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Abstract

In this paper, we study some topological properties of semi-Fredholm and Fred-
holm perturbations in Banach spaces, many problems and questions associated to
these classes are established. Moreover, our contribution extend and improve many
well known results in the literature.
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1 Introduction

It is well known that the theory of normaly solvable operators play a crucial role
both in pure and applied mathematics. Let X and Y be two Banach spaces and A
a bounded linear operator from X to Y , then A is called normally solvable if the
equation Ax = y (y ∈ Y ) has a solution if and only if f|R(A) = 0 for all functional
f in the conjugate space Y ? where f|R(A) is the restriction of f to R(A) given as
the range of A. [17] proved that the set of normally solvable operators is nothing
but else the set of operators having closed ranges. This theory includes that of semi-
Fredholm and Fredholm operators together with that of stability by perturbations
associated to them. The first result in this direction is due to J. Dieudonné [15] who has
showed that the index of Fredholm operator is unchanged by perturbation with small
norms. After, B. Yood [51] and [5, 18]proved independently this result for compact
operators. Calkin’s result [8] has a capital impact in functional analysis showing that
in a separable Hilbert space H, the set of compact operators is the only closed two-
sided ideal in the algebra of bounded linear operators L(H). Afterwards, I. Gohberg,
Markus and Feldmann [16] have showed that this result holds also for the case of
the Banach spaces lp(1 ≤ p < ∞)

⋃
c0. Since, the finitenes and infiniteness of the

closed two sided ideals sparked the curiosity of many mathematicians on which who
have worked by exploring one of the complicated fraweworks connected directly to the
geometry of Banach spaces. The discovery of strictly singular operators by T. Kato
(1957) [33] and that of semi-Fredholm and Fredholm perturbations by I. C. Gohberg,
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A. Markus and I. A. Feldman (1960) had a considerable impact on this theory by
enriching and deepening it. Indeed, the paper of the last authors [16] was a pioneer
work which gave an abstract framework to this thematic by extending all results which
preceded it in this direction. In this paper, we find the first example of a strictly
singular operator which is not compact constructed on Lp(µ)-spaces (1 ≤ p < ∞).
For p = 1, it gives an example of weakly compact (not integral operator) operator
which is not compact. In (1977), L. Weis [48] has completed Milman’s work [38] by
showing the coincidence of all semi-Fredholm and Fredholm perturbation with those
of strictly singular and strictly cosingular operators for all Lp(µ)-spaces (1 ≤ p <
∞). The same author [49] has established a fairly riche contribution on this theory
for closed densely defined semi-Fredholm and Fredholm operators. One of the open
problems which has long been open is the coincidence between the classe of upper
semi-Fredholm perturbation (resp. lower semi-Fredholm perturbation) with that of
strictly singular operators (resp. strictly cosingular operators), it took the discovery of
hereditarily indecomposable Banach spaces to give an negative answer to this question
by M. Gonzalez (2003) [22]. Some interesting questions on this subject can also be
found in [27]. In (1986), the same author gave a characterization of non-semi-Fredholm
operators in abstract Banach spaces and separable ones and has extend Bouldin’s results
[6] established in the case of Hilbert space. For a Banach space X, it is known that
the sets of upper and lower semi-Fredholm operators are open in the Banach algebra
L(X) of all bounded linear operators on X, one of the curious question is to determine
the boundary of these sets. This problem was solved by H. Skhiri [43] who proved
that in separable Hilbert spaces the boundaries sets of upper and lower semi-Fredholm
operators coincide with that of Fredholm operators which is not the case of nonseparable
one [44]. Also, recall that these classes of perturbations are used to study the stability
of various essential spectra of closed densely defined operators on Banach spaces and
to understood the phenomena in the case of transport operators involving in kinetic
theory of gaz [35].

The organization of this paper is as follows:
In the first section, we give some definitions, notations and preliminaries results which
will be used in the rest of the paper. Section 2 is devoted to give some assumptions
ensuring the coincidence or not of different classes of semi-Fredholm and Fredholm
operators in Banach spaces. In section 3, we extend some results given in section 1
of [34], moreover an answer to the most important question in this paper is given. In
section 4, we improve most of the results established by the authors in [28] by using the
class of semi-Fredholm perturbations. Finally, the goal of the section 5 is to study the
problem of the normally solvable restrictions of semi-Fredholm perturbations to closed
subspaces.

2 Preliminaries and Notations

Let X and Y be two complex infinite dimensional Banach spaces, we denote by L(X,Y )
the Banach space of bounded linear operators between X and Y . The subspace of
compact operators (resp. finite rank operators) of L(X,Y ) is designated by K(X,Y )
(resp. FR(X,Y )) and let N (X,Y ) be the space of nuclear operators. A bounded linear
operator A ∈ L(X,Y ) is called normally solvable if its range R(A) is closed in Y , we

2



write NS(X,Y ) for the set of normally solvable operators in L(X,Y ). If A ∈ L(X,Y ),
let N(A), α(A) and β̃(A) be the null space, the nullity of A defined as the dimension of
N(A) and the deficiency of A given as the codimension of R(A) (or in other words the
dimension of the quotient space Y/R(A)). The set of upper semi-Fredholm of L(X,Y )
is defined by

Φ+(X,Y ) = {A ∈ L(X,Y ) : α(A) = dim (Ker(A)) <∞ and R(A) is closed in Y }

and the set of lower semi-Fredholm of L(X,Y ) is defined by

Φ−(X,Y ) = {A ∈ L(X,Y ) : β̃(A) <∞ (thus R(A) is closed in Y )}

Operators in Φ±(X,Y ) = Φ+(X,Y )
⋃

Φ−(X,Y ) are called semi-Fredholm operators
while Φ(X,Y ) = Φ+(X,Y )

⋂
Φ−(X,Y ) is the set of Fredholm operators. For A ∈

Φ±(X,Y ), the integer i(A) = α(A)− β̃(A) is called the index of A.

