

ENASE 2016
Proceedings of the

11th International Conference on
Evaluation of Novel Software Approaches to

Software Engineering

Rome - Italy

April 27 - 28, 2016

Sponsored by
INSTICC - Institute for Systems and Technologies of Information, Control and Communication

In Cooperation with
AFEI - Association for Enterprise Information

ACM SIGAPP - ACM Special Interest Group on Applied Computing
ACM SIGSOFT - ACM Special Interest Group on Software Engineering

Copyright c� 2016 by SCITEPRESS – Science and Technology Publications, Lda.
All rights reserved

Edited by Leszek Maciaszek and Joaquim Filipe

Printed in Portugal

ISBN: 978-989-758-189-2

Depósito Legal: 406877/16

http://www.enase.org

enase.secretariat@insticc.org

BRIEF CONTENTS

INVITED SPEAKERS . IV

SPECIAL SESSIONS CHAIRS . IV

ORGANIZING COMMITTEES . V

PROGRAM COMMITTEE . VI

AUXILIARY REVIEWERS . VIII

SPECIAL SESSIONS PROGRAM COMMITTEE . VIII

SELECTED PAPERS BOOK . IX

FOREWORD . XI

CONTENTS . XIII

III

INVITED SPEAKERS
Sergio Gusmeroli

TXT e-solutions SPA
Italy

Wil Van Der Aalst
Technische Universiteit Eindhoven

Netherlands

Ernesto Damiani
EBTIC-KUSTAR

United Arab Emirates

SPECIAL SESSIONS CHAIRS

SPECIAL SESSION ON MODEL-DRIVEN INNOVATIONS FOR SOFTWARE ENGINEERING

Gundars Alksnis, Riga Technical University, Latvia

Janis Osis, Riga Technical University, Latvia

SPECIAL SESSION ON COLLABORATIVE ASPECTS OF FORMAL METHODS

Anna Zamansky, University of Haifa, Israel

Maria Spichkova, RMIT University, Australia

IV

ORGANIZING COMMITTEES

CONFERENCE CHAIR

Joaquim Filipe, Polytechnic Institute of Setúbal / INSTICC, Portugal

PROGRAM CHAIR

Leszek Maciaszek, Wroclaw University of Economics, Poland and Macquarie University, Sydney,
Australia

SECRETARIAT

Andreia Pereira, INSTICC, Portugal

Ana Ramalho, INSTICC, Portugal

GRAPHICS PRODUCTION AND WEBDESIGNER

André Lista, INSTICC, Portugal

Mara Silva, INSTICC, Portugal

WEBMASTER

Susana Rodrigues, INSTICC, Portugal

V

PROGRAM COMMITTEE
Marco Aiello, University of Groningen,
Netherlands
Frederic Andres, Research Organization of
Information and Systems, Japan

Guglielmo de Angelis, CNR - IASI, Italy

Oscar Avila, Universidad de los Andes, Colombia

Paul Bailes, The University of Queensland,
Australia
Maria Bielikova, Slovak University of Technology
in Bratislava, Slovak Republic

Jan Olaf Blech, RMIT University, Australia

Ivo Blohm, University of St. Gallen, Switzerland

Rem Collier, University College Dublin, Ireland

Rebeca Cortazar, University of Deusto, Spain

Massimo Cossentino, National Research Council,
Italy

Bernard Coulette, Université Toulouse Jean
Jaurès, France

Patrick Cousot, New York University,
United States
Mariangiola Dezani, Universita’ di Torino, Italy

Tadashi Dohi, Hiroshima University, Japan

Schahram Dustdar, Vienna University of
Technology, Austria

Angelina Espinoza, Universidad Autónoma
Metropolitana, Iztapalapa (UAM-I), Spain

Vladimir Estivill-Castro, Griffith University,
Australia
Anna Rita Fasolino, Università degli Studi di
Napoli Federico II, Italy

Maria João Ferreira, Universidade Portucalense,
Portugal

Martin Gaedke, Distributed and Self-organizing
Computer Systems Group, Chemnitz University of
Technology, Germany

Stéphane Galland, Université de Technologie de
Belfort Montbéliard, France

Frédéric Gervais, Université Paris-Est, LACL,
France
Paolo Giorgini, University of Trento, Italy

Cesar Gonzalez-Perez, Institute of Heritage
Sciences (Incipit), Spanish National Research
Council (CSIC), Spain

Jose María Gutierrez, Universidad De Alcalá,
Spain

Mahmoud EL Hamlaoui, University of
Mohammed V Rabat/University of Toulouse
Jean Jaurès, France

Brian Henderson-Sellers, University of
Technology, Sydney, Australia

Rene Hexel, Griffith University, Australia

Benjamin Hirsch, EBTIC / Khalifa University,
United Arab Emirates
Robert Hirschfeld, Hasso-Plattner-Institut,
Germany

Zbigniew Huzar, Wroclaw University of
Technology, Poland

Fuyuki Ishikawa, National Institute of Informatics,
Japan

Mirjana Ivanovic, Faculty of Sciences, University
of Novi Sad, Serbia

Stefan Jablonski, University of Bayreuth,
Germany

Slinger Jansen, Utrecht University, Netherlands

Monika Kaczmarek, University of
Duisburg-Essen, Germany

Georgia Kapitsaki, University of Cyprus, Cyprus

Siau-cheng Khoo, National University of
Singapore, Singapore

Diana Kirk, Consultant, New Zealand

Paul Klint, Centrum Wiskunde & Informatica,
Netherlands
Piotr Kosiuczenko, WAT, Poland

Nectarios Koziris, National Technical University
of Athens, Greece

Rosa Lanzilotti, University of Bari, Italy

Robert S. Laramee, Swansea University,
United Kingdom

Bixin Li, Southeast University, China

Huai Liu, RMIT University, Australia

André Ludwig, University of Leipzig, Germany

VI

Ivan Lukovic, University of Novi Sad, Faculty of
Technical Sciences, Serbia

Leszek Maciaszek, Wroclaw University of
Economics, Poland and Macquarie University,
Sydney, Australia

Lech Madeyski, Wroclaw University of
Technology, Poland

Nazim H. Madhavji, University of Western
Ontario, Canada

Michele Marchesi, University of Cagliari, Italy

Michael Mrissa, University of Lyon, France

Peter Axel Nielsen, Aalborg University, Denmark

Andrzej Niesler, Wroclaw University of
Economics, Poland

Andreas Oberweis, Karlsruhe Institute of
Technology (KIT), Germany

Janis Osis, Riga Technical University, Latvia

Mourad Oussalah, Laboratoire Lina Cnrs Fre
2729, University of Nantes, France

Justyna Petke, University College London,
United Kingdom

Naveen Prakash, MRCE, India

Adam Przybylek, Gdansk University of
Technology, Poland

Elke Pulvermueller, University of Osnabrueck,
Germany

Lukasz Radlinski, West Pomeranian University of
Technology, Poland

Camille Salinesi, University Paris 1 - Pantheon
Sorbonne, France

Walt Scacchi, University of California Irvine,
United States
Markus Schatten, University of Zagreb, Croatia

