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I. Introduction
Transformers are electrical devices widely 
used in electric power production, 
transmission, and distribution. Since they 
are vital, their availability is highly required 
and their monitoring must be rigorous 
and efficient. Depending on the case, it is 
desirable to put transformers under 
monitoring to decide to intervene when a 
certain threshold is reached. But controls 
remain systematic and are part of non-
destructive testing means. This 
monitoring process is part of the 
conditional preventive maintenance, 
which is performed by taking relevant 
measurements on the equipment in 
operation. One of these measurements 
and techniques is the dissolved gas 

analysis (DGA) method which is 
essentially based on monitoring the 
changing proportions of the gases 
contained in the dielectric transformer oil. 
The definition of precursor gases, 
relevant indicator of the rate of 
transformer degradation, and the design 
of monitoring and control means of these 
precursors for the DGA technique was 
subject to several papers and research 
work.1 The detection of exceeding a 
threshold assigned to the evolution of a 
dissolved gas starts the diagnosis of the 
causes of the failure. The conclusions of 
this diagnosis allow defining the 
intervention of maintenance.

Predictive maintenance of electrical 
transformers is a preventive maintenance 

subordinate to the analysis of the 
evolution of released gases proportions, 
which are significant indicator of 
degraded operation of the equipment. 
Predictive maintenance differs from 
conditional maintenance only by the idea 
to deduce the tendency of dissolved 
gases evolution. At this level, computer 
science takes an essential place 
especially in prediction of gases 
dissolved in oil and diagnosis of 
transformer failures. Artificial intelligence 
methods are an integral part of 
computing tools intended for this type of 
maintenance.2 From the prediction, it is 
possible to extrapolate the tendency of a 
fault to plan its date. From this forecast, 
the date of diagnosis and triggering the 
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maintenance work is planned, so that 
this last is completed before the required 
level for the studied parameter is 
exceeded.

In practice, the analysis of dissolved 
gases in oil is the key to a successful 
predictive maintenance program, and 
beside it the analysis of physicochemical 
and dielectric parameters. The water 
content has a negative impact on the 
breakdown voltage of dielectric oil. 
Corrective actions are required when a 
predetermined permissible threshold of 
one of the two parameters is exceeded 
because they are directly related to the 
ability of the oil to isolate.3

It must be emphasized that it is well 
known in the industry that many 
laboratories provide reasonably accurate 
DGA results to their customers but that 
many others provide quite inaccurate 
results. Even the best laboratories 
produce results with some inaccuracy, 
which, therefore, needs to be known to 
determine the reliability and accuracy of 
the diagnosis. It is strongly 
recommended that each laboratory 
evaluates and provides its own accuracy 
figures. When this is not possible, fault 
accuracy values based on international 
surveys can be used.

In this context of uncertainty and 
inaccuracy results, several artificial 
intelligence methods have been used to 
improve the accuracy of results and 
remove the uncertainty inherent in the 
diagnosis and reliability of data (fuzzy 
logic, artificial neural networks, support 
vector machine (SVM), evolutionary 

algorithms, expert systems).4 A review of 
the artificial intelligence methods 
conducted by Sun et al.2 has shown the 
effectiveness of these tools in the 
diagnostic field of fault of electrical power 
transformers. The literature shows that 
most authors have been concentrated 
on the DGA in oil for fault diagnosis.5–7 
Prediction is one of the most successful 
applications of Bayesian networks (BNs). 
The ability of probabilistic knowledge 
representation techniques to perform a 
mixture of both predictive and diagnostic 
inference makes it very suitable for 
prediction.8 BNs can perform fusion of 
observations such as predispositions and 
risk factors with symptoms and test 
results.

From this overview, it is possible to 
conclude that the reliability of data, the 
poor input data used in the models, and 
uncertainty are the major and joint 
constraints of all methods and tools used 
in DGA. The BN model proposed in this 
paper is generated on the basis of a 
mapping of the Duval triangle into BN. It 
represents a powerful tool in uncertainty 
reasoning and it can identify the problem 
of lack of samples due to high cost of 
analysis and long intervals between 
analyses (the analysis is performed yearly 
in most predictive maintenance 
programs). This lack of samples causes 
mainly the poor data and the inaccuracy 
of diagnosis. The BN represents a little-
used artificial intelligence tool in the 
diagnosis and prediction of transformer 
failures. They are mainly based on the 
experience feedback and the 
experimental data. The objective of the 
Bayesian Duval triangle method, which 
will be presented in this paper, is to give 
more flexibility to the Duval triangle 
method and expand its scopes.