Remark 2.1 Notice that for Banach spacesX,Y withX 6= Y , the sets Φ+(X,Y ),Φ−(X,Y )
and consequently Φ(X,Y ) may be empty. Indeed, for example if X = lp (1 ≤ p ≤ ∞)
and Y = lq (1 ≤ q ≤ ∞)(p 6= q), then L(X,Y ) = F(X,Y ) = S(X,Y ) if p < q and
L(X,Y ) = F(X,Y ) = K(X,Y ) if q < p. But if X = Y , we have Φ+(X),Φ−(X) and
Φ(X) are non empty since the identity operator I belongs to each one of them.

Definition 2.1 Let X,Y be two complex infinite dimensional Banach spaces and let
S ∈ L(X,Y ).

(ı) S is called an isomorphism if S is one-to-one and S ∈ NS(X,Y ). Two closed
subspaces M ⊂ X and M ′ ⊂ Y are called isomorphic and we write M ≈ M ′ if there
exists an isomorphism J : M −→ Y for which R(J) = M ′, in this case we denote by
Iso(M,M ′) for the set of isomorphisms between M and M ′;

(ıı) S is called strictly singular if it’s restriction to every infinite dimensional closed
subspace of X is not an isomorphism. We denote by S(X,Y ) the set of strictly singular
operators between X and Y ;

(ııı) S is called strictly cosingular if there is no closed subspace M ⊂ Y such that
β(M) =∞ such that the linear operator QMS : X −→ Y/M is onto where QM : Y −→
Y/M is the canonical mapping. We denote by SC(X,Y ) the set of strictly singular
operators between X and Y ;

(ıv) S is called upper semi-Fredholm perturbation if A + S ∈ Φ+(X,Y ) whenever
A ∈ Φ+(X,Y ). We denote by F+(X,Y ) the set of upper semi-Fredholm perturbations
between X and Y ;

(v) S is called lower semi-Fredholm perturbation if A + S ∈ Φ−(X,Y ) whenever
A ∈ Φ−(X,Y ). We denote by F−(X,Y ) the set of lower semi-Fredholm perturbations
between X and Y ;

(vı) S is called semi-Fredholm perturbation if S ∈ F±(X,Y ) = F+(X,Y )
⋂
F−(X,Y );

(vıı) S is called Fredholm perturbation if A+S ∈ Φ(X,Y ) whenever A ∈ Φ(X,Y ). We
denote by F(X,Y ) the set of upper semi-Fredholm perturbations between X and Y .
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(vııı) Banach spaces X and Y are called totally incomparables (resp. essentially in-
comparables) if L(X,Y ) = S(X,Y ) (resp. L(X,Y ) = F(X,Y )).

For a good study and properties on these classes, notions and notations, we can quote for
example [16] and the references therein. Recall that the sets S(X,Y ),SC(X,Y ),F+(X,Y ),
F−(X,Y ) and F(X,Y ) are closed in L(X,Y ) and we have

FR(X,Y ) ⊆ N (X,Y ) ⊆ K(X,Y ) ⊆ S(X,Y ) ⊆ F+(X,Y ) ⊆ F(X,Y )

and

FR(X,Y ) ⊆ N (X,Y ) ⊆ K(X,Y ) ⊆ SC(X,Y ) ⊆ F−(X,Y ) ⊆ F(X,Y )

The inclusion S(X,Y ) ⊆ F+(X,Y ) is due to T. Kato [33] while the inclusion SC(X,Y ) ⊆
F − (X,Y ) was proved by Vladimirskii [46]. In general, these classes does not coincide
(see [17]).

Proposition 2.1 [17] Let X,Y, Z be three infinite dimensional Banach spaces. Then

(ı) If Φ(X,Y ) or Φ(Y,Z) is nonempty, thus for all A1 ∈ L(Y,Z), A2 ∈ L(X,Y ), F1 ∈
F(X,Y ), F2 ∈ F(Y,Z), we have A1F1 ∈ F(X,Z) and F2A2 ∈ F(X,Z).

(ıı) If Φ+(X,Y ) or Φ+(Y,Z) is nonempty, thus for all A1 ∈ L(Y, Z), A2 ∈ L(X,Y ), F1 ∈
F+(X,Y ), F2 ∈ F+(Y, Z), we have A1F1 ∈ F+(X,Z) and F2A2 ∈ F+(X,Z).

(ııı) If Φ−(X,Y ) or Φ−(Y,Z) is nonempty, thus for allA1 ∈ L(Y, Z), A2 ∈ L(X,Y ), F1 ∈
F−(X,Y ), F2 ∈ F−(Y, Z), we have A1F1 ∈ F−(X,Z) and F2A2 ∈ F−(X,Z).

whenX = Y , we write L(X) = L(X,X),K(X) = K(X,X),FR(X) = FR(X,X),N (X) =
N (X,X),K(X) = K(X,X),NS(X) = NS(X,X),S(X) = S(X,X),
SC(X) = SC(X,X),F+(X) = F+(X,X),F−(X) = F−(X,X),F(X) = F(X,X),
Φ+(X) = Φ+(X,X),Φ−(X) = Φ−(X,X),Φ±(X) = Φ±(X,X),Φ(X) = Φ(X,X).
It is known that F+(X),F−(X) and F(X) are closed two-sided ideals in L(X) (see
[17, 19, 20, 21, 22, 23, 24, 25, 26, 48, 49]).

Proposition 2.2 [40] Let X,Y be two infinite dimensional Banach spaces, we denote
by X? and Y ? the adjoint (dual) spaces of X and Y . Then

(ı) A ∈ Φ+(X,Y ) if and only if A? ∈ Φ−(Y ?, X?),

(ıı) A ∈ Φ−(X,Y ) if and only if A? ∈ Φ+(Y ?, X?),

(ııı) A ∈ Φ(X,Y ) if and only if A? ∈ Φ(Y ?, X?).

