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ABSTRACT: In this paper we study of the existence of solutions for a class of elliptic

system with nonlocal term in RY. The main tool used is the variational method,

more precisely, the Mountain Pass Theorem.
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1. Introduction

The purpose of this paper is to investigate existence results for the following
class of nonlocal elliptic system in RY

(v _oF -
Ml(/]RN p(l') |VU| dz)AP(I)U ~ ou (ZL',U,,’U) in R

: (1.1)
1 oF
_M Vi@ dz) Ay = S in RY
2(/]RN () [Vl dac) a@)? = 5 (z,u,v) in

with p and ¢ are real valued functions satisfying 1 < p(z),q(z) <N (N >2)
for every € RV, and M; and M, are continuous and bounded functions. We
confine ourselves to the case where My = My = M for simplicity. Notice that
the results of this paper remain valid for M; # M, by adding some hypothesis on
M, and Ms. The real valued function F € C! (RN X RQ) satisfies some assump-
tions. The unknown real valued functions u and v stay in appropriate spaces. The

operator A, yu = div <|Vu|p(z)72 Vu) designates the p(r)-Laplacian.
The problem (1.1) discribes the stationary version presented by Kirchhoff [16].
More precisely, Kirchhoff proposed the following model

P E [F
Pt — (fjtﬁ ; uidx> Uy = 0. (1.2)
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This equation is as an extension of the classical d’Alembert’s wave equation by
considering the effects of changes in the length of the strings during the vibrations.
The parameters in equation (1.2) have the following meanings: E is the Young
modulus of the material, p is the mass density, L is the length of the string, h is
the area of cross-section, and Py is the initial tension.

The study of elliptic problems involving p(x)—Laplacian has interested in recent
years, for the existence of solutions see [1], [9] and [12], and the eigenvalue involving
p () —Laplacian problems see [10] and [11].

For the elliptic equations involving p (x) —Kirchhoff type, we refer the reader
to the works [2] ,[13], [14], [17], [18] and [21]. They use different methods to
establish the existence of solutions.

In our context, the author in [4], obtained the existence and multiplicity of
solutions for the vector valued elliptic system

1 _ oF
_ - p(x) . p(z)—2 _ o e
M, (/RN o @ [Vul dac) div (|Vu| Vu) o™ (x,u,v) in

— M, </RN —q (lx) |Vv|q(r> d:c) div (IVv|q(z)72 Vv) = 2—5 (r,u,v) in

u=v=0 ondf)

where ) is bounded domain in R, with smooth boundary 99, p(x), ¢(z) €

Cy (Q) with 1 < p~ = minp(z) < p* = maxp(z), 1 < g = ming(z) <
Q Q Q
qt =maxgq(x), My (t), M (t) are continuous functions such that M; (t) = M (¢).
Q

The author apply the direct variational approach and the theory of the variable
exponent Sobolev spaces.

In [3], the authors show, using the Ekeland variational principle, the existence
of solution for the problem

—M; (/]RN p—(lx) |VU|P(96) dz> div (|VU|P(I)72 Vu) = g—i (u,v) + py (z)  in Q,

1 _ oF
—M a(x) ; q(x)—2 — in Q
2 (/}RN @ [Vl dm) div (|Vv| Vv) oy (u,v) + py () in Q,

ou  Ov
%—%—0 Ol’laQ.

2. Preliminary results

In this section we recall some definitions and basic properties of the variable
exponent Lebesgue—Sobolev spaces and introduce some notations used below.
Let
Cy (RN) = {pE C(RN) :p(z) > 1, for every z € RY }

pt =max{p(z), z € RN} et p~ = min{p(x), € RV} for every p € Cy (RV).
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Denote by S (RN ) the set of measurable real-valued functions defined on RY.
We introduce for p € Cy (RN), the space

1) (&) = fu e s (%) sueh that, [ u(@P @ de < +oc
RN

equipped with the so called Luxemburg norm

=infdt>0:
Ul 1n{ /RN

This is a Banach space, called generalized Lebesgue-space.
Define the variable exponent Sobolev space W), ,) the closure of C§° (RN ) under
the norm

Moreover, we recall some previous results.