Josep Silva, Universidad Politécnica de Valencia,
Spain

Michal Smialek, Warsaw University of
Technology, Poland

Ioana Sora, Politehnica University of Timisoara,
Romania
Andreas Speck, Christian-Albrechts-University
Kiel, Germany

Maria Spichkova, RMIT University, Australia

Witold Staniszkis, Rodan Development, Poland

Miroslaw Staron, University of Gothenburg,
Sweden
Armando Stellato, University of Rome, Tor
Vergata, Italy

Gunnar Stevens, University of Applied Science
Bonn-Rhein-Sieg, Germany

Jakub Swacha, University of Szczecin, Poland

Rainer Unland, University of Duisburg-Essen,
Germany

Olegas Vasilecas, Vilnius Gediminas Technical
University, Lithuania

Stefan Wagner, Universität Stuttgart, Germany

Krzysztof Wecel, Poznan University of Economics,
Poland
Bernhard Westfechtel, University of Bayreuth,
Germany

Jack C. Wileden, University of Massachusetts,
United States
Martin Wirsing, Ludwig-Maximilians-Universität
München, Germany

Igor Wojnicki, AGH University of Science and
Technology, Poland

Michalis Xenos, Hellenic Open University, Greece

Kang Zhang, The University of Texas at Dallas,
United States
Alfred Zimmermann, Reutlingen University,
Germany

VII

AUXILIARY REVIEWERS

Lorenzo Bettini, Università di Torino, Italy

Thomas Buchmann, University of Bayreuth,
Germany

Mario Coppo, Universita’ di Torino, Italy

Mohamad Gharib, University of Trento, Italy

Claudia Di Napoli, C.N.R., Italy

Jan-Peter Ostberg, Universität Stuttgart, Germany

Laure Petrucci, LIPN, CNRS UMR 7030,
Université Paris 13, France

Elvinia Riccobene, University of Milan, Italy

Luca Sabatucci, National Research Council - Italy,
Italy

Sven Verdoolaege, Polly Labs, Belgium

Fabian Wiedemann, Technische Universität
Chemnitz, Germany

SPECIAL SESSIONS PROGRAM COMMITTEE

SPECIAL SESSION ON MODEL-DRIVEN INNOVATIONS FOR SOFTWARE ENGINEERING

Gundars Alksnis, Riga Technical University,
Latvia

Vicente Garcia Diaz, Oviedo University, Spain

Liliana Dobrica, University Politehnica of
Bucharest, Romania

Uldis Doninš, Riga Stradins University, Latvia

Petr Hnetynka, Charles University,
Czech Republic

Zbigniew Huzar, Wroclaw University of
Technology, Poland

Lajos Kollár, University of Debrecen, Hungary

Erika Nazaruka, Riga Technical University, Latvia

Janis Osis, Riga Technical University, Latvia

Raman Ramsin, Sharif University of Technology,
Iran, Islamic Republic of

Janis Silins, Mapon SIA, Latvia

Fritz Solms, University of Pretoria, South Africa

Maria Spichkova, RMIT University, Australia

Artis Teilans, Rezekne University of Applied
Sciences, Latvia

Edward Rolando Núñez Valdez, Charles III
University of Madrid, Spain

SPECIAL SESSION ON COLLABORATIVE ASPECTS OF FORMAL METHODS

Gundars Alksnis, Riga Technical University,
Latvia

Daniel Berry, University of Waterloo, Canada

Stefanie Betz, Karlrsuher Institute for Technologie,
Germany

Jan Olaf Blech, RMIT University, Australia

Ruzanna Chitchyan, University of Leicester,
United Kingdom

Irit Hadar, University of Haifa, Israel

James Harland, RMIT University, Australia

Alan Hartman, University of Haifa, Israel

Peter Herrmann, NTNU, Norway

Ivan Jureta, University of Namur, Belgium

Janis Osis, Riga Technical University, Latvia

Daniel Ratiu, Siemens AG, Germany

VIII

Guillermo Rodriguez-Navas, Mälardalen
University, Sweden

Bernhard Rumpe, RWTH Aachen University,
Germany

Thomas Santen, Microsoft, Germany

Natalia Sidorova, Eindhoven University of
Technology, Netherlands

Maria Spichkova, RMIT University, Australia

Rachel Tzoref-Brill, IBM Research, Israel

Colin Venters, University of Huddersfield,
United Kingdom

Matthias Weidlich, Humboldt University of Berlin,
Germany

Anna Zamansky, University of Haifa, Israel

Marc van Zee, University of Luxembourg,
Luxembourg

SELECTED PAPERS BOOK

A number of selected papers presented at ENASE 2016 will be published by Springer in a CCIS Series
book. This selection will be done by the Conference Chair and Program Chair, among the papers actually
presented at the conference, based on a rigorous review by the ENASE 2016 Program Committee members.

IX

FOREWORD

This book contains the proceedings of the 11th International Conference on Evaluation of Novel Approaches
to Software Engineering (ENASE 2016). This conference is sponsored by the Institute for Systems and
Technologies of Information, Control and Communication (INSTICC) and held in cooperation with the
ACM Special Interest Group on Applied Computing (SIGAPP), ACM Special Interest Group on Software
Engineering (ACM SIGSOFT) and the Association for Enterprise Information (AFEI).

The mission of ENASE is to be a prime international forum to discuss and publish research findings and
IT industry experiences with relation to the evaluation of novel approaches to software engineering. The
conference acknowledges necessary changes in systems and software thinking due to contemporary shifts
of computing paradigm to e-services, cloud computing, mobile connectivity, business processes, and soci-
etal participation. By comparing novel approaches with established traditional practices and by evaluating
them against systems and software quality criteria, ENASE conferences advance knowledge and research
in software engineering, including and emphasizing service-oriented, business-process driven, and ubiqui-
tous mobile computing. ENASE aims at identifying most hopeful trends and proposing new directions for
consideration by researchers and practitioners involved in large-scale systems and software development,
integration, deployment, delivery, maintenance and evolution.

The meeting is complemented with the Special Session on Model-Driven Innovations for Software Engi-
neering (MDI4SE) and the Special Session on Collaborative Aspects of Formal Methods (COLAFORM).

ENASE received 79 paper submissions, including the special sessions, from 28 countries, 13% were ac-
cepted as full papers which shows the intention of preserving a high quality forum for the next editions of
this conference.

The conference program includes a panel and three invited talks delivered by internationally distinguished
speakers, namely: Sergio Gusmeroli (TXT e-solutions SPA, Italy), Wil Van Der Aalst (Technische Univer-
siteit Eindhoven, Netherlands) and Ernesto Damiani (EBTIC-KUSTAR, United Arab Emirates).

To recognize the best submissions and the best student contributions, several awards based on the combined
marks of paper reviewing, as assessed by the Program Committee, and the quality of the presentation, as
assessed by chairs at the conference venue, are conferred at the closing session of the conference.

We would like to express our thanks to all participants. First of all, to the authors, whose quality work is
the essence of this conference. Next, we thank all the members of the program committee and the auxiliary
reviewers for their diligence and expert reviewing. We must deeply thank the invited speakers for their
excellent contribution in sharing their knowledge and vision. Finally, special thanks to all the members of
the INSTICC team whose collaboration was fundamental for the success of this conference.