Proposition 2.3 [40] Let X,Y, Z be three infinite dimensional Banach spaces. Then

(ı) For all A ∈ Φ+(Y,Z) and B ∈ Φ+(X,Y ), we have AB ∈ Φ+(X,Z) and i(AB) =
i(A) + i(B),

(ıı) For all A ∈ Φ−(Y,Z) and B ∈ Φ−(X,Y ), we have AB ∈ Φ−(X,Z) and i(AB) =
i(A) + i(B),

(ııı) For all A ∈ Φ(Y,Z) and B ∈ Φ(X,Y ), we have AB ∈ Φ(X,Z) and i(AB) =
i(A) + i(B).

4



Proposition 2.4 [40] Let X,Y, Z be three infinite dimensional Banach spaces and let
A ∈ L(X,Y ) and BıL(Y,Z). Then

(ı) If BA ∈ Φ+(X,Z) then A ∈ Φ+(X,Y ),

(ıı) If BA ∈ Φ−(X,Z) then B ∈ Φ+(Y,Z),

(ııı) If BA ∈ Φ(X,Z) then A ∈ Φ+(X,Y ) and B ∈ Φ−(Y, Z) .

A bounded linear operator R ∈ L(X) is said to be Riesz operator if for all λ ∈ C\{0},
we have λI − A ∈ Φ(X). We denote by R(X) the set of Riesz operator on X. It is
known that R(X) is not in general an ideal. Moreover, Riesz operators have Riesz-
Schauder property of compact operators concerning the spectrum and R(X) contains
all the ideals F−(X),F+(X) and F(X). For more details on the set of Riesz operators,
we can refer to [10].

Let X be an infinite dimensional Banach space and let A ∈ L(X), we denote by σ(A)
and ρ(A) = C\ρ(A) respectively the spectrum and the resolvent set of A. Now, we
define the following sets

Φ+A = {λ ∈ C/λI −A ∈ Φ+(X)},

Φ−A = {λ ∈ C/λI −A ∈ Φ−(X)},

ΦA = {λ ∈ C/λI −A ∈ Φ(X)},

Φ0
A = {λ ∈ C/λI −A ∈ Φ(X) and i(λI −A) = 0}.

It is easy to observe that each one of the sets Φ+A,Φ−A,ΦA and Φ0
A is an open set of

the complex plane C which contains ρ(A). Consequently, if we denote by

σ+(A) = C/Φ+A,

σ−(A) = C/Φ−A,

σe(A) = C/ΦA,

σω(A) = C/Φ0
A.

Thus, all the sets σ+(A), σ−(A), σe(A) and σω(A) are nonempty compact sets of σ(A)
satisfying that

σ+(A)
⋃
σ−(A) ⊂ σe(A) ⊂ σω(A) ⊂ σ(A),

Moreover, we have (see [2, 31])

∂σe(A) ⊂ σ+(A)
⋂
σ−(A).

(where ∂σe(A) is the boundary of the set ∂σe(A)).

Definition 2.2 Let X be an infinite dimensional complex Banach space and M a
closed subspace of X. M is said to be complemented in X if there exists a closed
subspace Z ⊂ X such that X = M ⊕ Z.

Remark 2.2 If X is a separable Hilbert space, it is known that every closed subspace
M of X is complemented, which is not the case concerning general Banach spaces. For
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example F. J. Muray (1937) showed that the space lp(1 < p < ∞), p 6= 2 has non-
complemented closed subspaces. Fore more details on this fascinate subject, we quote
[39].

Remark 2.3 It is known that if M is finite dimensional or finite codimensional then
M is complemented. Also, Definition 2.2 is equivalent to the existence of a bounded
linear projection P ∈ L(X) (P 2 = P ) such that R(P ) = M .

Definition 2.3 Let X be an infinite dimensional Banach space. X is said to be de-
composable if there exist two closed infinite dimensional subspaces M1 and M2 of X
such that X = M1 ⊕M2. X is said to be indecomposable if it is not decomposable.

Definition 2.4 Let X be an infinite dimensional Banach space. X is called heredi-
tarily indecomposable Banach space (and we write H.I) if X and all its closed infinite
dimensional subspaces are indecomposable.

Remark 2.4 All classical Banach spaces are decomposable, separable Hilbert spaces,
Lp-spaces 1 ≤ p <∞, C([0, 1), .... In particular, we prove that if the Banach space X
has an unconditional basis (xn)∞1 (see [37] for the definition and other properties), then
X is decomposable since X = [x2n] ⊕ [x2n+1] where [x2n] and [x2n+1] are respectively
the closed subspaces generated by the vectors (x2n)n and (x2n+1)n but the converse is
not true, we can find decomposable Banach spaces does not having unconditional basis,
for example L1(µ) or C([0, 1]). It is easy to deduce that complex Banach spaces can
be divided into the following four categories:

(ı) H. I Banach spaces (Example: the space of Gowers-Maurey XGM [29]);

(ıı) Indecomposable Banach spaces having closed infinite decomposable subspaces (Ex-
ample: Schift space XS [30]);

(ııı) Decomposable Banach spaces having closed infinite dimensional decomposable
subspaces (Examples: separable Hilbert spaces, Lp-spaces (1 ≤ p <∞), C([0, 1]));

(v) Decomposable Banach spaces having closed infinite dimensional indecomposable
subspaces (Examples: XGM × Y where Y is an infinite dimensional closed subspace of
XGM for which dim(XGM/Y ) =∞. We have XGM × Y = XGM × {0} ⊕ {0} × Y ).

2.1 Coincidence and not coincidence between the sets of semi-Fredholm
operators

Let X,Y be two complex infinite dimensional Banach spaces. Recall that the sets
Φ+(X,Y )\Φ−(X,Y ) and Φ−(X,Y )\Φ+(X,Y ) are closed in L(X,Y ) (see the proof of
Corollary 18. 2, page 169 in [40]).

