is considered
as the best solution and saved in X∗. By the end of
the process X∗ contains the best solution.

4) The last operation in this process consists in updating
the temperature value using the Coefficient of Tem-
perature CT. In our case the updating rule is found
empirically as T = T − CT (CT = 0.0105).

The optimization process is repeated for a certain Number of
Iterations (NI) fixed empirically.

IV. THE STOCHASTIC LOCAL SEARCH (SLS)

The stochastic local search (SLS) is a local search iterative
heuristic [27]. It starts with an initial solution X generated
randomly according to the RK encoding. Then, it performs a
certain number of local steps as follows:

1) Creating neighbor solution X ′ to X . Selecting an
item I to be added in the current solution X . At each
step, the item to be accepted is selected according to
one of the two following criteria:
• The first criterion consists on the choose of

one item in a random way with a fixed prob-
ability wp > 0.

• The second criterion consists on the choose
of the best item to be accepted.

2) The first modification: To make X ′ feasible solu-
tion, it is repaired by removing an item repeatedly.
The item to be deleted is chosen in two manners
according to the probability P . either an item is
randomly chosen or the worst one in X is found and
removed.

3) Saving in X∗ the best neighbor feasible solution
found so far.

The process is repeated for a certain Number of Iterations
(NI) that was determined empirically.

V. THE PROPOSED APPROACH (SLSA)

In this section, we propose the combination of the stochas-
tic local search and the simulated annealing to produce a new
approach called SLSA. In the following, we explain the main
component of the proposed approach SLSA for MKP. The
SLSA process is based on two steps as follows:

A. Creating the initial solution by the Random Key method

The SLSA begins by the creation of the initial feasible
solution. For that, the Random Key method[29] is used. n
values in [0, 1] are generated randomly and arranged in
ascending order, such that each item is one of the generated
values. Secondly, the solution is built by adding items one
after one, according to the order, as long as all constraints
are satisfied. If the addition of an item leads that at least a
constraint is broken then it is ignored. This operation continues
until the last item. Thirdly, the objective function of the
solution is calculated.
The creation of feasible solution by the random key is the first
step in SLSA. It is followed by the optimization step.
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B. Optimization by SLSA

Here the initial feasible solution X ′ is iteratively modified.
The SLSA process performs a certain number of local steps
that consists in the Creation of a neighbor solution X , The
Reparation of the created neighbor solution, the Record of
the best solution and the Temperature update.

Step1. Creating a neighbor solution X ′ of X . At each
operation and with a probability wp ∈ [0, 1], the item
accepted to be packed is selected according to one of the two
following criteria:

1) The second modification. SA strategy: Here one
item I is chosen arbitrary. If I increases the ob-
jective function f(X) then it will be packed to
the knapsack, otherwise it will be accepted if the
exponential exp(∆f()/T ) > r where r is a random
value, ∆f() = f(X ′)−f(X) and T is a temperature
value initially equal to T0 relatively high.

2) The third modification. Mutating an item: replacing
an item in X ′ by another not in X ′. The replaced and
the replacement items are chosen randomly.

Step2. The first modification. The first step may cause a
conflict. To eliminate all conflicts, and make X ′ feasible
solution, it is repaired by removing an item. The item to be
deleted is chosen in two manners according to the probability
P . either an item is randomly chosen or the worst one in X ′

is found and removed.

Step3. If the created neighbor solution performs the
objective function value (f(X ′) > f(X∗)) then it is recorded
as the best solution found so far.

Step4. After that the temperature value is updated. In our case
the decreasing rule is found empirically us T = T − 0.0105.

The process is repeated for a certain Number of Iterations
NI , which was determined empirically. The SLSA algorithm
is sketched in Algorithm 1.

VI. SIMULATION RESULTS

The algorithms SA, SLS and SLSA are coded using C++
and compiled under a PC having 2 GHz Intel Core 2 Duo
processor and 2 GB RAM. In order to evaluate the efficiency
and performance of the proposed SLSA, it was tested on 54
standard test problems (divided into six different sets) which
are available at the OR-Library[28] maintained by Beasley.
These datasets are real-world problems widely used to test
and validate the algorithms effectiveness in the optimization
community. These problems dimensions vary as m = 2 to
30 and n = 6 to 105. After several experiments, we set the
parameters for the SLSA as in table I.