We wish you all an inspiring conference and an unforgettable stay at Rome, Italy. We look forward to
having additional research results presented at the next edition of ENASE, details of which are available at
http://www.enase.org/.

Leszek Maciaszek
Wroclaw University of Economics, Poland and Macquarie University, Sydney, Australia

Joaquim Filipe
Polytechnic Institute of Setúbal / INSTICC, Portugal

XI

CONTENTS

INVITED SPEAKERS

KEYNOTE SPEAKERS

The Sensing Enterprise - Enterprise Information Systems in the Internet of Things
Sergio Gusmeroli 5

Green Data Science - Using Big Data in an “Environmentally Friendly” Manner
Wil Van Der Aalst

7

Towards Model-Driven Big-Data-as-a-Service
Ernesto Damiani

9

SERVICE SCIENCE AND BUSINESS INFORMATION SYSTEMS

FULL PAPERS

Are Suggestions of Coupled File Changes Interesting?
Jasmin Ramadani and Stefan Wagner 15

Cloud Computing Adoption, Cost-benefit Relationship and Strategies for Selecting Providers: A
Systematic Review
Antonio Carlos Marcelino de Paula and Glauco de Figueiredo Carneiro

27

SHORT PAPERS

Semi-automatic Generation of OrBAC Security Rules for Cooperative Organizations using
Model-Driven Engineering
Irvin Dongo and Vanea Chiprianov

43

Extended Change Identification System
Parimala N. and Vinay Gautam 51

MOBILE SOFTWARE AND SYSTEMS

SHORT PAPER

Preventing Hospital Acquired Infections through a Workflow-based Cyber-physical System
Maria Iuliana Bocicor, Arthur-Jozsef Molnar and Cristian Taslitchi 63

XIII

SOFTWARE ENGINEERING

FULL PAPERS

Breaking the Boundaries of Meta Models and Preventing Information Loss in Model-Driven Software
Product Lines
Thomas Buchmann and Felix Schwägerl

73

Extending UML/MARTE-SAM for Integrating Adaptation Mechanisms in Scheduling View
Mohamed Naija and Samir Ben Ahmed 84

A Methodology for Model-based Development and Safety Analysis of Transport Systems
Simon Hordvik, Kristoffer Øseth, Jan Olaf Blech and Peter Herrmann 91

RA2DL-Pool: New Useful Solution to Handle Security of Reconfigurable Embedded Systems
Farid Adaili, Olfa Mosbahi, Mohamed Khalgui and Samia Bouzefrane 102

SHORT PAPERS

Towards Semantical DSMLs for Complex or Cyber-physical Systems
Blazo Nastov, Vincent Chapurlat, Christophe Dony and François Pfister 115

Evolution Taxonomy for Software Architecture Evolution
Noureddine Gasmallah, Abdelkrim Amirat and Mourad Oussalah 124

Systematic Mapping Study of Ensemble Effort Estimation
Ali Idri, Mohamed Hosni and Alain Abran 132

A Novel R-UML-B Approach for Modeling and Code Generation of Reconfigurable Control Systems
Raja Oueslati, Olfa Mosbahi, Mohamed Khalgui and Samir Ben Ahmed 140

Constraints-based URDAD Model Verification
Fritz Solms, Priscilla Naa Dedei Hammond and Linda Marshall 148

Evaluating A Novel Agile Requirements Engineering Method: A Case Study
Tanel Tenso, Alex Norta and Irina Vorontsova 156

An Empirical Study of Two Software Product Line Tools
Kattiana Constantino, Juliana Alves Pereira, Juliana Padilha, Priscilla Vasconcelos and
Eduardo Figueiredo

164

Source and Test Code Size Prediction - A Comparison between Use Case Metrics and Objective Class
Points
Mourad Badri, Linda Badri and William Flageol

172

Self-Protection Mechanisms for Web Applications - A Case Study
Claudia Raibulet, Alberto Leporati and Andrea Metelli 181

AWSM - Agile Web Migration for SMEs
Sebastian Heil and Martin Gaedke

189

Validation of Loop Parallelization and Loop Vectorization Transformations
Sudakshina Dutta, Dipankar Sarkar, Arvind Rawat and Kulwant Singh 195

Multi-variant Model Transformations — A Problem Statement
Felix Schwägerl, Thomas Buchmann and Bernhard Westfechtel 203

XIV

Automatic Refactoring of Component-based Software by Detecting and Eliminating Bad Smells - A
Search-based Approach
Salim Kebir, Isabelle Borne and Djamel Meslati

210

CURA: Complex-system Unified Reference Architecture - Position Paper: A Practitioner View
Ethan Hadar and Irit Hadar

216

Evaluating the Evaluators - An Analysis of Cognitive Effectiveness Improvement Efforts for Visual
Notations
Dirk van der Linden and Irit Hadar

222

A Human-centred Framework for Combinatorial Test Design
Maria Spichkova and Anna Zamansky 228

A Research Agenda on Visualizations in Information Systems Engineering
Jens Gulden, Dirk van der Linden and Banu Aysolmaz 234

Towards an Engineering Process for Developing Accessible Software in Small Software Enterprises
Sandra Sanchez-Gordon, Mary-Luz Sánchez-Gordón and Sergio Luján-Mora 241

Developing Green and Sustainable Software using Agile Methods in Global Software Development:
Risk Factors for Vendors
Nasir Rashid and Siffat Ullah Khan

247

An Enhanced Equivalence Checking Method to Handle Bugs in Programs with Recurrences
Sudakshina Dutta and Dipankar Sarkar 254

Zoetic Data and their Generators
Paul Bailes and Colin Kemp 260

Engineering Real-Time Communication Through Time-triggered Subsumption - Towards Flexibility
with INCUS and LLFSMs
David Chen, René Hexel and Fawad Riasat Raja

272

On Source Code Optimization for Interpreted Languages using State Models
Jorge López, Natalia Kushik and Nina Yevtushenko 282

Managing Usability and Reliability Aspects in Cloud Computing
Maria Spichkova, Heinz W. Schmidt, Ian E. Thomas, Iman I. Yusuf, Steve Androulakis and
Grischa R. Meyer

288

End to End Specification based Test Generation of Web Applications
Khusbu Bubna

296

An Appropriate Method Ranking Approach for Localizing Bugs using Minimized Search Space
Shanto Rahman and Kazi Sakib

303

XV

SPECIAL SESSION ON MODEL-DRIVEN INNOVATIONS FOR SOFTWARE
ENGINEERING

FULL PAPERS

Topological Functioning Model for Software Development within MDA (Survey)
Arturs Solomencevs

315

The Validation Possibility of Topological Functioning Model using the Cameo Simulation Toolkit
Viktorija Ovchinnikova and Erika Nazaruka 327

Comparison of Topological Functioning Model for Software Engineering with BPMN Approach in
the Context of Model Driven Architecture
Janis Osis and Arturs Solomencevs