Proposition 2.5 Let X,Y be two complex infinite dimensional Banach spaces. Then

If there exist complemented closed subspaces M1 ⊂ X,M2 ⊂ Y with codim(M1) <
∞ and codim(M2) = ∞ such that M1 ' M2 then Φ+(X,Y )\Φ−(X,Y ) 6= ∅ and
Φ−(X,Y )\Φ+(X,Y ) 6= ∅.
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Proof. Let J : M1 −→ M2 be the isomorphism between M1 and M2 and denote by
T : X −→ Y given by T (x) = J(x) if x ∈ M1 and T (x) = 0 if x ∈ [vi]

n
1 where

[vi]
n
1 is the complemented subspace of M1 is X. Thus we have T ∈ L(X,Y ) and

α(T ) = dim[vi]
n
1 and R(T ) = M2 which is closed in Y by assumption. It is easy to

observe that T ∈ Φ+(X,Y )\Φ−(X,Y ).

Now, Let J̃ : M2 −→ M1 be the isomorphism between M2 and M1 given by J̃ = J−1

and denote by S : X −→ Y given by S(x) = J̃(x) if x ∈ M2 and T (x) = 0 if x ∈ M ′′
where M ′′ is the complemented subspace of M2 in X with dim(M ′′) = ∞. Thus we
have S ∈ L(X,Y ) and β̃(S) = codim(M1) < ∞ by assumption. It is easy to observe
that S ∈ Φ−(X,Y )\Φ+(X,Y ).

Corollary 2.1 Let X,Y be two complex infinite dimensional Banach spaces. Then

If there exist closed complemented subspaces M1 ⊂ X,M2 ⊂ Y with codim(M1) < ∞
and codim(M2) = ∞ such that M1 ' M2 then Φ−(Y ?, X?)\Φ+(Y ?, X?) 6= ∅ and
Φ+(Y ?, X?)\Φ−(Y ?, X?) 6= ∅.

Proof. The proof follows directly from Proposition 2.2 and Proposition 2.5.

Also, as an immediate consequence of Proposition 2.2, we have

Corollary 2.2 Let X,Y be two reflexive infinite dimensional Banach spaces. Then

(ı) Φ+(X,Y )\Φ−(X,Y ) 6= ∅ if and only if Φ−(Y ?, X?)\Φ+(Y ?, X?) 6= ∅;

(ıı) Φ−(X,Y )\Φ+(X,Y ) 6= ∅ if and only if Φ+(Y ?, X?)\Φ−(Y ?, X?) 6= ∅.

Corollary 2.3 Let X be a separable Hilbert space. Then

Φ+(X)\Φ−(X) 6= ∅ and Φ−(X)\Φ+(X) 6= ∅.

Proof. The fact that X is a separable Hilbert space implies that all closed infinite
dimensional subspaces of X are isomorphic. Thus the result follows from Proposition
2.2.

Remark 2.5 Let X1, X2 and X3 three complex infinite dimensional Banach spaces. If
X1 ' X2 and X2 ' X3 then X1 ' X3.

Now, we prove that Corollary 2.2 holds for Banach spaces lp(1 ≤ p <∞), p 6= 2 and c0.
More precisely,

Corollary 2.4 Let X one of the Banach spaces lp(1 ≤ p <∞), p 6= 2 or c0. Then

Φ+(X)\Φ−(X) 6= ∅ and Φ−(X)\Φ+(X) 6= ∅.

Proof. (ı) Let X one of the Banach spaces lp(1 ≤ p < ∞), p 6= 2 or c0, then comple-
mented subspaces of X are isomorphic to X (Theorem 2.2.4 in [3]) and hence they are
isomorphic by Remark 2.5. Now, let M,M ′ be two complemented closed subspaces of
X such that codim(M) <∞ and codim(M ′) =∞, thus M 'M ′ and the result follows
from Proposition 2.5.
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Remark 2.6 Let X one of the Banach spaces lp(1 ≤ p <∞), p 6= 2 or c0, it is easy to
deduce that the existence of infinite dimensional complemented subspaces M of X is
always ensured. Indeed, X has an unconditional basic sequence {xn}n, then it suffices
to take M = [x2n] or M = [x2n+1].

Remark 2.7 Let X be complex infinite dimensional Banach space. Then if Φ+(X) =
Φ−(X) (and consequently Φ+(X) = Φ−(X) = Φ(X)) then we deduce that F(X) =
F+(X) = F−(X). But the converse is in general not true as Corollary 2.3 and 2.4
show, since if X is one of the Banach spaces lp(1 ≤ p < ∞) or c0, we have F(X) =
F+(X) = F−(X) = K(X) [17].

Corollary 2.5 Let X one of the Banach spaces Lp([0, 1])(1 ≤ p < ∞) or C([0, 1]).
Then

Φ+(X)\Φ−(X) 6= ∅ and Φ−(X)\Φ+(X) 6= ∅.

Proof. Following Proposition 2.5, if X is one Banach spaces Lp([0, 1])(1 ≤ p < ∞)
or C([0, 1]), it suffices to find two complemented closed subspaces M1,M2 ⊂ X such
that codim(M1) < ∞ and codim(M2) < ∞ such that M1 ≈ M2. Let M1 ⊂ X be a
closed subspace such that codim(M1) = 1, then M1 ≈ X (see [?]). Moreover, there
exist a complemented closed subspace M2 ⊂ X such that codim(M2) = ∞ (see [7]),
then M2 ≈ X since X is a primary Banach space (see for the definition [1, 7] and page
1594 of [32]). Finally, Remark 2.6 implies that M1 ≈M2 which is the desired result.

Corollary 2.6 Let X be an infinite dimensional Banach space such that Φ+(X) ⊂
Φ−(X) (and consequently Φ(X) = Φ+(X)) or Φ−(X) ⊂ Φ+(X) (and consequently
Φ(X) = Φ−(X)). Let M1 and M2 be two closed subspaces such that codim(M1) <∞
and dim(X/M2) = ∞, then nor M2 is not complemented in X or Iso(M1,M2) = ∅ if
M2 is complemented.