The remainder of this paper is 
organized as follows: section II provides 
a brief review on different methods and 
tools used in the diagnosis and 
prediction of transformer failures. In 
section III, Bayesian reasoning is 
presented. Section IV is devoted to the 
research methodology for faults 
transformer prediction. Before finishing 
this paper by giving some conclusions in 
section VI, an application of our 

approach on the five electrical 
transformers of a power plant is 
presented in section V.

II. DGA and the Duval Triangle

The transformer fault involves a release 
of gases due to the effects of heat and 
intense electrical field. The DGA method 
allows detection of these gases, even in 
low percentage, the occurrence of a fault 
in the transformer allows releasing of one 
or more gases. DGA technology allows 
for early detection of fault and avoids 
other faults to have birth. There are 
seven types of key gases which are 
hydrogen (H2), methane (CH4), ethane 
(C2H6), ethylene (C2H4), acetylene (C2H2), 
carbon monoxide (CO), and carbon 
dioxide (CO2). The concentrations of 
various gases provide information about 
the nature of the fault (thermal or 
electrical). Also, the evolution of these 
concentrations provides information on 
the fault severity.

The majority of methods used 
nowadays for fault transformer diagnosis 
based on DGA can be found in IEEE 
C57.1049 or IEC 60599 guides,10 as well 
as in other national or international 
guides based on these two. These 
traditional and universal diagnosis 
methods are2 Key Gas Method, 
Dornenburg Ratio Method, Rogers Ratio 
Method, Nomograph Method, IEC Ratio 
Method, Duval Triangle Method, CIGRE 
Method, and recently Duval Pentagon as 
a complementary tool for the 
interpretation of DGA.11 In the remainder 
of this paper, only the Duval triangle 
method is detailed.

The Duval triangle method uses values 
of three gases CH4, C2H4, and C2H2 and 
their location in the triangle.12 To plot this 
triangle, gases are transformed into 
triangular coordinates (Figure 1). The three 
detectable fault types are partial 
discharges, electrical faults (high and low 
energy arcing), and thermal faults (hot 
spots of various temperature ranges) and 
are presented by fault zones. Although this 
method is easily performed, careless 
implementation can obtain false diagnosis 
since no region of the triangle is 
designated as an example of normal aging.

Figure 1. Duval triangle coordinates
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Table 1 classifies the fault types and 
the codes addressed in this paper.

The Triangle coordinates 
corresponding to DGA results in ppm 
can be calculated as follows:

%C2H2 = 100 x/(x + y + z);

%C2H4 = 100 y/(x + y + z);

%CH4 = 100 z/(x + y + z).

with x = (C2H2); y = (C2H4); z = (CH4), 
in ppm.

Duval triangle method is a fault 
diagnosis tool; the question is how to 
make it a prediction tool?

III. Bayesian Reasoning

Probabilistic and inferential reasoning of 
experts leads naturally to the use of BNs 
in order to represent their knowledge and 
automate their reasoning. Many other 
representation techniques could be used 
(Fault Tree, fuzzy logic, expert system, 
decision tree, etc.), but the preference is 
given to BNs more particularly to their 
versatility. In this case, we can use the 
same model for diagnosing failures 
(causes → symptoms), or to make 

predictive analysis (symptoms → 
causes).