Proposition 2.1. ([5]) Ifpe Cy (RY), then LP®) (RY) and W) (RYN) are
separable and reflexive Banach spaces.

Proposition 2.2. ([5])  The topological dual space of LP*) (RN) is LP'(®) (RN) ,
where

Moreover for any (u,v) € LP(®) (RN) x LP'(@) (RN) , we have

1 1
/]RN uvdr| < <p—_ + (VT) |U|p(m) |U|p/(z) <2 |u|p(ﬂc) |v|p’(w) ’

Let us now define the modular corresponding to the norm |.[,,, by

plw)= [ ful® d.
]RN

Proposition 2.3. (/8],[15])  For all u € LP™® (RN), we have

. - + - +
min {IUIi(@ . |U|§(I)} <p(u) < max{|u|2(r) ’ |u|g(r)} '

In addition, we have

(1) fulyy <1 (resp.=1;>1) < p(u) <1 (resp.=1;>1),
.. - +

(i) Julymy >1= IUII’?(? <pu) < |U|Z(gi) ;

(i) |ulpmy > 1= lulpy < p(u) < |ulp,

u

=1

(iv) p
|u|p(x)
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Proposition 2.4. ([5])  Let p(xz) and s(x) be measurable functions such that
p(z) € L (RY) and 1 < p(z)s(z) < oo almost every where in RN. If u €
L3®) (RN) , u#£ 0, then

p

- P
p(x)s(x)

T +

p* p(z)
[ly@yse) 2 1= [ulpays@) < ‘|U| o(a

.
) = s -

In particular, if p () = p is a constant, then

||u|p|s(x) = |U|ZS(I) ‘

Proposition 2.5. (/8)) If u,u, € LP@ (RN) |, n = 1,2, ..., then the following
statements are mutually equivalent:
(2) Tim p (un —u) =0,

(3) up — u in measure in RN and lim p (uy,) = p(u).
n—oo

Let p* (x) be the critical Sobolev exponent of p (z) defined by

Np(w) or p(x
p@)={ N ey :
+o0 for p(x) > N

and let C0:1 (RN ) be the Lipschitz-continuous functions space.

Proposition 2.6. (/8 [7])) Ifp(x) € C’i’l (RN, then there exists a positive
constant ¢ such that

for all u e Whr(®) (RN) .

|u < ¢pa) |Vl

p*(z) p(z)°

Proposition 2.7. ([7]) 1) If s € LT (RY) and p(z) < s(z) < p* (z),
Vo € RN, then the embedding

Whr) (RV) s L5 (RV)

18 continuous but not compact.
2) If p is continuous on S and s is a measurable function on (2,
with p(x) < s(x) < p* (x), Yo € §, then the embedding

W@ (Q) s 3@ (Q)

1s compact.



EXISTENCE OF SOLUTIONS FOR AN ELLIPTIC... 197

3. Existence of solutions

The solution of (1.1) belongs to the product space Wy q(z)(RY) = W,

p(w)
q(x) *

(R)x

Wo(z)(RY) equipped with the norm [|(u, )|, = wll ey + Nl

p(z)
In what fOHOWS, Wp(z)ﬂ(z) denote Wp(m),q(m) (RN) .

Definition 3.1. We say that (u,v) € Wy(u),q(z) s @ weak solution of (1.1) if for
all (z,w) € Wy(aq(z) if

1 _
M (/ — |Vu["®) dm) / (V"™ 2 VuVzda
ry P (2) RN

1 _
o (g 7o) [ 1900 e
RN RN
,/}RN g_i (x,u,v)zd:c—/RN aa—i (z,u,v)wdz = 0.