Proposition 2.6 Let X be an infinite dimensional Banach space. Then

(ı) σe(A) = σω(A) for all A ∈ L(X) if and only if Φ(X) = Φ0(X);

(ıı) If Φ+(X) (resp. Φ−(X),Φ(X)) is connected in L(X) then Φ(X) = Φ+(X) = Φ0(X)
(resp. Φ(X) = Φ−(X) = Φ0(X),Φ(X) = Φ0(X));

(ııı) Φ+(X) = Φ−(X) = Φ(X) = Φ0(X) if and only if σ+(A) = σ−(A) = σe(A) =
σω(A);

(ıv) If σe(A) has an empty interior for all A ∈ L(X) then Φ(X) = Φ+(X) = Φ−(X);

(v) If σe(A) has an empty interior with ΦA connected for all A ∈ L(X) then Φ+(X) =
Φ−(X) = Φ(X) = Φ0(X).

Proof. (ı) Assume that σe(A) = σω(A) for all A ∈ L(X). To prove that Φ(X) =
Φ0(X), it suffices to prove the inclusion Φ(X) ⊂ Φ0(X). Let A ∈ Φ(X), thus 0 /∈
σe(A) = σω(A) which proves that A ∈ Φ0(X). Conversely, assume that Φ(X) = Φ0(X)
and let λ /∈ σω(A) hence λI −A ∈ Φ0(X) = Φ(X), this proves that λ /∈ σe(A).
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(ıı) Assume that the set Φ+(X) is connected in L(X) and let A ∈ Φ+(X), since
I ∈ Φ+(X), the stability of the index on Φ+(X) (see Corollary 2, page 169 in [40])
shows that i(A) = 0 and consequently A ∈ Φ0(X). The case of Φ−(X) or Φ(X) can be
established by the same way.

(ııı) Can be proved by a same argument as in (ı).

(ıv) See the proof of Proposition 3.11 in [14].

(v) Following (ıv), it suffices to prove that if ΦA is connected for all A ∈ L(X) then
Φ(X) = Φ0(X). By (ı), this is equivalent to prove that σe(A) = σω(A) for all A ∈ L(X).
Let λ /∈ σe(A), then λI−A ∈ Φ(X). On the other hand, we have ρ(A) = C\σ(A) ⊂ ΦA.
The fact that the index is constant on connected components of ΦA (see Corollary 2,
page 169 in [40]) shows that i(λI − A) = 0 which implies that λ /∈ σω(A). Since
σe(A) ⊂ σω(A) and ΦA ⊂ Φ0(A), we conclude that σe(A) = σω(A) which is the desired
result.

Corollary 2.7 Let X be an infinite dimensional Banach space. If for all A ∈ L(X),
σe(A) is a finite set then

Φ+(X) = Φ−(X) = Φ(X) = Φ0(X).

Proof. This result is an immediate consequence of the assertion (v) in Proposition 2.6.

As an immediate consequence of Corollary 2.2, we have

Corollary 2.8 If X is one of the following Banach spaces:

(ı) X a H.I Banach space;

(ıı) X a Q.H.I Banach space (quotient hereditarily indecomposable) (see page 223 in
[13] for the definition);

(ııı) X a HDn Banach space (hereditarily finitely indecomposable)(see page 223 in [13]
for the definition);

(v) X a QDn Banach space (quotient hereditarily finitely indecomposable)(see page
223 in [13] for the definition).

Then

Φ+(X) = Φ−(X) = Φ(X) = Φ0(X).

Proof. Indeed, if X is one of these spaces, we have for all A ∈ L(X), σe(A) is a finite
set. For more details, see Remark 2.2 in [13].

3 Complementation of the Kernel and the Range

This section is inspired essentially by section 2 and 3 of [34], Theorem 2.1 and Lemma
3.1 of this paper are improved and generalized here.

Let X,Y be two complex infinite dimensional Banach spaces and let ΓR[X,Y ],ΓN [X,Y ]
be the following subsets in L(X,Y ).
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ΓR[X,Y ] = {A ∈ L(X,Y ) : R(T ) is complemented in Y }

ΓN [X,Y ] = {A ∈ L(X,Y ) : N(T ) is complemented in X}

We denote by Γ[X,Y ] = ΓN [X,Y ]
⋂

ΓR[X,Y ]. If X = Y , we write ΓN [X,X] =
ΓN [X],ΓR[X,X] = ΓR[X] and Γ[X,X] = Γ[X].

Theorem 3.1 Let X and Y be an infinite dimensional Banach spaces.

(ı) If Y is a Hilbert space then ΓR[X,Y ] = L(X,Y ) and if X is a Hilbert space then
ΓN [X,Y ] = L(X,Y ).

(ıı) FR(X,Y ) ⊂ ΓR[X,Y ]; an operator having a finite codimensional kernel is an
element of ΓN [X,Y ].

(ııı) If Isom(X,Y ) 6= ∅, then Isom(X,Y ) ⊂ Γ[X,Y ] = ΓN [X,Y ]
⋂

ΓR[X,Y ].

(v) If Φ+(X,Y )
⋂

ΓR[X,Y ] 6= ∅, then for all A ∈ Φ+(X,Y )
⋂

ΓR[X,Y ], we have A+S ∈
Γ[X,Y ] for every S ∈ S(X,Y ).

(ıv) If Isom(X,Y ) 6= ∅, then for all A ∈ Isom(X,Y ), we have R(A+ S) is closed in Y
and for every S ∈ S(X,Y ) we have A+ S ∈ Γ[X,Y ].

This theorem can be seen as an extension of Theorem 2.1 in [34] given in the case
X = Y . The proof of Theorem 3.1 can be established by the same techniques and for
assertions (v) and (ıv) on the stability perturbations by strictly singular operators, we
can see [11, 12].

Proposition 3.1 Let X an infinite dimensional Banach spaces such that there exists
two closed infinite dimensional subspaces M1 and M2 such that M1 ≈ M2 with M1

complemented and M2 is not complemented in X. Then the set ΓR[X] is not open in
L(X).

Proof. Since M1 ≈ M2 then there exists J : M1 −→ M2 an isomorphism. The fact
that M1 is complemented in X implies the existence of a closed subspace M ′1 ⊂ X such
that X = M1 ⊕M ′1. Denote by T ∈ L(X) defined by T|M1

= J and T|M ′
1

= 0. Let
F ∈ FR(X) such that R(F )

⋂
R(T ) = R(F )

⋂
M2 = {0} (since R(T ) = M2). From the

assertion (ıı) of Theorem 3.1, it follows that F ∈ ΓR[X]. We denote by Sn = F +
1

n
T

for all integer n ≥ 1. It is easy to observe that Sn −→ F in the topology norm of L(X).

