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 This paper deals with the flatness-based approach for sensorless control of 
the induction motor systems. Two main features of the proposed flatness 
based control are worth to be mentioned. Firstly, the simplicity of 
implementation of the flatness approach as a nonlinear feedback linearization 
control technique. Secondly, when the chosen flat outputs involve non 
available state variable measurements a nonlinear observer is used to 
estimate them. The main advantage of the used observer is its ability to 
exploite the properties of the system nonlinearties. The simulation results are 
presented to illustrate the effectiness of the proposed approach for sensorless 
control of the considered induction motor. 
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1. INTRODUCTION  

Induction motors are suitable electromechanical systems for a large spectrum of industrial 
applications. This is due to their high reliability, relatively low cost, and modest maintenance requirements. 
However, induction motors are known as multivariable nonlinear time-varying systems. Thus makes their 
control so difficult, mainly in variable speed applications [1].  

A control literature review shows that a variety of solutions has been proposed for the control of 
induction motor systems. In the linear case, one has to mention the scalar control which is the first scheme 
proposed for this task. It is easy to implement but it does not provide good performance [2], [3]. The second 
well-known scheme is the vector control technique called also field oriented control (FOC) proposed by 
Blaschke [4]. The main disadvantage of this later control technique is the inherent coupling of the torque and 
the flux and the sensitivity against rotor resistance variations. In addition, the placement of the speed sensor 
on the motor rotor shaft reduces its robustness and reliability. In [3] a review of direct torque control (DTC) 
strategies is presented to overcome the FOC limitations. However the DTC technique presents the 
disadvantage of large flux and torque ripples. Consequently, this has opened a new and interesting area for 
academic research and industrial applications for nonlinear control techniques.  

Among nonlinear control techniques, one has to mention the input-output feedback linearization 
technique iniated and developed by Isidori [5]. This method implements the differential geometry theory to 
transform a nonlinear system into a linear one and after that it applies a method of linear system control 
theory [6], [7], [8], [9]. The sliding mode control is characterized by its simplicity of design and attractive 
robustness properties [10]. Its major drawback is the chattering phenomenon [11], [12], [13]. Backstepping 
control presents the ability to guarantee the global stabilization of system and offers good performance, even 
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in the presence of parameter variations, however the choice of  an appropriate Lyapunov function at each step 
is still a difficult problem [14], [15], [16], [17].  

A relatively new method based on the flatness properties of a system, the flatness based control, is 
closely related to the ability to linearize a nonlinear system by an appropriate choice of a dynamic state 
feedback [18]. This type of method, in addition to its simplicity of implementation and input-output 
decoupling, it permits to directly estimate each system variable as a function of the chosen system outputs, 
called flat outputs, and a finite number of their time derivatives [19], [20], [21], [22].  

All these control techniques and others assume that all state variables of the considered system are 
available for on line measurements. However in the practical case, only a few state variables of the machine 
system are available for on line measurement because of technical and/or economic constraints of the 
considered application. In order to perform advanced sensorless control techniques there is a great need of a 
reliable and accurate estimation of the unmeasurable key state variables of the machine. To this end a state 
observer may be used.  Several solutions are presented in the the literature including linearization techniques, 
adaptive or non adaptive high gain and sliding mode observers [2], [10], [17], [23].  

In this paper we focus our attention on the application of a flatness based sensorless control of 
induction motor by using a circle criterion based nonlinear observer, designed in the previous paper [24], for 
the estimation of unavailable state measurements. The main advantage of this type of observer is the direct 
handling of the system nonlinearities with less restriction than linearization and high gain observer based 
approaches [25], [26]. The paper is organized as follows: In the second section we present the basic concepts 
of the notion of differential flatness control. The application of flatness control to considered nonlinear 
induction motor model is presented in the third section. The circle criterion based nonlinear observer is 
presented in the fourth section and finally in the fifth section we present simulation results and comments. A 
conclusion ends the paper. 

