
Automatic generation of SysML diagrams from

VHDL code

Fateh Boutekkouk

Research Laboratory on Computer Science’s Complex

Systems (ReLa(CS)
2
), University of Oum El Bouaghi

Oum El Bouaghi, Algeria

Fateh_boutekkouk@yahoo.fr

Sofiane Zaidi

Dept. of Mathematics and Computer Science

Mohamed Cherif Messaadia University

Souk Ahras, Algeria

sofiane_zaidi@yahoo.fr

Abstract—In the last years, the SysML standard is attracting

more attention from hardware designers. As UML, SysML has

been used to automatically generate an HDL code written in

SystemC, Verilog and VHDL. Contrarily to most existing works,

we propose in this paper, a new reverse engineering approach to

generate SysML definition bloc and internal bloc diagrams from

VHDL code. Code generation is done on the basis of a set of well

defined mapping rules between SysML and VHDL concepts. The

benefit of our work is to enable both hardware and software

designers to maintain and comprehend VHDL programs.

Keywords—VHDL; SysML; Reverse Engineering; Bloc

Definition Diagram ; Internal bloc diagram

I. INTRODUCTION

Reverse Engineering (RE) can be defined as the process of
abstract graphical models generation from textual low level
models or programming language code. This process is
generally passed by several steps and can employ models
transformation technology by explicitly specifying Meta-
models of the source and target languages and transformation
rules in a certain language. The big advantage of RE is to
enhance the maintenance and comprehensibility of legacy
textual code by transforming it into more readable and
comprehensive models.

As in software domain, RE is becoming more interesting
in hardware domain especially when new graphical standard
languages are issued such as UML and their extensions.
Among UML extensions, we find SysML [2], the new OMG
standard for Systems modeling and documentation. SysML
brings some modifications on UML diagrams and new
diagrams more suitable for hardware and systems in the large
sense including mechanical, electronic and physical systems.

On the other hand, VHDL [10] is a well known IEEE
standard for electronic systems simulation and synthesis.
VHDL supports hierarchy, reuse and some software related
concepts. VHDL code is textual and often hard to maintain
especially for complex systems where the need for a more
readable notation is mandatory.

In this work, we try to present our approach for bloc
definition and internal bloc SysML diagrams generation from
VHDL code. Code generation is done on the basis of a set of
corresponding rules between SysML and VHDL concepts.

The rest of paper is organized as follows: section two is
devoted to related works. Section three presents the main
concepts of VHDL. In section four, we put the light on
SysML. Our approach is discussed in section five and the
developed tool with an illustrative example is presented in
section six before the conclusion.

II. RELATED WORK

As UML, SysML have been used as a front language to
generate hardware description languages code in SystemC [7],
VHDL or Verilog [9]. The works in [1, 3, 6] employed SysML
bloc definition, internal bloc and activity diagrams to
automatically generate VHDL-AMS code. The transformation
rules are defined in ATL language. An other technique to
generate VHDL code is to generate an XML format from
SysML diagrams then generate VHDL code from XML [5].

The work in [4] generates SystemC code from SysML
diagrams.

According to literature, we remark a scarcity in works
targeting SysML diagrams generation from VHDL code. We
think that such a reverse engineering process is very important
because it will enable both hardware and software designers to
maintain and comprehend legacy VHDL code. The focus of
the presented work is on generation of static SysML diagrams
from VHDL code.

III. VHDL CONCEPTS

The main VHDL design unity is called an entity. The latter
gives the external view of the system as a black box. The
entity exhibits the list of ports, signals and may be some
assertions and global variables, constants and declarations.
The entity implementation part is called architecture. The
latter specifies the function of the system and can be expressed
as behavioral using processes, data flow or structural using
preconceived components or internal blocks. Processes are
viewed as infinite loops which are sensitive to some signals
(sensitivity list) blocked using wait statements and resumed
whenever some events occur on its sensitivity list. We can
attach to an entity many architectures (configuration). Beyond
processes and signals, VHDL use some software related
concepts like variables, files, procedures, functions, control,
sequential statements and packages. The main entity in VHDL
is the test bench without ports.

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/414

http://www.univ-soukahras.dz/en/publication/article/414

The Port mapping concept permits us to connect design
components using signals. Of course there are a set of design
rules in VHDL and all designers must respect them. VHDL is
used for functional/temporal simulations (due to its event
based nature) and synchronous/asynchronous hardware
synthesis. Recently, a new version of VHDL called VHDL-
AMS to model analogical/mixed parts was occurred.