Moreover, R(Sn) = R(F +
1

n
T ) = R(F )⊕M2 which is not complemented in X. Now

let ε > 0, thus the open ball B(F, ε) contains an infinite elements of Sn which implies
that B(F, ε) * ΓR and gives the result.

Example 3.1 If X is one of the following Banach spaces, then X has two closed infinite
dimensional Banach spaces satisfying the assumptions of Proposition 3.1 (see [49]).

1. X = Lp(0,∞) +Lq(0,∞)(1 < p < q < 2) equipped with the norm ‖f‖ = inf{‖h‖p +
‖g‖q; f = h+ g}.

2. X = Lp(0,∞)
⋂
Lq(0,∞)(2 < q < p < ∞) equipped with the norm ‖f‖ =

max(‖f‖p, ‖f‖q).

10



3. X = L(p, q) the Lorentz space on [0, 1] with the norm ‖f‖ = (
q

p

∫ 1

0
[t

1
p f?(t)]q

dt

t
)
1
q

where f? is a decreasing rearrangement of f .

Remark 3.1 We note that the set ΓR[X] is not in general closed. Indeed, in X is
one of the Banach spaces indicated above, then there exist an infinite dimensional
closed subspaces M1,M2 ⊂ X such that M1 ≈ M2 ≈ lp (1 ≤ p < ∞) or c0 with
M1 complemented and M2 not complemented in X. Since M1 is complemented in X
then there exists a projection P : X −→ M1, hence B = JP ∈ F(X) where J is the

isomorphism between M1 and M2 but B /∈ ΓR[X]. Thus if we take An = B +
1

n
I, thus

An ∈ Φ(X) and consequently An ∈ ΓR[X] but lim
n−→∞

An = B /∈ ΓR[X].

Proposition 3.2 The set ΓR[XGM ] is not an open set in L(XGM ).

Proof. Let T =
∞∑
i=1

x?i ⊗ ei the strictly singular (non compact operator) given in [4]

where (x?i ) is a seminormalized block sequence in X?
GM and (ei) is the unit vector basis

of XGM (see for more details [4]). By the construction, α(T ) =∞. Thus N(T ) is not
complemented in XGM . Indeed, if N(T ) is complemented in XGM thus necessarily there
exists a finite dimensional space [zi]

k
i=1 such that XGM = N(T )⊕ [zi]

k
i=1. Hence T|[zi]ki=1

is an isomorphism and T becomes a finite rank operator which is a contradiction. Let

F ∈ FR(XGM ) then F ∈ ΓN [XGM ] and let Fn = F +
1

n
T for all integer n ≥ 1. It is

easy to show that α(Fn) = ∞ and N(Fn) is not complemented in XGM which proves
that Fn /∈ ΓN . Now let ε > 0, thus the open ball B(F, ε) contains an infinite elements
of Fn which implies that B(F, ε) * ΓN and gives the result.

Remark 3.2 We note that the set ΓN [X] is not in general closed. Indeed, following

the previous example if we take Tn = T +
1

n
I, thus Tn ∈ Φ(X) and consequently

Tn ∈ ΓN [X] but lim
n−→∞

Tn = T /∈ ΓN [X].

Remark 3.3 Notice that Propositions 3.1 and 3.2 give an answer to Question 3.1 given
in [34].

Theorem 3.2 (see Theorem 14, page 160 in [40]) Let X,Y be two complex infinite
dimensional Banach spaces and let T ∈ L(X,Y ).

(ı) T ∈ Φ+(X,Y )
⋂

ΓR[X,Y ];

(ıı) there exists S ∈ L(X,Y ) and K ∈ K(X) such that ST = IX +K.

Theorem 3.3 (see Theorem 15, page 160 in [40]) Let X,Y be two complex infinite
dimensional Banach spaces and let T ∈ L(X,Y ).

(ı) T ∈∈ Φ−(X,Y )
⋂

ΓN [X,Y ];

(ıı) there exists S ∈ L(X,Y ) and K ∈ K(Y ) such that ST = IY +K.

11



As in [34], we denote by Fl[X,Y ] = Φ+(X,Y )
⋂

ΓR[X,Y ] and Fr[X,Y ] = Φ−(X,Y )
⋂

ΓN [X,Y ].
It is easy to observe that Lemma 3.1 of [34] can be extended to the case of Banach
spaces X and Y as follows:

Lemma 3.1 Let X,Y be two complex infinite dimensional Banach spaces. Then

(ı) Φ+(X,Y ) ⊆ ΓN [X,Y ] and Φ−(X,Y ) ⊆ ΓR[X,Y ] and consequently

Φ(X,Y ) ⊆ Γ[X,Y ] and Φ+(X,Y )
⋃

Φ−(X,Y ) ⊆ ΓN [X,Y ]
⋃

ΓR[X,Y ];

(ıı) Fl[X,Y ]\Fr[X,Y ] = (Φ+(X,Y )\Φ−(X,Y ))
⋂

ΓR[X,Y ] = Φ+(X,Y )\Φ−(X,Y ))
⋂

Γ[X,Y ];
and

Fr[X,Y ]\Fl[X,Y ] = (Φ−(X,Y )\Φ+(X,Y ))
⋂

ΓN [X,Y ] = Φ−(X,Y )\Φ+(X,Y ))
⋂

Γ[X,Y ];

(ııı) Fl[X,Y ]
⋂
Fr[X,Y ] = Φ(X,Y );

(ıv) Fl[X,Y ]
⋃
Fr[X,Y ] = (Φ−(X,Y )\Φ+(X,Y ))

⋂
Γ[X,Y ] ⊆ Γ[X,Y ];