Table II contains the description of the used data. Here
N and M represent the number of items and the number of
constraints (the number of dimensions) respectively. Column
Ins represents the number of instance in each group of data.
Table III shows the obtained results by the application of
SA, SLS and SLSA algorithms on the 54 instances. Column
A.V.F means the average fitness of all the 30 runs. Column

Algorithm 1 The SLSA pseudo-code.
Require: a feasible solution X,NI,wp, T0

Ensure: a better feasible solution X∗

1: for Cpt = 1 to NI do
2: if (r < wp) then
3: I1 = RandItem(); I1 ∈ X
4: if (f(X ′) + CI1 > f(X)) then
5: X ′ = X ′ ∪ {I1}
6: else
7: if (r1 < exp(∆f/T )) then
8: X ′ = X ′ ∪ {I1}
9: end if

10: end if
11: else
12: I2 = RandItem(); I2 ∈ X
13: I3 = RandItem(); I3 3 X
14: X ′ = X ′ − {I2}
15: X ′ = X ′ ∪ {I3}
16: end if
17: while (ExistConflict (X ′)) do
18: if (r2 < P ) then
19: Imin = WorstItem(); Imin ∈ X
20: X ′ = X ′ − {Imin}
21: else
22: I4 = RandItem(); I4 ∈ X
23: X ′ = X ′ − {I4}
24: end if
25: end while
26: if (f(X ′) > f(X∗)) then
27: X∗ = X ′

28: end if
29: T = T − CT
30: end for
31: Return the best solution X∗.
32: Where r, r1, r2 ∈ [0, 1]. T is the temperature. ∆f =

f(X∗)− f(X ′) and CT : temperature update coefficient.

TABLE I. THE PARAMETERS OF ALGORITHMS.

Parameter Value
Number of iteration of SLSA 100000
Probability of SLSA wp 0.98
Initial temperature 50
Coefficient T update 0.0105
Number RUN 30

D.F.O represents the deviation from the optimal.

From these results we have identified various observations.
We observed that the A.V.F obtained by SLSA is better than
SA and SLS in all instances of the groups: pet, sento and
weish, furthermore in 43 of the 54 instances A.V.F SLSA is
better. We see that instances pet1, pet2, weing2 and weing3 are
the less complex ones; it is the raison why the A.V.F obtained
by SA, SLS and SLSA is equal to the optimal. But only SLSA
reaches the optimal solution in all the 30 runs in the two
instances weish1 and weish4. In all groups the average D.T.O
of SLSA surpasses that of SA which surpasses that of SLS.
Also we found that the average D.T.O of SLSA is better than
SA with the advance percentage of 1.2% and than SLS with
the percentage of 1.31%. In the same time the average D.T.O
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TABLE III. SLSA VS. SA AND SLS

SA SLS SLSA
Group A.V.F D.F.O A.V.F D.F.O A.V.F D.F.O

3347,97 97,95 3345,7 97,88 3345,67 97,88
hp 2998,07 94,10 2993,93 93,97 3011,27 94,52

3018,67 97,69 3027,9 97,99 3027,07 97,96
3034,2 95,24 3034,27 95,24 3031,87 95,16

87063,5 91,48 86672,3 91,07 90793,7 95,40
pb 2095,8 97,98 2101,97 98,27 2098,6 98,11

679,2 87,53 679,233 87,53 727,033 93,69
935,5 90,39 928,333 89,69 999,333 96,55
87061 100 87061 100 87061 100
4015 100 4015 100 4015 100
6120 100 6120 100 6120 100

pet 12206,7 98,44 12200 98,39 12285,3 99,08
10384,4 97,80 10373,5 97,70 10394,6 97,90
15925,3 96,30 15938,2 96,38 15977,7 96,62

sento 7675 98,75 7675 98,75 7690,57 98,95
8580,8 98,38 8587,43 98,46 8670,93 99,41
138453 98,00 138871 98,30 141267 99,99
130883 100 130883 100 130883 100
95677 100 95677 100 95677 100

weing 115709 96,96 114896 96,28 118598 99,38
96936,8 98,12 96897,5 98,08 98693,5 99,90
130610 99,99 130610 99,99 130610 99,99

1087448 99,27 1086462 99,18 1086790 99,21
583048 93,39 575396 92,16 576703 92,37
4491,33 98,62 4505,2 98,92 4554 100
4531,17 99,89 4531,5 99,90 4535,17 99,98
3993,2 97,04 4002,67 97,27 4090,77 99,41