337

Verification of BPMN Model Functional Completeness by using the Topological Functioning Model
Erika Nazaruka, Viktorija Ovchinnikova, Gundars Alksnis and Uldis Sukovskis 349

SPECIAL SESSION ON COLLABORATIVE ASPECTS OF FORMAL METHODS

SHORT PAPERS

Formal Behavioural Models to Facilitate Distributed Development and Commissioning in Industrial
Automation
James Harland, Jan Olaf Blech, Ian Peake and Luke Trodd

363

Teaching of Formal Methods for Software Engineering
Maria Spichkova and Anna Zamansky 370

Reasoning about Inconsistency in RE - Separating the Wheat from the Chaff
Anna Zamansky, Irit Hadar and Daniel M. Berry 377

Collaborative Model-based Development of a Remote Train Monitoring System
Peter Herrmann, Alexander Svae, Henrik Heggelund Svendsen and Jan Olaf Blech 383

Let‘s Make it Fun: Gamifying and Formalizing Code Review
Naomi Unkelos-Shpigel and Irit Hadar 391

Formal Methods in Collaborative Projects
Anna Zamansky, Guillermo Rodriguez-Navas, Mark Adams and Maria Spichkova 396

AUTHOR INDEX 403

XVI

INVITED SPEAKERS

KEYNOTE SPEAKERS

Evolution Taxonomy for Software Architecture Evolution

Noureddine Gasmallah1,2,3, Abdelkrim Amirat2 and Mourad Oussalah3
1Department of Computer Science, University of Annaba, Sidi-Amar, 23000, Annaba, Algeria

2Department of Maths and Computer Science, University of Souk-Ahras, Rte d’Annaba, 41000, Souk-Ahras, Algeria
3Department of Computer Science, University of Nantes, 2 Rue de la Houssiniére BP-92208, 44322, Nantes, France

{gasmallahedi, abdelkrim.amirat}@yahoo.com, mourad.oussalah@univ-nantes.fr

Keywords: Software Architecture, Software Evolution, Evolution Taxonomy, Quality Criteria.

Abstract: Nowadays, architects are facing the challenge of proliferation of stakeholder requirements for preserving and
ensuring the effectiveness of the software, by using software evolution as a key solution. Hence, in terms
of landscaping evolution space there is a great need to define the thinking on which efforts to deal with this
issue have been based. In this paper, we propose a framework for software architecture evolution taxonomy
based on four structural dimensions. This framework could both position existing evolution models in the
field and highlight gray areas for the future. Mapping over framework dimensions, a set of quality factors and
an investigation including 67 studies are performed to assess the proposals. The results contain a number of
relevant findings, including the need to improve software architecture evolution by accommodating predictable
changes as well as promoting the emergence of operating mechanisms.

1 INTRODUCTION

Nowadays, there is no doubt that software develop-
ment is facing a cumbersome process of handling or
modeling the inevitable evolution within open sys-
tems. Software architecture is a combination of a
set of architectural elements and their interconnec-
tions which are unified to satisfy design require-
ments. However, the architecture should adhere to the
changes required by the various stockholders in order
to avoid system erosion (Perry and Wolf, 1992) and
to meet their different goals. Thereby, software archi-
tecture must evolve as a systematic result of increased
concern about the environment (Jazayeri, 2005). Con-
sequently, evolution should be planned in the early
phases of modeling the software. These requirements
have in turn stimulated and challenged researchers to
develop new approaches for dealing with the archi-
tecture evolution topic. Despite this widespread inter-
est, few studies on architecture evolution taxonomy
have been found in literature. Therefore, there is a
clear need to bring structure into the software archi-
tecture domain to better landscape the wide array of
research devoted to covering this field. This kind of
study is vital for both categorization of the existing
works and highlighting gaps that may provide new
trends for the future. This paper refers to some of the
most significant of these. First, (Buckley et al., 2005)

adopt a complementary way of thinking to position a
taxonomy of software change using a non-exhaustive
set of factors inherent to mechanisms used to evolve
systems. These factors are categorized into two non-
separate sets of: dimensions as characterizing and
influencing factors. Meanwhile, in (Breivold et al.,
2012), the authors identified five main categories of
themes based substantially on research topics to con-
duct an investigation of 82 research papers. A set of
specific characteristics is provided with a view to re-
fine each category to subcategories reflecting a com-
mon specification on research focus, research con-
cepts and context. The proposed overview does not
mention an explicit framework for the proposed tax-
onomy but presents significant descriptions of many
relevant studies for software evolution. However, a
recent study (Ahmad et al., 2014) has identified six re-
search themes of evolution reuse knowledge by inves-
tigating a set of existing methods, techniques and so-
lutions either for systematic application or for empir-
ical acquisition of architectural knowledge. The pro-
posed thematic classification is focused on both time
of evolution (design or runtime) and type of evolution
(change execution or changemining) for reuse knowl-
edge. The lack of existing studies on characterization
of architectural evolution providemuch scope for new
thinking about classifying the existing works (Gar-
lan et al., 2009)(Chaki et al., 2009). The aim of the

124
Gasmallah, N., Amirat, A. and Oussalah, M.
Evolution Taxonomy for Software Architecture Evolution.
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 124-131
ISBN: 978-989-758-189-2
Copyright c� 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

paper is threefold: (i) to provide a conceptual frame-
work by addressing major concerns (what, why, who,
how and when) about the evolution of software ar-
chitecture, (ii) to identify the main taxonomy classes
which could assist in both landscaping the field and
highlighting gray areas, (iii) to identify a set of ex-
pected quality criteria which can elucidate the quality
criteria focus for each evolution mechanism. Our mo-
tivations are driven by the need to promote synergy
between the various existing mechanisms throughout
the software evolution field. However, we attempt to
find a simple and effective arrangement of approaches
which may serve, subsequently, as a standard for evo-
lution. To carry out this study, a set of 67 selected
papers have been classified into broad categories and
then utilized according to the experimental software
engineering guidelines (Wohlin et al., 2012). The re-
mainder of this paper is structured as follows: sec-
tion two introduces the dimensions of evolutionwhich
draw the conceptual framework and the structure of
the evolution taxonomy. The third section is devoted
to presenting a brief definition of qualitative expecta-
tions for an evolution model. Section four conducts
a proposal assessment to establish a more holistic un-
derstanding of our proposals. The last section recapit-
ulates our major findings and discusses implications
for further research.

2 TAXONOMIC FRAMEWORK

A taxonomic framework should be regarded rather
as a tool which provides meaningful benchmarks for
both coverage of the current state of the art and sup-
positions to guide new trends.

2.1 Framework for Software Evolution

By answering certain questions about: what, why,
who, how and when does software architecture
evolve? we can substantially identify the following
four dimensions throughout the current studies: lev-
els (who?), object (where?), type (what?) and the op-
erating mechanism (how?) of evolution (OME in the
following).