The interest of BNs also resides in their 
ability to take into account several types 
of information (subjective information 
from experts and those from the 
statistical treatment of data) in the same 
model. Finally, the graphical 
representation of BNs is intuitive and 
understandable by a non-specialist. This 
explains their use more and more in the 
medical and industrial field in important 
and very specific subjects where they 
show encouraging results.13

A BN is a system representing 
knowledge and for calculating conditional 
probabilities and which provides 
solutions to different sorts of problems. A 
Bayesian model used for faults diagnosis 
is a direct application of Bayes’ theorem. 
Inversely, a Bayesian prediction model 
can be developed by applying the 
inverse Bayes’ theorem for predicting 
failures (Figure 2). In this context, the 
Bayesian reasoning is a probabilistic 
reasoning that is completely defined by a 
causal graph, so a BN is defined by:

•• A directed acyclic graph (DAG), G = 
(V, E) where V is the set of nodes of 
G, and E the set of edges of G;

•• A finite probability space (Ω, Z, p);
•• A set of random variables associated 

to the nodes of the graph and 
defined by (Ω, Z, p) such that
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where F (Fault) is the set of causes Gi 
(Gas) in the graph G.

Once this formulation is made, Bayes’ 
theorem gives immediately the required 
probabilities. For a transformer fault (F) 
and a released gas (G), provided that 
P (G) ≠ 0
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Bayes’ theorem can reverse the 
probabilities. This means that if the 
released gases are known due to a 
transformer fault, observing the 
symptoms can predict failures
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These rules can be extended to 
several variables with multiple states. The 
graph shown in Figure 2 is called the 
“structure” of the model and the 
probability tables its “parameters.” 
Structure and parameters can be 
provided by experts or calculated from 
data.

IV. Proposed BN Model for 
Electrical Transformer Fault 
Prediction

The presented Bayesian Duval triangle is 
built using a combined method. In this 
approach, the network structure is 
described by mapping the Duval triangle 
into BN and the parameters are given 
with the help of the maintenance staff 
and the history of failures. This mapping 
takes into account the different 
thresholds for defining multiple states; 
each state corresponds to a threshold. 
The probabilities are obtained from 
results of DGA. The links will go from 
symptom of the failure, and according to 
the a priori probabilities of gases and by 
inference in the BN, it is possible to 
calculate the a posteriori probabilities of 
each fault. Once the structure of the 

Table 1. Fault types with associated codes

Fault type Code

Partial discharge PD

Low energy discharge D1

High energy discharge D2

Thermal faults T < 300 °C T1

Thermal faults 300 < T < 700 °C T2

Thermal faults T > 700 °C T3

Mixtures of electrical and thermal faults DT

Figure 2. Simple BN for fault diagnosis prediction
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Bayesian causal map has been 
constructed, numerical parameters of the 
network need to be assessed so that 
results can be calculated. These 
calculations are typically embedded 
inside Bayesian model.

A. Mapping the Duval triangle  
into BN

The coordinates and limits of the 
discharge and thermal fault zones of the 
Triangle are indicated in Figure 1. Zone 

DT in Figure 1 corresponds to mixtures 
of thermal and electrical faults. To map 
the Duval triangle into BN, Figure 1 must 
translate in a table that gives the limits of 
each fault, which are summarized in 
Table 2.

The model structure has three input 
variables representing the three 
percentages of gas: %C2H2, %C2H4, 
%CH4, with these specific states 
(Table 3). The various failures will be 
modeled by seven output variables in 
the model (fault type) (Figure 3). The 
input data in the model are the 
probability of existence in the sample of 
each gas percentage. While the output 
data will be calculated by inference in 
the network, which immediately provides 
a predictive probability of the fault 
occurrence.

From Table 2, we find that the three 
gases can take several values. 
However, Table 3 defines the different 
states corresponding to different 
values.

B. The coordinates of Bayesian 
Duval triangle

In this new Bayesian formulation, Table 4 
gives the limits for each fault type.

The new coordinates of the discharge 
and thermal fault zones of the Triangle 
are indicated in Figure 4.

The conditional probability table (CPT) 
gives definition of causal links in the new 
formalism presented in Table 4. For 
example, Table 5 shows the CPT for the 
fault: partial discharge (PD).

The inference rules are given by the 
CPT. Some readings are as follows:

•• If C2H2 takes all states from State  
0 to State 4 and C2H4 takes all 
states from State 0 to State 4  
and CH4 takes State 1, then fault  
is PD.

•• If C2H2 takes all states from State  
0 to State 4 and C2H4 takes all  
states from State 0 to State 4 and 
CH4 takes State 0, then fault is not 
PD.