(v) If Φ+(X,Y ) = Φ−(X,Y )), then Φ+(X,Y ) = Fl[X,Y ] and Φ−(X,Y ) = Fr[X,Y ]
and consequently Fl[X,Y ] = Fr[X,Y ];

(vı) If Fl[X,Y ] = Fr[X,Y ], then Φ+(X,Y )
⋂

ΓR[X,Y ] = Φ−(X,Y )
⋂

ΓN [X,Y ] =
Φ+(X,Y )

⋂
Γ[X,Y ] = Φ−(X,Y )

⋂
Γ[X,Y ] = Φ(X,Y ) = (Φ+(X,Y )

⋃
Φ−(X,Y ))

⋂
Γ[X,Y ]

and this case, we have also

(Φ+(X,Y )\Φ−(X,Y ))
⋂

Γ[X,Y ] = (Φ−(X,Y )\Φ+(X,Y ))
⋂

ΓN [X,Y ] = ∅;

(vıı) If ΓN [X,Y ] = ΓR[X,Y ], then Φ+(X,Y ) = Fl[X,Y ] and Φ−(X,Y ) = Fr[X,Y ];
moreover,

Φ+(X,Y ) = Fl[X,Y ] and Φ−(X,Y ) = Fr[X,Y ] if and only if Φ+(X,Y )
⋃

Φ−(X,Y ) ⊆
Γ[X,Y ].

Corollary 3.1 Let X,Y two complex infinite dimensional Hilbert spaces, then

Φ+(X,Y ) = Fl[X,Y ] and Φ−(X,Y ) = Fr[X,Y ].

Proof. It’s an immediate consequence of Lemma 3.1 (vıı).

Corollary 3.2 Let X be a complex infinite dimensional Banach space such that for
all A ∈ L(X), the set σe(A) has an empty interior. Then

Φ+(X) = Fl[X] and Φ−(X) = Fr[X].

Proof. It’s an immediate consequence of Proposition 2.6 (ıv) and Lemma 3.1 (vı).

4 The instability of non-semi-Fredholm operators by semi-
Fredholm perturbations

The goal of this section is to improve the contributions of M. Gonzalez and V. Onieva
in [28]. More precisely, we prove that many of their results hold true by means of the
class of semi-Fredholm perturbations.
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Theorem 4.1 Let X,Y be two complex infinite dimensional Banach spaces. Then

(ı) L(X,Y )\NS(X,Y ) = L(X,Y )\Φ±(X,Y );

(ıı) T ∈ L(X,Y )\Φ±(X,Y ) if and only if there exists A ∈ L(X,Y )\NS(X,Y ) and
F ∈ F±(X,Y ) such that T = A+ F ;

(ııı) T ∈ L(X,Y )\Φ±(X,Y ) if and only if there exists A ∈ L(X,Y ) with α(A) =
β̃(A) =∞ and F ∈ F±(X,Y ) such that T = A+ F .
(v) For all T ∈ ∂Φ(X,Y ) then there exists A1 ∈ L(X,Y ), A2 ∈ L(X,Y )\NS(X,Y )
and F1, F2 ∈ F±(X,Y ) with α(A1) = β̃(A1) =∞ such that T = A1 + F1 = A2 + F2.

Proof. (ı) (see Theorem 2.1 (1) in [28]).

(ıı) Assume that T ∈ L(X,Y )\Φ±(X,Y ), then (Theorem 2.1 (2) in [28]) implies
that there exists A ∈ NS(X,Y ) and K ∈ K(X,Y ) such that T = A + K. Since
K(X,Y ) ⊆ F±(X,Y ), we get the result for the first implication. Conversely, let
T ∈ L(X,Y ), A ∈ L(X,Y )\NS(X,Y ), F ∈ F±(X,Y ) such that T = A + F and
assume that T ∈ Φ±(X,Y ), thus T − F = A ∈ NS(X,Y ) which is a contradiction.

(ııı) the proof of this assertion is based on (Theorem 2.1 (3) in [28]) and the same
argument given in (ıı).

(v) is deduced by combining the assertions (ı) and (ıı) and Lemma 1, page. 169 in [40].

Remark 4.1 It is easy to observe that Theorem 4.1 holds true if we replace the class
F±(X,Y ) by any subclass I ⊆ F±(X,Y ).

Definition 4.1 Let X,Y be two complex infinite dimensional Banach spaces and let
U0, U1, U2, U3, U4 be the sets given in [28]. If T ∈ L(X,Y ) we denote by T ? the adjoint
operator of T .

U0 = {T ∈ L(X,Y )\NS(X,Y ) : α(T ) = α(T ?) <∞}

U1 = {T ∈ L(X,Y )\NS(X,Y ) : |α(T )− α(T ?)| <∞}

U2 = {T ∈ L(X,Y )\NS(X,Y ) : α(T )− α(T ?) = −∞}

U3 = {T ∈ L(X,Y )\NS(X,Y ) : α(T )− α(T ?) =∞}

U4 = {T ∈ L(X,Y )\NS(X,Y ) : α(T ) = α(T ?) =∞}

U5 = {T ∈ NS(X,Y ) : α(T ) = α(T ?) =∞}

The following theorem and it’s corollary are an extension of Theorem 3.4 and Corollary
3.5 in [28]. Proofs can be adapted, so they are omitted.

Theorem 4.2 Let X,Y be two infinite dimensional Banach spaces.

(ı) If X and Y are separable, then Uj + F±(X,Y ) = L(X,Y )\Φ±(X,Y ), j = 0, 1.

(ıı) If X is separable then U2 + F±(X,Y ) = L(X,Y )\Φ±(X,Y ).

(ııı) If Y is separable then U3 + F±(X,Y ) = L(X,Y )\Φ±(X,Y ).

(v) U4 + F±(X,Y ) = L(X,Y )\Φ±(X,Y ).

13



Following Theorem 4.2 and Lemma 1 page 169 in [40], we obtain

Corollary 4.1 Let X,Y be two infinite dimensional Banach spaces.

(ı) If X and Y are separable, then ∂(Φ(X)) ⊆ Uj + F±(X,Y ), j = 0, 1.