2.1.1 Levels of Evolution

This dimension emphasizes the importance of ad-
dressing architecture over one or several hierarchical
levels (Amirat et al., 2011). This entails consider-
ing distinctively the modeling and abstraction levels
during the evolution process as follows: (i) Model-
ing level (M0 to M3)- is an abstract representation of

the structure and behavior of a system with a view to
provide a line of reasoning related to the system con-
sidered (Bézivin, 2003); changes can be performed in
one or more of these levels (e.g. each instance’s ma-
nipulation is at a lower modeling level for the class
concept). (ii) Abstraction level (a0 to an)- is used
to address complex problems by defining appropriate
levels of abstraction for relegation of irrelevant details
to a lower level with a view to restrict the semantic in-
formation (Oussalah et al., 2014) (e.g. refining classes
to subclasses would be helpful and effective measures
for designers).

2.1.2 Object of Evolution

Means the subject on which the evolution is operated.
Object can be:(i) Artifact- an abstraction of any ele-
ment belonging to the architectural structure (archi-
tecture, component, service...), for example, when a
change is performed on a component port of an archi-
tecture (user interface, shared variable, ...), the evo-
lution is basically made on the artifact itself (compo-
nent). (ii) Process- an abstraction of all isolated or
combined operations or methods to be applied to a
process, e.g. installation of a new strategy in terms of
rules and constraints.

2.1.3 Operating Mechanism of Evolution (OME)

Outline the fashion in which an object of evolution
is involved over the different hierarchical levels con-
sidered during the evolution of the architecture. Two
main operating mechanisms can be identified accord-
ing to (Brooks, 1989): (i) Reduce- Brooks defines
the ”reductionist” approach as a ”classical” approach
to problem solving whereby the overall resolution
task is decomposed into subtasks. During this re-
ductionist evolution, the operating mechanism goes
through a pre-defined evolution path, until the so-
lution is satisfied (evolved model) (e.g. the evo-
lution of classes impacts the instances). Distinc-
tions can be made in terms of three major cases: (a)
the reduction operating mechanism can involve sev-
eral modeling levels (Modeling level reduce) or only
one modeling level either over (b) several abstraction
levels(Inter-abstraction level reduce) or also only (c)
one abstraction level (Intra-abstraction level reduce).
(ii) Emergence- In contrast, during an ”emergentist”
evolution approach, the activity builds the path to
a solution. Indeed, the emergence exposes a pas-
sage between the activity of ”micro-level” and that of
”macro-level” (e.g. categorization of classes in super-
classes). Modeling level emergence, inter-abstraction
level emergence and intra-abstraction level emer-
gence are identified in the same way as by the reduce

Evolution Taxonomy for Software Architecture Evolution

125

Figure 1: Operating mechanism across hierarchical levels.

OME (Fig. 1).

2.1.4 Type of Evolution

This dimension is commonly used throughout the
software taxonomy (Williams and Carver, 2010)(Ah-
mad et al., 2014)(Buckley et al., 2005) but with dif-
ferent perceptions. The first embodies the behavioral
aspect of maintainability according to type of main-
tenance. Meanwhile, the second type of evolution
focuses on the development environment being used
during the evolution (static, dynamic or load-time). In
this light, the evolution type has to be considered from
two relevant perspectives to achieve a reasonable as-
sessment. The first concerns a technical view which
applies the notion of maintainability (corrective, per-
fective, adaptive and preventive). For the sake of sim-
plicity, this paper employs the following well known
categories: corrective, perfective and adaptive (Swan-
son, 1976). The second perception adopts an archi-
tectural viewpoint which mainly considers architec-
ture as an artifact of evolution (Chaki et al., 2009).
It expresses the reason for supporting and conduct-
ing software changes whether after (curative) or be-
fore (predictable) software delivery, regardless of the
technical type used.
(i) Curative- ensures that when new requirements
arise unpredictably or were poorly defined or even un-
specified during the life cycle, the environment will
help to correct, perfect and adapt them by integrat-
ing the desired changes. Usually, the curative type
depends on the nature of problem that is being ad-
dressed, mainly in relation to its context and the re-
source deployed, and often is applied in an ad-hoc
manner as problems arise.
(ii) Predictable- ensures that evolution requirements
are taken into account during the analysis phase and
specified during the design. These requirements are
specified at an earlier stage of the design process and
define all anticipated changes allowed using any tech-
nical types for evolution. The latter can be divided
into two main categories depending on the architects
view: according to the predefinition of the final ar-
chitecture (Chaki et al., 2009) and depending on the
continuity of the evolved architecture (Oussalah et al.,

Figure 2: Type of evolution sub-dimensions.

1999). The first category emphasizes two types of
evolution: (a) Open evolution- means a deduction,
from an initial architecture, of a new architecture re-
flecting a system solution in which a set of invariants
and constraints are respected. (b) Closed evolution-
the final architecture is considered as a premise. This
evolution consists of performing a valid sequence of
operations which, once they are applied to architec-
ture, lead without any ambiguity to the final architec-
ture. This involves oriented knowledge construction
and requires a greater capacity of conceptual thinking.
The second category provides two kinds of evolution:
(c) Evolution with break- means that interventions are
applied directly to the initial architecture without hav-
ing the ability to go back on the trace of the made
evolution (e.g. evolution by extensibility (open white
box), changes are performed directly on codes). (d)
Evolution with seamless- denotes an evolution with
trace where the architecture keeps a trace of its ini-
tial properties and operations performed before each
evolving operation. Such continuity is ensured by the
backup of the applied operation sequences (e.g. in
versioning technique, operations undertaken on ver-
sions are imperatively stored, which in turn preserves
the evolution history). In fact, open or closed types
of evolution can be either with break or seamless
(Fig. 2).

2.2 Evolution Taxonomy

The taxonomy allows presentation of the whole
solution space of architecture evolution. The pro-
posed taxonomy is based successively on the OME
dimension and on the modeling and abstraction levels
of the architecture affected during the evolution
activity. During evolution process, each OME
(reduce or emergent) can either impacts at least two
modeling levels of the architecture (modeling levels)
or preserving the same modeling level. In such case,
the OME should be specified whether it concerns
different abstraction levels (inter-Abstraction) or
simply evolved within the same level of abstraction

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

126

Figure 3: Architecture involvement through operating
mechanisms.

(intra-abstraction). Thereby, the evolution taxonomy
is structured around six classes for software architec-
ture evolution, as follows:
Intra-abstraction Level Reduce Oriented Evolu-
tion (class 1)- The OME consists of evolving one
or more architectural elements, of an architecture
sited at a defined modeling level, within the same
abstraction level (e.g. modification of one or more
component properties of an architecture).
Inter-abstraction Level Reduce Oriented Evolu-
tion (class 2)- The OME consists of evolving one
or more architectural elements sited at a defined
modeling level, from their associated abstraction
level to the lower abstraction levels (e.g. evolution of
class impacts several sub-classes).
Modeling Level Reduce Oriented Evolution
(class 3)- The OME consists of evolving one or more
architectural elements on a downward modeling path
i.e. from their initial modeling level to the lower
modeling levels (e.g. evolution of classes impacts
instances).
Intra-abstraction Level Emergence Oriented
Evolution (class 4)- The OME consist of emerging
one or more architectural elements, of an architecture
sited at a defined modeling level, within the same
abstraction level (e.g. categorization of classes by
creating a superclass).
Inter-abstraction Level Emergence Oriented
Evolution (class 5)- The OME consists of emerging
one or more architectural elements, belonging to
one defined modeling level, from their associated
abstraction level up to the higher abstraction levels
(e.g. aggregation of classes in one class).
Modeling Level Emergence Oriented Evolution
(class 6)- The OME of evolution consists, on upward
path, of emerging one or more architectural elements
from their associated modeling level to the higher
modeling levels (e.g. creation of new classes to deal
with differences on multiple instances).