 
 

2. BASIC CONCEPTS OF FLATNESS  
In this section, we provide a brief introduction to the notion of differential flatness and its 

application in dynamical system control. The property of flatness of a system is closely related to the general 
ability to linearize a nonlinear system by an appropriate choice of a dynamic state feedback [18]. Roughly 
speaking, the flatness is a structural property of a class of nonlinear systems, for which all system variables 
can be written in terms of a set of specific variables (the so-called flat outputs) and a finite number of their 
time derivatives [19], [20], [21], [22]. 
Let us consider the following general nonlinear system:  
 

))(),(()( tutxftx          (1) 

 
))(()( txhty           (2) 

 
Where )(tx is the state vector of the considered system, )(tu  and )(ty  are the input control and the output 

measurements, respectively. The functions (.)f and (.)h are assumed to be smooth with respect to their 

arguments. 
The nonlinear system (1)-(2) is said to be (differentially) flat if and only if there exists an output 

vector )(tz , called flat or linearizing output, such that:  

• The flat output )(tz  and a finite number of its time derivatives )(...,),(),( )( tztztz n are independent, 

• The number of independent components of the flat output is equal to the number of independent inputs, 
• Every system state and inputs variables may be expressed as a function of the flat output and of a finite 
number of its time derivatives as: 
 

))(...,),(),(()( )1( tztztztx n         (3) 

 

))(...,),(),(()( )( tztztztu n        (4) 

 
The functions (.) and (.) are assumed to be smooth.  

The choice of the flat output is not very restrictive condition in the case of real systems. It can be a 
physical variable as a position, a velocity, a current, a voltage … etc. In the case of flat outputs that are 
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unavailable for on line measurements, a state observer can be designed to estimate them. The main advantage 
of the differential flatness is that the differentiation of the chosen flat output, up to order n yields the 
necessary information to reconstruct the state and input trajectories of the considered system with the help of 
the relations (3) and (4). 
The differentiation of the flat output results in the following canonical system model called Brunovsky form. 
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Solving vtutztztz nn  ))(),(...,),(()( 1  results in: 

 

)),(...,),(),(()( )1( vtztztztu n         (6) 

 
Here v  represents the reference trajectory for the higher time derivative of the flat output. 
The implementation of the control law in relation (4) defines the exact feedforward linearizing technique 
whereas the control law in relation (6) defines the exact feedback linearizing technique [20], [21].  
Given a reference trajectory )(tzr  for the flat output )(tz and its time derivatives, one can define a tracking 

error as: 
 

nitztzte rii ...,,2,1,)()()(         (7) 

 
In these conditions, the tracking error dynamics are defined as:  
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And: 
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rnn        (9) 

 
If the implementation of the determined control law does not match the desired performance of the 
considered system, one can introduce an error term as PID-like feedback stabilization and compute the new 
input v as the following [20], [21]: 
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The relation (10) can be written as: 
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The coefficients iK  are chosen such that the resulting characteristic polynomial, relation (12), is Hurwitz. In 

these conditions error dynamics converge exponentially to zero and all system variables and their time 
derivatives converge exponentially to their reference values [20], [21], [22]. 
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3. FLATNESS BASED INDUCTION MOTOR CONTROL  
Induction motor is known as a complex nonlinear system in which time-varying parameters entail 

additional difficulty for its control. Different structures of the induction motor nonlinear model are 
investigated and discussed in [27]. In this paper, the considered induction motor model has stator current, 
rotor flux and rotor angular velocity as selected state variables as in [24]: 
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The indexes s  and r  refer to the stator and the rotor components respectively and the indexes d  and q  

refer to the direct and quadrature components of the fixed stator reference frame respectively (Park’s vector 
components). i  and u  are the current and the voltage vector,   is the flux vector, l  is the inductance, m  is 

the mutual inductance. sT   and rT  are the stator and the rotor time constant respectively. r  is the rotor 

angular velocity, rf  is the friction coefficient, J  is the moment of inertia coefficient, pn  is the number of 

pair poles, r  is the rotor mechanical speed and finally lT  is the mechanical load torque.  

The considered induction motor system model has only the stator current and voltage components as 
state variables that are available for on line measurements. In this paper we consider only the nonlinearity 
introduced by the variation of the rotor angular velocity. In order to take into account the effect of the time-
varying parameters, as stator (rotor) resistance, one has to introduce an additional equation relating to the 
considered parameter variation.  

In order to implement the flatness based control for our induction motor system we select the rotor 
angular velocity and the rotor flux as system outputs: 

 
)()(1 ttz r          (18) 

 
)()(2 ttz r          (19) 

 
A first differentiation of the two selected outputs results in: 
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Relation (21) is obtained after a few mathematical operations and simplification using the model relations 
(13)-(17). Equations (20) and (21) describe the mechanical part and the flux dynamics part of the induction 
motor system respectively. One can see the coupling effects between the two parts of the system. Nonlinear 
feedback theory based on flatness concepts is used to eliminate this coupling relationship. To this end let 1V  

and 2V  two new control inputs defined as: 