IV. SYSML

SysML is the new OMG [8] standard for systems
modeling, it extends UML by modifying some UML2
diagrams more suitable to model hardware related concepts
such as composite and activity diagrams and introducing
some new diagrams such as requirement and parametric. The
SysML diagram taxonomy is shown in Figure 1.

The focus of this paper is on definition bloc (DBD) and
internal bloc (IBD) diagrams. These two diagrams with the
parametric diagram represent the structural view of the system
under design.

DBD defines features of blocks and relationships between
blocks such as associations, generalizations, and
dependencies. It captures the definition of blocks in terms of
properties and operations, and relationships such as a system
hierarchy or a system classification tree. IBD captures the
internal structure of a block in terms of properties and
connectors between properties. A block can include properties
to specify its values, parts, and references to other blocks.
Internal blocs are connected via ports. A flow port is a new
concept introduced by SysML. Flow properties specify the
kinds of items that might flow between a block and its
environment, whether it is data, material, or energy. Contrary
to standard ports, Flow ports are more suitable to model
hardware ports.

Fig. 1. SysML taxonomy [8]

V. OUR APPROACH

As mentioned before, our objective is to develop a tool for
automatic SysML diagrams generation from VHDL code.
Figure 2 shows our proposed approach. It consists mainly of
three steps:

A. VHDL code simulation

This step is very important to produce correct SysML
diagrams. We can for instance resort to ModelSim tool for
functional/temporal simulations.

B. Lexical analysis

The aim of this step is to collect VHDL constructs and
identifying them. A VHDL design may contain many files
.vhd.

C. Elements structuring

In this step, we organize the VHDL elements in a
hierarchal fashion. To facilitate this, we can use XML.

D. SysML diagrams generation

This is the last step for diagrams generation. This step
requires VHDL/SysML mapping rules.

VHDL/SysML Mapping rules are presented in table 1.
These mapping rules are defined according to the semantic
attached to each VHDL/SysML concept.

Each VHDL entity is mapped to SysML bloc. The test
bench in VHDL is the top level entity without any ports; it
corresponds to SysML top level bloc. In order to manage
complexity, VHDL decomposes its design to many files and
packages containing procedures/functions, types, constants,
global variables and signals definition. The USE instruction
permits to the design to import all objects defined in a certain
standard or user package. This instruction is close to heritage
in object oriented paradigm. All procedures and functions
represent classes’ methods in SysML. Components reuse in
VHDL is mapped to an aggregation relation in SysML. VHDL
components are defined in separate files. VHDL blocs are
defined in a design and can not be reused outside the design,
so VHDL blocs definition is transformed to a composition
relation. Number of component and/or bloc instances
represents cardinality in SysML. VHDL processes and signals
are stereotyped in SysML. Each VHDL port is mapped to a
SysML flow port and each VHDL port mapping is interpreted
as a SysML link. VHDL Assertions can be interpreted as
SysML constraints and VHDL architecture can be
implemented as a SysML Statechart if the behavior is state-
based or Activity Diagram if the behavior is data-based (data
flow).

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/414

http://www.univ-soukahras.dz/en/publication/article/414

Fig. 2. Our flow

TABLE I

VHDL/SYSML MAPPING RULES

VHDL concept SysML concept

Entity Bloc

Test bench Top level Bloc

Use Heritage relation

Component reuse Aggregation relation

Port Flow port

Bloc definition Composition relation

Process Stereotype « Process »

Signal Stereotype « signal »

Variable Variable

Component / bloc

instance

Class instance

Procedure/function Class method

Port map Link between two Flow ports

Number of instances Cardinality

Architecture StateChart /Activity diagrams

Assertion Constraint

VI. OUR TOOL

We implemented our tool in JAVA under the Eclipse
environment. The tool enables designers to import VHDL files
(.vhd) and then generate SysML bloc definition and internal
bloc diagrams. All design components and packages are
placed in separate files. The code bellow represents a VHDL
code of an entity called totalmedian. The latter is composed of
an instance of the ‘camera’ bloc and of two reusable
components ‘dut’ and ‘monitor’.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY totalmedian IS

END totalmedian;

USE work.utils.ALL;

ARCHITECTURE structure OF totalmedian IS

BLOCKS camera

GENERIC (

image : string := "lena.pgm";

periode : time := 100 ns);

PORT (

init : OUT std_ulogic;

pixel : OUT natural RANGE 0 TO 255;

dispo : OUT std_ulogic;

acquit : IN std_logic);

END COMPONENT;

COMPONENT dut

PORT (h : IN std_ulogic;

 init : IN std_ulogic;

 pixel : IN natural RANGE 0 TO 255;

 pix_calcul : OUT natural RANGE 0 TO 255;

 ready_in : IN std_ulogic;

 ack_in : OUT std_ulogic;

 ready_out : OUT std_ulogic;

 ack_out : IN std_ulogic);