3 QUALITY EXPECTATION FOR
AN EVOLUTIONMODEL

Expectancy indicates that better effort will result in
better performance (Vroom, 1964). Qualitative ex-
pectancy assumes that researchers have reasons for
favoring one set of conscious criteria over others. In-
deed, an architectural evolution model is operated to
satisfy a set of subjective factors to achieve some valid
goals. We are focused on devising a set of quality
criteria for a new evolution approach. We have esti-
mated that these are the minimum expected according
to an architectural point of view. However, these cri-
teria must not be interpreted as a restriction on quality
factors but rather as the common specific criteria for
our topic. Therefore, according to (Oussalah et al.,
1999), an evolution approach must be: (i) enunciated
to better provide a thorough behavior for the changes,
(ii) expressed to better outline the development and
refinement characteristics of the desired model, and
finally, (iii) evaluated from the fact that the evolu-
tion model provides a set of quality appraisal criteria
aimed to estimate the relevance of the model com-
paratively to a goal commitment. Thus, quality ex-
pectancy can be structured into three capacities: Qn,
Qx and Qv respectively for the enunciation, expres-
siveness and evaluation capacities. Furthermore, a
model of evolution can be evaluated to indicate its
representativeness expectancy, which means the per-
centage to which the evolution quality has met the ex-
pected quality criteria. These percentages can be used
as an indicator tool for assessing the evolution quality
of a model.

3.1 Enunciation Capacity

Enunciation is formalized in terms of criteria to: for-
mulate, manage the impacts of changes and keep track
between the starting model (before changes) and the
final model. This capacity encompasses criteria of:
Formulation of evolution (F)- which reflects the level
of evolution visibility in terms of applying operators
to cause the initial architecture to evolve. Impact
management of the evolution (I)-means the result due
to the change of an architectural element of the model
in terms of influence on the other elements. Trace-
ability (T)- formalizes the model’s ability to keep
track of the sequence of evolution operations applied
for changing an initial architecture. The enunciation
capacity (Qn) can be expressed through a parametric
equation given by:

Qn =
a×F(p)+ b× I(p)+ c×T(p)

a+ b+ c
(1)

Evolution Taxonomy for Software Architecture Evolution

127

Where parameter p is the degree of parameterization
for criterion. Coefficients a, b and c are the associ-
ated weights by which we can establish a hierarchical
order of preference between criteria.

3.2 Model Expressiveness Capacity

This capacity indicates what this model is actually
capable of describing regarding the evolution of ar-
chitecture. Modeling level (M)- appoints the differ-
ent modeling levels affected during the OME. It can
be flat trend in the case of an evolution on the same
modeling level, otherwise it affects different model-
ing levels to achieve the result. Abstraction level (A)-
defines the degree of refinement within an evolution
in terms of the internal architecture details during the
reuse time. These details are presented in a white,
gray or black box. Expressiveness mode (E)- reflects
the chosen representation to express the model evolu-
tion. This criterion focuses on accuracy and simplic-
ity of expression and offers more semantics to enable
reuse. Operating mode (O)- prescribes the mode of
reasoning by which the evolution is managed. This
can be done by deduction or by induction or by clas-
sification. Domain (D)- represents the scope cov-
ered by the solution of the evolution model. In fact,
a generic domain means that multiple situations are
likely to adopt this solution without giving details of
their execution. In counterpart, the specific domain
provides a further investment of multiple aspects of
details to enable the architecture to evolve. The ex-
pressiveness capacity can be expressed by:

Qx = (a×M(p)+ b×A(p)+ c×E(p)
+ d×O(p)+ e×D(p))/(a+ b+ c+d+ e) (2)

3.3 Quality Evaluation Capacity of an
Evolution Model

The third dimension reflects the ability to measure the
capacities of the model to assess its quality, through:
Re-usability (R)- represents the degree of re-use given
by a model of evolution. Adaptability (A)- expresses
the ability to control and enable an evolution model
to be adapted dynamically. Performance (P)- de-
fines the faculty of the model to make the desired
changes by optimizing time, cost, space and speed ra-
tios. Support of evolution (S)- describes if the evo-
lution model has an predefined or implemented tools
for the used evaluation mechanism. The evaluation
capacity can be formulated as:

Qv =
a×R(p)+b×A(p)+ c×P(p)+d× S(p)

a+ b+ c+ d
(3)

Application Example: For the simplicity of under-
standing the example, some assumptions are made:
(i) for handling criteria values, numerics 1, 0.5 and
0 are assigned respectively to explicit, implicit and
not recognized criteria, (ii) the common associated
weights used in each equation such as a, b ,c, .., d
have been set to 1, (iii) parameters p- are considered
equivalent for simplicity of calculation, thus equal
values have been assigned to each one of them, and
(iv) representativeness ratio is in the range of three in-
tervals: 0≤weak< 1/3≤medium< 2/3≤ high≤ 1.
Prospection of the paper by (Oussalah et al., 2006) led
to the following criteria results: enunciation capac-
ity (F=1, I=1, T=0), expressiveness capacity (M=1,
A=0.5, E=1, O=1, D=1) and evaluation quality capac-
ity (R=1, A=1, P=1, S=0). Then applying equations
(1),(2), (3) results: Qn = (1×1+1×1+1×0)/3=
0.67; Qx = (1× 1+ 1× 0,5+ 1× 1+ 1× 1+ 1×
1)/5= 0.90; Qv = (1×1+1×1+1×1+1×0)/4=
0.75. The quality expectancy given by the capacities:
Q(Oussalahet al.,2006)= (0,66+0,90+0,75)/3=
0.77 which means that the model presents a high rep-
resentativeness for software architecture evolution.

4 PROPOSAL ASSESSMENT

Substantially, selection of papers focused on: (i) pa-
pers studying either a software architecture evolution
or software engineering evolution thematic, or both of
these, and (ii) according to two potential criteria: first,
papers used within other classifications research, and
second, well known papers using the indicator cited
index paper. The preparation of the review was done
through devising a prospective study sheet in accor-
dance with (Wohlin et al., 2012). Once the appropri-
ate information had been gathered, calculations were
conducted as shown in the previous example. After-
ward, representativeness expectancywas assessed and
studies with a weak expectancy were removed. Fi-
nally, 67 selected papers were selected that to the best
of our knowledge are the most representative studies
in the field.