 

sdrqsqrd iiV  1         (22) 
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Equations (20) and (21) as functions of the new control inputs can be rewritten as: 
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From relations (24) and (25) one can express the new control inputs 1V and 2V  as functions of the outputs 

r  and r  as the following: 
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And from equations (22) and (23) one can write the induction motor state variables, i.e. the stator currents 

sdi  and sqi , in terms of the new inputs 1V  and 2V , and hence in terms of the chosen outputs as: 
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A second differentiation of the chosen outputs, using the Lie derivatives, leads to the appearance of the 
control inputs, for the first time. The control inputs can then be express as a function of the chosen outputs 
and a finite number of their time derivative as:  
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The matrix )(xA  represents the system input-output decoupling term. Equations (28)-(30) show 

that the induction motor system is a flat system and the selected outputs are flat. Relation (30) represents the 
input control to be applied to induction motor system to fit the desired performance. If this type of input 
control does not provide the desired performance of the considered induction motor system one can add a 
correcting term as a PID-like which takes into account a tracking error as in relations (10)-(12). 

In general, control algorithms assume that all state variables involved in are available for on line 
measurements. However, in the practical case, only a few state variables of the considered system are 
available for on line measurements. In this case, one has to design a state observer to estimate unmeasured 
state variables. In this paper we use the circle criterion based nonlinear observer designed in the previous 
paper [24]. In the following we recall briefly the essential ingredients, for detail see reference [24] and 
references herein. 
 
 
4. NONLINEAR OBSERVER DESIGN 

In contrast of the linearization based and high-gain approaches which attempt to eliminate or to 
dominate the system nonlinearity effects, circle-criterion approach exploits the properties of system 
nonlinearities to design nonlinear observer [24]. In its basic form, introduced by Arcak and Kokotovic [28], 
the approach is applicable to a class of nonlinear systems that can be decomposed into linear and nonlinear 
parts as the following [28], [29], [30]: 
 

)](.[)](),([)()( txHGftytutAxtx         (31) 

 
)()( tCxty           (32) 

                                                                                                                   
Where ,,, HGA and C  are known constant matrices with appropriate dimensions. The pair ),( CA  is 

assumed to be observable. The term )](),([ tytu  is an arbitrary real-valued vector that depends only on the 

system inputs )(tu  and outputs )(ty . The nonlinear part of the system is modelled by the term )](.[ txHf  

which is a time-varying function verifying the following sector property [29]:  
 

pp RRtzf  [0[:),(  is said to belong to the sector [0[   if 0),( tzfzT .  

 
Theorem [28], [29]: Consider a nonlinear system of the form (31)-(32) with the nonlinear part satisfying the 

sector property. If there exist symmetric and positive definite matrix nxnRP  , nxnRQ   and a set of row 

vectors pRK such that the following linear matrix inequalities (LMI) hold: 
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Then a nonlinear observer can be designed as:  
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Where )(ˆ tx  is the estimate of the state vector )(tx of the considered nonlinear system.  A detailed proof of 

the theorem is presented in [24].  
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Note that the nonlinear observer design refers to the selection of the gain matrices L  and K  satisfying the 
LMI conditions (33)-(34). One can see that the induction motor model structure, relations (30)-(31) and the 
observer dynamics, relations (35)-(36), can be considered as linear systems controlled by a time-varying 
nonlinearity function satisfying the sector property. Circle criterion establishes that a feedback 
interconnection of a linear system and a time-varying nonlinearity satisfying the sector property is globally 
uniformly asymptotically stable [28], [29]. In [30], the author has investigated the study of bounded state 
nonlinear systems. Such systems constitute a large class that includes electric machine systems in which the 
magnetic flux is a bounded state variable due to the effect of the magnetic material saturation property.   
 
  
5. SIMULATION RESULTS AND COMMENTS 

In order to point out the performance of the proposed flatness based sensorless control, an induction 
motor system with characteristics presented in Table 1 is considered. In this simulation experiments, a two 
level inverter based SPWM (Sinusoidal Pulse Width Modulation) technique feeds the induction motor 
system.  
 
 

Table 1. Characteristics of the considered induction motor 
Symbol Quantity Numerical Value

P Power 1.5 KW 
f Supply frequency 50 Hz 
U Supply voltage 220 V 

pn  Number of pair poles 2 

sR  Stator resistance 4.850   

rR  Rotor resistance 3.805  

sl  Stator inductance 0.274 H 

rl  Rotor inductance 0.274 H 

m  Mutual inductance 0.258 H 

r  Rotor angular speed 297.25 rad/s 

J  Inertia coefficient 0.031 skg /2
 

rf  Friction coefficient 0.00114 N.s/rad 

lT  Load torque 5 N.m 

 
 
The simulation experiments consist of the following steps.    
1. Resolve the LMI conditions to determine the matrices gain of the observer, and simulate the observer 

dynamics to estimate the chosen flat outputs. 
2. Implemente the flatness based control as a function of the estimated flat outputs.  