The Euler-Lagrange functional associated to problem (1.1) is defined as

I Wya)ee — R, I(u,v) =J(u,v) - K (u,v)
v 1 p(@) i 1 a(x)
J(u,v) = M —— |Vu""dx | + M —— V| dx
ry P () ry ¢ ()
K (u,v) = / F (z,u,v)dz
RN
such that m = fot M (s)ds.
Hypotheses

In this paper, we will use the following assumptions.
(H1) FecC! (RN X RQ,R) and F (z,0,0) =0.

(H2) There exist positive functions a;, b; such that:

’8_F (z,u,v)| < an (@) [u" T+ ag (@) o] 2
ou
Ja _ _

’a_ (zu,0)| < by (@) Jul T by () [0

ov
where 1 < 1,7, fiy, ptp < inf (p(2), ¢ (x)) , and p (z) , ¢ () > F, for all z € RY.
a; € L@ (RN) . ag, by € LP®) (RN) : by e Lo2®) (RN) ,

p () p* (z)q* (z)
and oy (x) = ————; f(z) = , ag(x) =
@ = et P9 e -re-c@ 2

q(x)
q(z) =1
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1
(H3) There exist constants R > 0,60 > 1 and p < 1 — L and a positive function

H :RY x R? — R such that for x € RV, |u|, |[v] < R and ¢t > 0 sufficiently
1

1 1
small, we have F (:c, tptu, tat v> >t9H (z,u,v).
(H4) F satisfies the Ambrosetti-Rabinowitz condition,
OF OF
0< F (z,u,v) < Uon (x,u,v) +v% (x,u,v).

(H5) There exists mo > 0, u;0 < p < 1 such that mg < M (¢) and M\(t) >
(1 — p)M(t)t.
The following existence theorem is based on an important compactness prop-
erty of functionals. We first prove some lemmas.

Lemma 3.1. [}/ the functional I is well defined on Wy q(z), and it is of class
C*, and we have

1 _
I' (u,v) (z,w) = M (/ —— | Vu™ dm) / (V"™ 2 VuVzda +
ry () RN

1
M(/ — |V dm)/ V0|12 Vo Vwda
ry ¢ (@)

oF oF
- (x,u,v) zdx —
Ry Ou
Lemma 3.2. Under assumptions (H1) - (H5), there exist p, & > 0 such that
I(u,v) = o if [[(w,0) [l = p for all (u,v) € W) g(a)-

M (2, u,v) wdz

Proof: we have as in [5]

F (z,u,v) = (x,s,v)ds+ F (z,0,v)

IN

= / (z,8,v der/ a—F(:E,O,s)dsJrF(x,O,O)
o Os

Eile +a2(z>|v|7f1)ds+/ bo () s>~ ds
0

< [m () Jul™ + a2 (@) [o]">7 [u] + b () [0]**]

|U|V2—1

F(z,u,v)de < 71 + X
R R e e A

102 gy 11012 g

We consider the fact that W) < L3@)p() (RN) , for s(x) > 1, there exists
c1 >0
™ [y = Tul3t

Y1
p(e) = [Ulyp) < e llullyia)
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and 1
—1 —
W], = e < e ol
again
191" |2y = 1012 40y < €3 [10M152, -
Then,
—1
|K (’U,,’U)| < ¢ |:|a1|a1(x) |u| v1p(x) + |a2|ﬂ |U|’(y’§2 p*(z)
+ |b2|a2(ac) |’U|# q(x)
we obtain

—1
1 (1, 0)] < [l oy 02y + 121y 100225 ety + 2]y 1012 -

)d:c) +M </ L |Vv|q<m) dz)
ry ¢ (2)

In the other hand

Iwe) = M (/]RN p(lw)