4.1 Evolution Mechanism Categories

In order to provide clarification and therefore wider
understanding of the proposed taxonomy, the selected
papers were divided into five thematic categories to
reflect the broadest range of well known mechanisms
for dealing with evolution. Each category includes
mechanisms that share conceptually low close reflec-
tions regardless of the technique used for modeling
(static or dynamic):

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

128

(i) Evolution Change-based Approaches (Gott-
lob et al., 1996)(Bengtsson et al., 2004)(Oreizy
et al., 1999)- encompass work related to: (i)
Maintainability- reflects changes into software after
its implementation, (ii) Modifiability- describes the
architectures ability to be changed in response to
changes due to the environment or stockholder re-
quirements or functional specifications, and (iii) Self-
changes- comprise automation in computing which
refers to execution of important computing opera-
tions. It includes: automatic computation, self-
management, self-organization, self-adaptive.
(ii) Evolution Algorithmic-based Approaches (En-
gel and Browning, 2008)(Wermelinger and Fiadeiro,
2002)- include all reflections for improving software
architecture by providing simple structures, deal-
ing with similarity of objects. It contains mecha-
nisms of categorization, reorganization, incremental
approaches and refactoring.
(iii) Evolution Trace-based Approaches (Cicchetti
et al., 2008)(Herrmannsdoerfer et al., 2009)- includes
mechanismswhere traceability is seen as a key insight
for evolution to promote consistency and compliance.
This category encompasses mechanisms related to:
migration, co-evolution, versioning and view-point.
(iv) Evolution Transformation based Approaches
(Zhao et al., 2007)(Engels and Heckel, 2000)- in-
clude mechanisms wherein changes are applied us-
ing one or more transformation rules for transform-
ing or verifying or validating models (Mens and
Van Gorp, 2006). Model driven architecture ap-
proaches and graph-transformation approaches are
approaches dealing with such topics.
(v) Evolution style based approaches (Garlan et al.,
2009)(Le Goaer et al., 2010)- designate high-level
modeling approaches, using architectural style for
modeling the evolution. Evolution-styles help to
specify the basic structure to evolve in software ar-
chitecture.

4.2 Results and Discussion

Results are discussed according to:
(i) Framework Dimensions: Investigated papers
were compared to the framework using the represen-
tativeness percentage, which represents the quotient
of the number of explicit and implicit (weighted) ex-
pressions of criteria relatively to the total number of
papers within a category. Afterwards, percentages
were reported in the Table 1, in which: Explicitly,
overall the studied evolution mechanisms focus on:
(i) the artifact as an object of evolutionwith more than
70%, to the detriment of the process object, which re-
mains a very promising direction (minus 30%), par-

Table 1: Representativeness of the framework dimensions.

Framework dimensions Metrics %

Object of evolution Artifact 71.64
Process 28.36

Level of evolution Modeling 67.76
Abstration 32.24

OME of evolution Reduce 89.56
Emergence 10.44

Type of evolution Technical 55.33
Architectural 44.67

ticularly because the process is usually considered as
a dynamic specification of the artifact, without ne-
glecting that the artifact provides an advantageous al-
ternative through UML modeling specifications, (i)
abstraction level has attracted less interest (nearly
33%) from the evolution community for the reason
that it overlaps with the modeling level concept, (iii)
the ”Reduce” OME is the most covered, scoring more
than 89% as against 11% for the ”Emergent”, mainly
due to the developer opting for rigorous mathemati-
cal reasoning based on a formal logic, which favors
the deduction process, and (iv) technical type (55%)
is relatively better represented than architectural type.
The study has also found an overwhelming rate for the
”Predictable” type (97%), absolutely justified by the
rough dynamicity of the environment and the instabil-
ity of stakeholder requirements at the different mod-
eling levels, with an advantage for the ”Open” type
of more than 70%. In addition, the study indicates
that almost 80% of the selection are devoted to cor-
rective and perfective typology. It should furthermore
be noted that adaptability produced a low represen-
tation percentage (less than 20%), mainly due to the
difficulty of dynamic evolution at the design-time.
(ii) Evolution Taxonomy: Evolution mechanisms
were ranked according to the suggested taxonomy
with the aim of assessing the cover achieved by each
category of mechanisms and to deduce the least con-
sidered taxonomy classes. By using the percentage of
representativeness in the same way as described pre-
viously, Table 2 displays the different hedging of each
mechanism and clarifies that existing studies have
fostered the modeling-level reduce oriented evolution
class (class 3), with trace-based approaches being the
most significant in 68% of the work. The 14% of stud-
ies in intra-abstraction level reduce oriented evolution
(class 1) is justified by the presence of techniques sup-
porting quality, assessment, and analysis at the archi-
tectural level. Classification of the selection reveals a

Table 2: Class percentages of evolution taxonomy.

C-1 C-2 C-3 C-4 C-5 C-6
14.93 5.97 68.66 5.96 1.49 2.99

Evolution Taxonomy for Software Architecture Evolution

129

Table 3: Criterion and capacity percentages (%).

Qenunciation=22.60 Qexpressiveness= 54.29 Qevaluation=23,11
F I T M A E O D R A P S

11.80 6.16 4.64 12.51 6.56 12.21 10.90 12.11 6.66 5.95 6.26 4.24

significant shortage in research focusing on the emer-
gence OME.
(iii) Quality Expectancy: This evaluation can rule
on potential strengths and weaknesses of each cate-
gory of the architectural evolution mechanisms. Ta-
ble 3, which presents the percentage of representa-
tiveness of a quality criterion across all the studied
papers, shows that for the studied models the appro-
priateness of the measurement formulation capacity
for the enunciation dimension is the most respected
aspect in terms of the fact that all the selected works
were revised and published. Traceability capacity had
the weakest representation, possibly because of the
priority that approaches attach to finding a new so-
lution. Regarding the expressiveness capacities, all
modeling levels were covered, from the lowest level
(M0) to the meta-modeling level(M2). However, a
weak separation between modeling and abstraction
levels was formulated (almost 32%). Expressiveness
mode, operating mode and domain applicability are
strongly expressed criteria in the studied models. In
addition, evaluation criteria are considered in a less
rigorous manner in the selection, by which we de-
duce that the field of architectural evolution has not
yet reached a sufficient level of saturation and matu-
rity to focus primarily on quality evaluation. Never-
theless, the research displays more consideration of
re-usability criterion, and to a lesser extent of adapt-
ability and performance criteria, while the support of
quality assessment tools proposed by approaches re-
mains a very promising track. Table 4 sets out the
representativeness percentage of the expected qualita-
tive capacities for each evolution mechanism. On this
basis, the main findings are as follows: (i) the trans-
formation based approaches present the higher enun-
ciation ratio in comparison to the other categories, due
essentially to its great ability for traceability and for-
malization, (ii) the algorithmic-based approaches fo-
cus largely on criteria related to expressiveness capac-

Table 4: Capacity percentages by mechanism category.

Evolution mech. (%) QEnun QExpr Qeval
Change-based 20,77 54,62 24.62
Algorithmic-based 20.99 57.41 21.60
Trace-based 21.47 55.21 23.31
Transformat-based 30.77 55.38 13.85
Style-based 23.75 51.91 24.34
Average 22.60 54.29 23.11

ity through the operating and expressiveness modes,
domain of specification and modeling level identifi-
cation, and (iii) throughout all categories, there is in-
sufficient representation of quality evaluation capac-
ity which denotes slightly higher representation of
change based and style-based approaches.