•• If C2H2 takes State 2 or State 3 or 
State 4 and C2H4 takes State 0 or 
State 1, then fault is D1.

Table 2. Zone limits of Duval triangle

PD 98% CH4 100% CH4  

D1 23% C2H4 13% C2H2 100% C2H2  

D2 23% C2H4 40% C2H4 13% C2H2 29% C2H2

T1 4% C2H2 20% C2H4  

T2 4% C2H2 20% C2H4 50% C2H4  

T3 15% C2H2 50% C2H4 100% C2H4  

DT 4% C2H2 13% C2H2 15% C2H2 29% C2H2

 40% C2H4 50% C2H4  

Figure 3. BN model for Duval triangle method

Table 3. States definition for the three gases

Gases Value State Value State Value State

% CH4 0–98 State 0 98–100 State 1  

% C2H2 0–4 State 0 4–13 State 1 13–15 State 2

 15–29 State 3 29–100 State 4  

% C2H4 0–20 State 0 20–23 State 1 23–40 State 2

 40–50 State 3 50–100 State 4  
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•• If C2H2 takes State 0 and C2H4 takes 
State 1 or State 2 or State 3 then 
fault is T2.

•• If C2H2 takes State 1 and C2H4 takes 
State 0 or State 1 or State 2 or State 
3 then fault is DT.

V. Case Study of Five 
Transformers

Analyses were performed for monitoring 
five transformers of power plant of the 
Algerian company of electricity 
production SONELGAZ/SKS/SNC 
LAVALIN, and their characteristics are 
given in Table 6.

An extract of the analysis results made 
between 2008 and 2012 for the man 
transformer T1 is given in Table 7. DGA 
was carried out on a sample at the 
Buchholz. The sample was taken after 
significant purging of pipe and Buchholz, 
to allow recovery of a representative 
sample from the transformer tank. For 
the year 2012, concentrations of 
dissolved gases in oil are below typical 
permissible values defined in the IEC 
60599 standard. The unit is in proper 
and good operating condition. The 

history file shows values above typical 
values that require a diagnosis.

From Table 4, we see a threshold 
overrun for H2 and C2H4 in 2010, for this 
purpose a diagnosis is needed. By 
applying the Duval triangle method, defined 
in section II, the percentages of the three 
gases CH4, C2H2, and C2H4 are calculated:

x (C2H2) = 0.02 ppm; y(C2H4) = 
282.94 ppm; z(CH4) = 24.2 ppm;

%C2H2 = 100 x/(x + y + z) = 0.006%;

%C2H4 = 100 y/(x + y + z) = 92.114%;

%CH4 = 100 z/(x + y + z) = 7.878%.

By reporting the above percentages in 
the Duval triangle, the fault is of thermal 
nature T > 700 °C (T3), this was 
confirmed by consulting the history file of 
the transformer.

Table 4. Zone limits of Bayesian Duval triangle

Faults CH4 C2H2 C2H4

PD State 1 Any state Any state

D1 State 0 State 2–State 3–State 4 State 0–State 1

D2 State 0 State 2–State 3 State 2

 State 0 State 4 State 2–State 3–State 4

T1 State 0 State 0 State 0

T2 State 0 State 0 State 1–State 2–State 3

T3 State 0 State 0–State 1–State 2 State 4

DT State 0 State 1 State 0–State 1–State 2–State 3

 State 0 State 2 State 3

 State 0 State 3 State 3–State 4

Figure 4. Bayesian Duval triangle coordinates

Table 5. CPT for partial discharge fault

% CH4 State 0 State 1

 % C2H2 Any state Any state

 % C2H4 Any state Any state

PD True 0 1

 False 1 0

Table 6. Technical specifications of the transformers

Transformer Primary 
voltage (kV)

Secondary 
voltage (kV)