END COMPONENT;

COMPONENT moniteur

GENERIC (

image : string := "lena_fil.pgm";

periode : time := 100 ns;

nx : natural := 512;

ny : natural := 512);

PORT (

init : IN std_ulogic;

pixel : IN natural RANGE 0 TO 255;

dispo : IN std_ulogic;

acquit : OUT std_ulogic);

END COMPONENT;

SIGNAL h, init, ready_in, ack_in, ready_out, ack_out
:std_ulogic;

SIGNAL pixel, sortie : integer;

Mapping rules

VHDL/SysML

VHDL Code

Lexical

Analysis

Elements

Structuring

SysML Diagrams

Generation

Functional/Temporal

Simulation

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/414

http://www.univ-soukahras.dz/en/publication/article/414

FOR C1 : camera

USE ENTITY work.pgm2pixel(pour_cci);

FOR d1 :dut

USE ENTITY work.filtre(median);

FOR M1 :moniteur

USE ENTITY work.pixel2pgm(ecriture);

TYPE tableau IS ARRAY (positive RANGE<>) OF natural
RANGE 0 TO 16*255;

BEGIN --par_constantes

C1 : camera GENERIC MAP (

image => "/net/ens/nouel/pub/filtrage/lenabruit.pgm")

PORT MAP (

init =>init,

pixel => pixel,

dispo =>ready_in,

acquit =>ack_IN);

d1: dut

PORT MAP (h, init, pixel, sortie, ready_in,ack_in,ready_out,
ack_out);

M1 :moniteur

GENERIC MAP (

image => "median.pgm")

PORT MAP (

init =>init,

pixel => sortie,

dispo =>ready_out,

acquit =>ack_out);

pour_circ : horloge(h, 50 ns , 50 ns);

END structure;

Figure 3 presents our tool interface. Figures 4 and 5 show
respectively the generated DBD and IBD for the example.

Fig. 3. Our tool

Fig. 4. DBD generation

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/414

http://www.univ-soukahras.dz/en/publication/article/414

Fig. 5. IBD generation

VII. CONCLUSION AND PERSPECTIVES

In this work, we developed a reverse engineering approach
and its corresponding tool permitting SysML DBD and IBD
automatic generation from VHDL programs following well
defined matching rules between VHDL and SysML concepts.

The benefit of our work is to enable hardware and software
engineers to comprehend and maintain VHDL legacy code by
transforming it to graphical notations in SysML. Since VHDL
is a textual language, our tool will minimize the effort to read
and understand very long VHDL programs. The focus of this
work was on structural aspects of VHDL programs. As a
perspective, we plan to test our approach on more complex
examples and generate SysML dynamic diagrams such as

Statecharts and activity diagrams from VHDL code. Another
perspective will be the application of models transformation
technology to generate SysML diagrams. In this case, we have
to model both meta-models of VHDL and SysML and
transformation rules explicitly.

REFERENCES

[1] J-M. Gauthier, F. Bouquet, A. Hammad, F. Peureux,“Transformation of
SysML structure diagrams to VHDL-AMS”. In dMEMS - 2nd
Workshop on design, control and software implementation for
distributed MEMS - 2012 2012 Second Workshop on Design, Control
and Software Implementation for Distributed MEMS (dMEMS) ,2012,
pp.74-81.

[2] J. Holt and S. Perry, SysML for Systems Engineering. Institution of
Engineering and Technology, London, United Kingdom, 2008.

[3] K. OURFELLA, Transformation de modèles SysML vers VHDL-AMS.
Mémoire de stage Master 2 recherche. UNIVERSITE DE FRANCHE
COMTE S2Lsoutenue le 21 juin 2011.

[4] M. Prevostini and E. Zamsa. “SysML Profile for SoC Design and
SystemC Transformation”. ALaRI, Faculty of Informatics University of
Lugano via G. Buffi, 13, 5 2007.

[5] S. Stancescu, L. Neagoe, R. Marinescu, E. P. Enoiu. “A SysML model
for code correction and detection systems”. In MIPRO 2010, Opatija,
Croatia. 2010.

[6] J. Verries and A. Sahraoui. “Case Study On SYSML and VHDL-AMS
for Designing and Validating Systems”. Proceedings of the World
Congress on Engineering and Computer Science 2013 Vol. I WCECS
2013, 23-25 October, 2013, San Francisco, USA.

[7] www.systemc.org

[8] www.sysml.org

[9] www.verilog.com

[10] www.vhdl.org

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/414

http://www.univ-soukahras.dz/en/publication/article/414