In order to implement the first step of the simulation experiments and to perform circle criterion 
based nonlinear observer, taking into account the numerical values of the different physical parameters of the 
machine, the nonlinear induction motor model is written in the standard form, relations (31)-(32).  To this 
end, nonlinearities of the model are expressed as rrrdrrdr   )(  to verify the following 

equivalent sector property: 
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 with 2rd  and 2 . 

 
After that the LMI conditions, relations (33)-(34), are resolved using an adequate LMI tool such as the LMI 
tool-box of the Matlab software. The obtained observer gain matrices L  and iK  are the following: 
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 ,7381.06037.11 K   6037.17381.02 K ,  ,9193.03948.03 K  3948.09193.04 K  

 
The corresponding Lyapunov matrix for the feasibility test of the LMI is:  
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P  

 
Here 5IQ   with 04.0  and 5I  is a unit matrix of fifth order.  

Injecting the obtained numerical values of the observer gain matrices in the observer expression, relation 
(35)-(36), the estimated state variables of the induction machine, including the chosen flat outputs, are 
generated.  

Figure 1 and Figure 2 present the estimated flat outputs and their time derivatives. One can verify 
that in the transient state the first time derivative is a pulse and in steady state the second time derivative is 
null. Thus confirm the mathematical aspect. The system state variables and control inputs are expressed as 
functions of the estimated flat outputs. The obtained control law, as function of the flat outputs, is presented 
in Figure 3. One can see that it presents a sinusoidal shape. Thus reduce the induced harmonics effect.  

 

 
 

Figure 1. Rotor speed flat output and its time derivatives 
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Figure 2. Rotor flux norm modulus flat output and its time derivatives 
 

 
 

Figure  3. Stator voltage control flat inputs 
 
 

The next step of simulation consists in applying the obtained control signal to the two level inverter 
fed induction motor system and varying the load torque from no load value to the value mNTl .5  

introduced at time 1t second and return to no load value at time 2t second. After that the rotor angular 

velocity is reversed form the reference value of sradref /150  to sradref /150  at time 5.2t

second and a load mNTl .5 is introduced at time 3t  second and return to no load at time 4t  

second. 
Figure 4 and Figure 5 present the electromechanical torque and the rotor angular velocity variations 

respectively, with respect to the simulation tests.  One can see that the estimated torque follows the reference 
load torque. The observed disturbance at time 5.2t  second is due to the reversed sense of the rotor speed. 
Notice that in this case, the rotor angular velocity which is a chosen flat output follows its reference value in 
the corresponding range of load variations.  
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Figure 4. Load torque, measured and observed electromechanical torque 
 
 

 
 

Figure 5. Measured and observed rotor velocity evolution according to load variations 
 
 
Figure 6 presents the variations of the rotor flux modulus. One can see, after a transient time, the 

flux reaches its reference value. A little disturbance appears at the instant of reversing the rotor speed. A 
roughly smooth curve is then obtained because there is no variation according to the introduced load torque.  
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Figure 6. Measured and estimated rotor flux norm modulus 
 

 
Figure 7 and Figure 8 present the stator current components respectively. One can see that the stator 

current components follow the variations of the electromechanical torque. A smashed curve is obtained due 
to variations of load torque. 

Analysis of the different figures shows that proposed flatness based nonlinear sensorless control of 
induction motor system performs the desired control strategy and all state and input variables can be 
expressed as functions of the chosen flat outputs. 

 

 
 

Figure 7. Measured and estimated d- stator current components. 
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Figure 8. Measured and estimated q-stator current components 
 

 
6. CONCLUSIONS 

In this paper flatness based approach for nonlinear sensorless control of the induction motor system 
has been presented by using a circle-criterion based nonlinear observer to estimate the chosen flat outputs. 
Decoupling is achieved between the two selected outputs (speed and flux) with the help of the system 
flatness properties. The used nonlinear observer has contributed effectively to estimate the unmeasurable 
state variables that are essential for the nonlinear control. Simulation results show that this control strategy 
assures a perfect linearization regardless trajectory profiles physically imposed on the induction machine 
system. 
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