Capacity (MVA) Manufacturer Oil type

T1 18 400 195 AREVA Mineral

T2 15.5 400 180 AREVA Mineral

T3 15.5 6.6 20 ABB Mineral

T4 6.6 2.08 7 NIAGARA Mineral

T5 6.6 0.9 2.8 NIAGARA Mineral
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For fault prediction, the experience of 
diagnostic engineers, the history files of 
the operation of the transformers as well 
as the existing standards were 
considered as data sources to generate 
the prediction model. After determining 
the structure of the model, the a priori 
probabilities were generated from oil 
samples analysis and the statistical 
analysis of failure history data. Also the a 
priori conditional probabilities were 
provided by the presented approach. 
Transformer dielectric oil was analyzed 
17 times on a yearly basis. Among the 

17 analyzed samples, 09 are indicative of 
fault for T1, 06 for T2, 14 for T3, 11 for 
T4, and 06 for T5. The probabilities of 
existence of the three gases for T1 are 
taken as example and given in Table 8.

Inference in the BN provides a posteriori 
probabilities and updates the results of 
fault prediction. Figure 5 presents the 
results prediction and assessment of 
failures for the five transformers.

From Figure 5, we find that for T1 the 
partial discharge fault is the most likely 
and then comes thermal faults T < 300 
°C. For T2, the low energy discharge is 
the most likely, and so on. Following this 
analysis, it is recommended to target 
actions in order to predict these faults 
and minimize their occurrence likelihood.

It took 3 years (2013, 2014, and 2015) 
of transformers monitoring to validate our 
approach. The diagnosis results for the 
five transformers over the 3 years are 
given in Table 9.

For the transformers T1, T2, and T5, 
monitoring shows accurate results; this 
qualifies the prediction to be very reliable. 
For the transformer T4, the method 
shows that the most likely fault is DT, 
whereas the real fault comes at the 
second position. Although, as illustrated 
in Figure 5, second fault T3 and third 
fault T2 are both of thermal origin, which 
proves that they are very close to reality 
(T3), this is justified by a small gap. This 
method gave (gives) a good result 
despite the small size of the knowledge 
data base. Bayesian Duval triangle 
method examines all the past cases of 
the base corresponding to a fault and 

percentages of released gases. Then, 
each of the a priori probabilities will be 
updated. In other words, in the case 
where any new information is available, 
the a priori probabilities must be updated 
and the calculating of the a posteriori 
probabilities must be redone.

VI. Conclusion

In this paper, we have outlined a Bayesian 
approach for fault prediction of an 
electrical power transformer on the basis 
of DGA. After mapping the triangle of 
Duval into BN, we were able to define and 
quantify causal relationships between 
dissolved gases and the different faults. 
The BN developed in this study is versatile; 
we can use the same model for predicting 
as for diagnosing transformer faults. That 
is to say, any new information on any gas 
can change the knowledge that we have 
about the nature and the occurrence 
probability of fault, and conversely, any 
information on the nature of the fault can 
modify the knowledge that we have on the 
released gas probability. The method 
presented in this paper has made the 
Duval triangle a good tool for prediction 
and assessment of failures beside its 
traditional role as a diagnostic tool.

The proposed model in the present 
paper has given the opportunity to make 
a quantitative prediction analysis of 
transformer faults, which supported the 
IEEE C57.104 standard that offers users 
the opportunity to make a qualitative 
diagnosis of failures. In practice, the 
developed approach can be employed 

Table 7. DGA for monitoring the transformer T1 according to IEC 60599

 Date of sampling Typical values 
(ppm)

12 January 2012 27 February 2011 30 January 2010 26 October 2009 12 February 2008

CO 473 433 426 376 114.25 900

H2 19 23.4 434.2 11.9 135 150

CH4 24.2 26.1 11.9 11.9 13.49 110

C2H6 14.28 7.14 2.38 2.38 3.45 90

C2H4 2.38 16.6 282.94 <0.02 0.8 280

C2H2 0.02 0.02 0.03 0.02 0.02 50

Table 8. A priori probabilities of the three 
gases for T1

Gases States Probability %

% CH4 State 0 55.56

 State 1 44.44

% C2H2 State 0 88.89

 State 1 0

 State 2 0

 State 3 11.11

 State 4 0

% C2H4 State 0 88.98

 State 1 0

 State 2 11.11

 State 3 0

 State 4 0
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as a supportive method to traditional 
DGA methods.
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