— F(z,u,v)dz
RN
> @/ |VU|P(1) der@/ |vv|q(z) dx
pt Jrw qt Jrw
1
e[k, oy Iy + Ll 1012255 Bl + Bl oy 0122,
mo i mg i
> — lullpe) + e ol
-1
= (|1l oy el3tey + la2 oy 01520 Tl + B2l 0152
such that ¢ = + if ||ull,,) > 1, and i = — if [[u] ) < 1, ¢ is positive con-

stant. So, for all (u,v) € Wya)q@)s 1 < V1,7as i1, e < inf {p(x),q(x)} with
[[(w, v)ll,) = p large enough,

I (u,v) > a>0.
g

Lemma 3.3. Assume that (H1) - (H5) holds. Then there exists (e1,e2) € Wy(z) q(x)
with ||(e1, e2)|| > p such that I (e1,e2) <0

Proof: From (H5), we can obtain for ¢ > ¢

—~ M (t
M(t) < EO%ILL <CtTw




200 B. ABDELMALEK, A. DJELLIT AND S. TAS

where C' is constant, and t( is an arbitrarily positive constant.

Choose (uo,v0) € Wp(z),q(z)> 0,v0 > 0 and [[(u,v)|| > p. It follows that if ¢ is
large enough then

1 1 —~ 1
I (tp* ’LL(),?fqJr ’Uo) =M / —
ry P ()

1 1
—/ F(xt*uo, at )dm
RN
1 =7
<CtTn </ — |Vu0|p(z) d:c)
RN P

1

1 =
L Ot (/ — | V|7 dac) '
RN 4

7t9H (SC,Uo,’UO)
1 1
<CtT== {— max{|Vu0| (@) [Vuol (I)}
p

1
+qj max { |Vv0|q(z) |Vv0|q(z) H

- teH (SC,Uo,’UO)
<0.

with ¢ large enough and p < 1, we conclude that I (tug,tvg) < 0 and I (tug,tvg) —
—o0 as t — 4o00. O

Lemma 3.4. The functional I satisfies the Palais-Smale condition (PS). for any
ceR.

Proof: Let (un,vn) C Wy(a),q(z) be a Palais-Smale sequence at a level ¢ € R,
satisfies I (un,vn) — cand I’ (uy, vy) — 0, we will show that (u,, vy,) is a bounded
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sequence.

¢ > I(up,vn)
i 1 p(a) i 1 a(a)
J (u,v) =M —— |Vu, | de | + M —— Vv, | dx
mv P (2) rv ¢ (2)
f/ F (z,un,v,)dx
RN

o IV, |P™) da + T |V, |1 da — F(z,up,v,)dz
+
RN qr Jry RN

p+

Y]

Y]

> 20 funlley + T ol = [ F @t vn) da

and we are

then
1 _
en > M (/ —— |V dm)/ V[P 2 YV, Vi, da
&y P (7) RN
1 _
+M (/ v dm)/ Vo, |92 Vo, Vo, dx
Ry q(T) RN
oF oF
(2, Up, Up) Upda — (2, Up, Vn) Vpda
RN 8 RN 81}
i i oF
> mo llunll” +mo [vall” —  Fg @ un, vn) undz
oF
— (2, Up, Vn) Vpda
RN 8’1}
By the condition (H4), we have
entc > T (up,vn) (un,vn) — I (Un,vp)
1
> o (1= )l o (1= ) ol +
or
—I—/RN (F (@, Up, Up) e (2, Upy V) Uy, — Fm (X, Up, V) U )dm
1 1
> o (1= 2 ) ol o (1= )
pt qt

then (up,vy,) is bounded in Wo(a),q(x)- There is a subsequence denoted again
(tn,vn) weakly convergent in Wz q()- We will show that (un,,v,) is strongly
convergent to (u,v) in Wz q(z)-
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To this end , we recall the elementary inequality for any ¢,n € RV:

22 1C =y < (IKP> ¢ = InlP ) (¢ = ). i p>2
(=1 —nl (¢ + )2 < (ICI”‘QC - Inlp‘Qn) (C—m I 1<p<2