4512,47 98,93 4516,17 99,01 4561 100
4384,33 97,12 4391,97 97,29 4512,2 99,96
5327,13 95,86 5304,6 95,45 5465,33 98,35
5326,1 95,67 5312,03 95,42 5470,27 98,26

5326,07 95,02 5318,03 94,88 5483,03 97,82
5218,8 99,48 5221,07 99,52 5218,8 99,48

6166,23 97,27 6166,33 97,27 6224,13 98,18
5059,87 89,66 4978,87 88,23 5363,67 95,04
6227,13 98,23 6217,57 98,08 6211,7 97,99
5902,17 95,83 5903,8 95,85 5977 97,04

6769 97,33 6765,37 97,28 6743,57 96,97
weish 7199,77 96,17 7208,23 96,28 7336,9 98,00

7053,73 96,773 7051,53 96,74 7124,87 97,74
8503,43 98,49 8504,53 98,51 8507,53 98,54
9249,5 96,55 9245,53 96,50 9291,2 96,98

6952,73 90,31 6921,7 89,91 7207,03 93,62
9121,4 96,52 9155,83 96,88 9282,5 98,22

8838,43 97,40 8842,53 97,44 8860,93 97,65
8246,73 92,17 8178,83 91,41 8417 94,07
7635,63 91,51 7611,1 91,21 7722,83 92,55
9730,67 95,21 9729,57 95,20 9777,17 95,66
9589,67 96,48 9595,13 96,54 9710,37 97,69
8733,7 91,12 8715,93 90,94 8944 93,32

8888,67 90,52 8873,4 90,36 9145,17 93,13
8996,63 94,78 8958,67 94,38 8923 94,00
8866,93 94,22 8847,47 94,02 8810,03 93,62
10681,3 95,44 10676,9 95,40 10830,9 96,78

Total Average 52693,1 96,24 52512,9 96,13 52829,1 97,44

of SA is lightly better than SLS with the advance percentage
of 0.11%. Fig. 1 shows clearly the difference.

In this study, three major modifications have been made to
the algorithms. One of them concerned all the algorithms when
two others characterized only the SLSA. These modifications
gave to the algorithms more effectiveness. Firstly, repairing
the solution by removing an item chosen randomly with
probability P performed the obtained results by SA, SLS and
SLSA. Secondly, introducing the SA neighborhood creation
mechanism in SLSA allowed increasing the quality of the
obtained results. Finally, the mutation represents the change
that has the important impact on the SLSA conduct. This
mechanism prevents the search process to reproduce solutions
already visited. It provides effective means to conduct the
search process in zones not yet discovered. Thanks to this

Fig. 1. SLSA vs. SA and SLS.
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TABLE II. BENCHMARKS DESCRIPTION

Dataset Number of Dimensions (N, M)
instances

hp 2 (28,4), (35,4)
pb 6 (27,4), (34,4), (29,2), (20,10), (40,30),

(37,30)
pet 6 (10,10), (15,10), (20,10), (28,10),(39,5),

(50,5)
wento 2 (60,30), (60,30)
weing 8 (28,2), (28,2), (28,2), (28,2), (28,2), (28,2),

(105,2), (105,2)
weish 30 (30,5), (30,5), (30,5), (30,5), (30,5),

(40,5), (40,5), (40,5), (40,5),
(50,5), (50,5), (50,5), (50,5),
(60,5), (60,5), (60,5), (60,5),
(70,5), (70, 5),(70,5), (70,5),
(80,5), (80,5), (80,5), (80,5),
(90,5), (90,5), (90,5), (90,5), (90,5)

mechanism and the SA neighborhood strategy SLSA avoids
stagnation in the local optima and succeed to find solution
very close to the optimal.

VII. CONCLUSION

This paper aims to propose a local search solution to the 0-
1 multidimensional knapsack problem (MKP). The suggested
solution is the combination of the Stochastic Local Search
method (SLS) with the simulated annealing method (SA).
The proposed approach is called the Stochastic Local Search-
Simulated Annealing (SLSA). In SLSA, three main tech-
niques were proposed: the neighborhood creation, the solution
reparation and the mutation strategy. In order to show the
effectiveness of SLSA, several tests were carried out on a
large range of benchmarks known by their complexity. Also
the algorithm was compared with SA and SLS algorithms. In
conclusion, the use of the three techniques allowed SLSA to
obtain good results and surpass significantly SA and SLS with
the percentage of 1.2% and 1.31% respectively. Similarly the
SLSA succeed to reach or at least be close to the optimal,
indeed the overall success rate is of 97.44% .
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