5 CONCLUSION

The first goal of this study was to devise a framework
for software architecture evolution. This framework
attempts to provide a structural organization which,
while far from considering qualitative specifications,
is organized in four main dimensions: levels, ob-
ject, type and operation mechanism of evolution. The
evolution taxonomy, as a second goal, offers a land-
scape of what was being done and what remains to
be done. It has unveiled a lack of emergence ap-
proaches. The third goal was to deal with the real
challenge of achieving representativeness of a given
evolution model in the field. The paper recapitulated
a large number of quality criteria crucial to evalua-
tion of effectiveness of the effort-making in terms of
devising a model that meets the quality expectations.
The latter were arranged into the following three im-
portant capacities: enunciation, expressiveness and
quality evaluation. The results shows that criteria re-
lated to expressiveness are often given more weight as
opposed to enunciation and evaluation quality. Like-
wise, our study limitation relates to the estimation of
qualitative criteria either in terms of assigning a par-
ticular value for each criterion (explicit and implicit)
or in terms of adopting an equal weight value for pa-
rameters over all criteria. Thus, we believe that the
conceptual framework that we have presented could
be applied in future studies to: (i) determine the ap-
propriate evolution approach according to the crite-
ria that seem the most relevant, (ii) highlight how the
quality criteria of an evolution approach would influ-
ence its representativeness, and (iii) provide guidance
in particular research fields, such as the study of emer-
gent operating mechanisms. Moreover, future studies
could use the proposed framework to explore many
of the research papers investigated by previous taxo-
nomic studies in the software engineering domain. In
this light, it would be invaluable to provide a meta-
classification which could be instantiated according
to the field specialization.

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

130

REFERENCES

Ahmad, A., Jamshidi, P., and Pahl, C. (2014). Classifica-
tion and comparison of architecture evolution reuse
knowledgea systematic review. Journal of Software:
Evolution and Process, 26(7):654–691.

Amirat, A., Menasria, A., and Gasmallah, N. (2011). Evolu-
tion framework for software architecture using graph
transformation approach.

Bengtsson, P., Lassing, N., Bosch, J., and van Vliet,
H. (2004). Architecture-level modifiability analysis
(alma). Journal Syst.and Software, 69(1):129–147.

Bézivin, J. (2003). La transformation de modéles. INRIA-
ATLAS & Universit de Nantes, 2003. Ecole dEt dIn-
formatique CEA EDF INRIA 2, cours #6.

Breivold, H. P., Crnkovic, I., and Larsson, M. (2012).
A systematic review of software architecture evolu-
tion research. Information and Software Technology,
54(1):16–40.

Brooks, R. A. (1989). A robot that walks; emergent behav-
iors from a carefully evolved network. Neural compu-
tation, 1(2):253–262.

Buckley, J., Mens, T., Zenger, M., Rashid, A., and Kniesel,
G. (2005). Towards a taxonomy of software change.
Journal of Software Maintenance and Evolution: Re-
search and Practice, 17(5):309–332.

Chaki, S., Diaz-Pace, A., Garlan, D., Gurfinkel, A., and
Ozkaya, I. (2009). Towards engineered architecture
evolution. In Proceedings of the 2009 ICSE Work-
shop on Modeling in Software Engineering, pages 1–
6. IEEE Computer Society.

Cicchetti, A., Di Ruscio, D., Eramo, R., and Pierantonio, A.
(2008). Automating co-evolution in model-driven en-
gineering. In Enterprise Distributed Object Comput-
ing Conference, 2008. EDOC’08. 12th International
IEEE, pages 222–231. IEEE.

Engel, A. and Browning, T. R. (2008). Designing systems
for adaptability by means of architecture options. Sys-
tems Engineering, 11(2):125–146.

Engels, G. and Heckel, R. (2000). Graph transformation as
a conceptual and formal framework for system mod-
eling and model evolution. In Automata, Languages
and Programming, pages 127–150. Springer.

Garlan, D., Barnes, J. M., Schmerl, B., and Celiku, O.
(2009). Evolution styles: Foundations and tool sup-
port for software architecture evolution. In Software
Architecture, 2009 & European Conference on Soft-
ware Architecture. WICSA/ECSA 2009. Joint Working
IEEE/IFIP Conference on, pages 131–140. IEEE.

Gottlob, G., Schrefl, M., and Röck, B. (1996). Extending
object-oriented systems with roles. ACM Transactions
on Information Systems (TOIS), 14(3):268–296.

Herrmannsdoerfer, M., Benz, S., and Juergens, E. (2009).
Cope-automating coupled evolution of metamodels
and models. In ECOOP 2009–Object-Oriented Pro-
gramming, pages 52–76. Springer.

Jazayeri, M. (2005). Species evolve, individuals age. In
Principles of Software Evolution, Eighth International
Workshop on, pages 3–9. IEEE.

Le Goaer, O., Tamzalit, D., and Oussalah, M. (2010). Evo-
lution styles to capitalize evolution expertise within
software architectures. In SEKE 2010, pages to–
appear.

Mens, T. and Van Gorp, P. (2006). A taxonomy of model
transformation. Electronic Notes in Theoretical Com-
puter Science, 152:125–142.

Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D.,
Johnson, G., Medvidovic, N., Quilici, A., Rosenblum,
D. S., and Wolf, A. L. (1999). An architecture-based
approach to self-adaptive software. IEEE Intelligent
systems, 14(3):54–62.

Oussalah, M. et al. (1999). Génie objet: analyse et concep-
tion de l’évolution. Hermès Science publications.

Oussalah, M. et al. (2014). Architectures logicielles :
Principes, techniques et outils. Hermes Science Pub-
lications (12 fvrier 2014).

Oussalah, M., Sadou, N., and Tamzalit, D. (2006). Saev:
A model to face evolution problem in software archi-
tecture. In Proceedings of the International ERCIM
Workshop on Software Evolution, pages 137–146.

Perry, D. E. and Wolf, A. L. (1992). Foundations for the
study of software architecture. ACM SIGSOFT Soft-
ware Engineering Notes, 17(4):40–52.

Swanson, E. B. (1976). The dimensions of maintenance.
In Proceedings of the 2nd international conference
on Software engineering, pages 492–497. IEEE Com-
puter Society Press.

Vroom, V. H. (1964). Work and motivation. new york: John
willey & sons.

Wermelinger, M. and Fiadeiro, J. L. (2002). A graph
transformation approach to software architecture re-
configuration. Science of Computer Programming,
44(2):133–155.

Williams, B. J. and Carver, J. C. (2010). Characterizing
software architecture changes: A systematic review.
Information and Software Technology, 52(1):31–51.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2012). Experimentation in
software engineering. Springer Science & Business
Media.

Zhao, C., Kong, J., Dong, J., and Zhang, K. (2007).
Pattern-based design evolution using graph transfor-
mation. Journal of Visual Languages & Computing,
18(4):378–398.

Evolution Taxonomy for Software Architecture Evolution

131