Indeed (uy,v,) contains a Cauchy subsequence.
Put

Vo ={zeRN,1<p(z) <2}
Vo=4{zeRN 1< q(z) <2}

Therefore for p (z) > 2, using the above inequality, we get
_pt x x
220 M (fi 57 [Vual”™™ dr) M ([ 57 [V " d) -
.. 'fUp |Vun _ vum|:0(z) dr
<M (f]RN ﬁ |Vun|p(z) d:c) M (f]RN ﬁ |Vum|p(m) dz)
X fUp |vun|p(l)_2 Vun (Vun — Vum) dx
M (fen 37 [V dw) M (fow 55 [V do )
X fUp |Vum|p(w)_2 YVt (Vg — Viug,) dx
<M (fRN ﬁ |Vun|p(z) d:c) M (f]RN Wlx) |Vum|p(m) d:c)
% fon [V P72V, (Vun, — V) de
M (IRN Wlm) |Vt [P d;z:) M (f]RN ﬁ |Vt [P d:z:)
X [fan |Vum|p(w)_2 Vi, (Vu, — Vuy,) de
<M (J}RN 5 [V [P dx) T (03 (ttr, — i, 0)
-M (fRN ﬁ |Vun|p(m) dz) I (U Vi) (U, — Uy, 0)
= M (fon 555 [V d2) I (i, 00) (1t = 1, 0)
M (o 555 V") ) I (g, 0m) (1t = 1,0)
M (fon 5757 [P d) K (1, 00) (i 10, 0)
-M (f]RN ﬁ |V, [P d:z:) K’ (U, vm) (Un, — tm,0). Observe by Proposition

2.3. that the positive numerical sequence X, := M (f]RN ﬁl) |Vun|p(m) dx) is
bounded. From Bolzano-Weierstrauss, we can extract a convergent subsequence

again denoted X,,. Roughly speaking, there is a subsequence of u,, (again denoted
uy,) such that X, is convergent. So, we can write:

22-r" x, X, fU,, [V, — Vum|p(m) dr < X1 (Un, vy) (Un — Um, 0)

=X I (U, V) (U, — Uy, 0) + X K (U, 0p) (U, — U, 0)
=X K (U, ) (U, — U, 0) .
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When 1 < p(x) < 2, we use the second inequality (see [[19]]), to get
fvp Vttn — Vg | do

< fy, [Vin = V[P ([Vitn| + Vi)
p(x)(2—p(=z))

c o ([Vun| + [Vupl) 2 da

<2 ’|Vun VPP Vg + V|

p(z)(p(w)—2)
2

p(z)(p(w)—2)
2

p(x)(2—p(x))
2

S X }|Vun+Vum|

2
2—p(x)

_ 2 p(@)—2
< 21}2@( (fRN [Vuy, — V™ |Vu, + Vum| dm)

oS

i

—P
2

i

X max (f]RN |Vun + Vum|p(z) d:z:)

i

< QIE%E( (p~ — 1)% max URN |Vun|p(m)_2 Vun, (Vu, — Vuy,) dz

o[

- f]RN |Vum|p(l)_2 Vi, (Vu, — Vug,) d:c}

2—p?
2

(z)
Xmax (f]RN |V + Vg, |” )

Taking into account Proposition 2.3., Proposition 2.4., the fact that || I’ (u,, vy)| —
0 as n — oo and the fact that the operator K’ is compact, it is easy to see that

lim |Vu, — Vum|p(m) dx = 0.
n,m—o0 JpN

In the same way we show that

lim Vo, — va|p(z) dx = 0.
N

n,m—oo [p
Hence, (uy,v,) contains a Cauchy subsequence. The proof is complete. |

Theorem 3.1. System (1.1) has at least one nontrivial solution (u,v).

Proof: In view of Lemmas 3.1, 3.2, 3.3 and 3.4, we can apply the Mountain-Pass
theorem (see [6]) to conclude that system (1.1) has a nontrivial weak solution. O
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