(ıı) If X is separable then ∂(Φ(X)) ⊆ U2 + F±(X,Y ).

(ııı) If Y is separable then ∂(Φ(X)) ⊆ U3 + F±(X,Y ).

(v) ∂(Φ(X)) ⊆ U4 + F±(X,Y ).

Corollary 4.2 Let X be a complex infinite dimensional Banach space. Then the
following assertions are equivalent

(ı) X is separable.

(ıı) U0 + F±(X) = L(X)\Φ±(X).

(ııı) U1 + F±(X) = L(X)\Φ±(X).

(v) U3 + F±(X) = L(X)\Φ±(X).

By combining Corollary 4.1, Corollary 3.5 in [28] and Lemma 1, page 169 in [40], we
get

Corollary 4.3 Let X be a separable complex infinite dimensional Banach space. Then
we have

(ı) ∂(Φ(X)) ⊆ U0 + F±(X) = U0 +K(X).

(ıı) ∂(Φ(X)) ⊆ U1 + F±(X) = U1 +K(X).

(ııı) ∂(Φ(X)) ⊆ U3 + F±(X) = U3 +K(X).

Remark 4.2 Notice that Uj + F±(X) = Uj + K(X) (j = 0, 1, 3) does not imply
necessarily F±(X) = K(X).

Proposition 4.1 Let X be an infinite complex dimensional Banach space. Then

R(X) ⊆ L(X)\Φ±(X).

Proof. It is equivalent to prove that R(X)
⋂

Φ±(X) = ∅. Let R ∈ R(X)
⋂

Φ±(X)
hence σe(R) = {0}. On the other hand, we have σ+(R)

⋃
σ−(R) ⊆ σe(R) and

∂(σe(R)) ⊆ σ+(R)
⋂
σ−(R) we infer that σe(R) = σ+(R) = σ−(R) = {0}. By the

definition of the sets σ+(R) and σ−(R) we get that R /∈ Φ±(X) which is a contradic-
tion and achieves the proof.

Remark 4.3 Notice that the inclusion R(X)
⋂

Φ+(X) was proved firstly in [36] by a
different techniques of ours.

As an immediate consequence of Proposition 4.1 and Corollary 4.3, we have
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Corollary 4.4 Let X be a separable infinite complex dimensional Banach space. Then
for all R ∈ R(X) there exist K0,K1,K2 ∈ K(X), A0 ∈ U0, A1 ∈ U1, A2 ∈ U2 such that

R = A0 +K0 = A1 +K1 = A2 +K2.

Let X be a complex Banach space. We denote by Q(X) = {B ∈ L(X)/σ(Q) = {0}}
the set of quasinilpotent operators on X. One of the complicated and open problems in
operator theory is to prove that for all R ∈ R(X) then there exist K ∈ K(X), Q ∈ Q(X)
such that R = K + Q, this problem is known as the West decomposition of Riesz
operators (see [50]). Recently, this problem was reduced just for Banach spaces having
Rademacher’s type equal to 1 (see [41, 47]).

Corollary 4.5 Let X be a separable infinite complex dimensional Banach space having
Rademacher’s type 1. Assume that there exists i ∈ {0, 1, 2} such that for all Ai ∈ Ui

there exists Ki ∈ K(X), Ti ∈ L(X) such that Ai = Ki + Ti and σ(Ti) ⊆ σω(Ai). Then
for all R ∈ R(X), R satisfies the West decomposition.

Proof. Let R ∈ R(X), by Proposition 4.1 and Corollary 4.4, it follows that there exists
Ki ∈ K(X), Si ∈ Ui such that R = Ki+Si. Since R ∈ R(X), then R−Ki = Si ∈ R(X).
The fact that Si ∈ Ui and assumptions imply that σ(Si) ⊆ σω(R) = σe(R) = {0}. Thus
σ(Si) = {0} and consequently Si ∈ Q(X) and achieves the proof.

Definition 4.2 LetX be an infinite complex dimensional Banach space and T ∈ L(X).
T is called relatively regular if there exists B ∈ L(X) such that TBT = T . We denote
by RG(X) the set of all relatively regular operators.

Proposition 4.2 [45] Let X be a complex infinite dimensional Banach space. Then

RG(X) = ΓN [X]
⋂

ΓR[X].

Let X be a complex infinite dimensional Banach space and let π the quotient map from
L(X) onto the Banach space L(X)/F±(X) and let us

R̃(X) = {T ∈ L(X)\Φ±(X)/π(T ) ∈ RG(L(X)/F±(X))}.

Proposition 4.3 [45] Let X be a complex infinite dimensional Banach space. Then

(U5
⋂
RG(X)) + F±(X) ⊆ R̃(X) ⊆ L(X)\Φ±(X).

Moreover, if dim(L(X)/F±(X)) =∞ then R̃(X) 6= L(X)\Φ±(X).

Proof. Let T ∈ U5
⋂
RG(X) then there exists B ∈ L(X) such that T = TBT and let

F ∈ F±(X), then π(T ) = π(T +F )π(B)π(T +F ) = π(T )π(B)π(T ). Since T ∈ U5 then
T /∈ Φ±(X) and consequently T +F /∈ Φ±(X) which implies that π(T ) = π(T +F ) 6= 0
and shows that π(T + F ) ∈ RG(L(X)/F±(X)). This gives that T + F ∈ R̃(X).
Now if R̃(X) = L(X)\Φ±(X), then dim(L(X)/F±(X)) <∞ (see [42], page 96) which
is a contradiction.

Corollary 4.6 [28] Let H be an infinite dimensional Hilbert space. Then

U5 +K(H) ⊆ R̃(H) ( L(H)\Φ±(H).

Proof. Follows immediately from the fact that F±(H) = K(H) and U5 ⊆ R̃(H) to-
gether with dim(L(H)/K(H)) =∞.
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5 Restrictions of upper-semi-Fredholm operators and upper-
semi-Fredholm-perturbations which are normally solv-
able

In this section, some inherited properties of the upper-semi-Fredholm perturbations to
closed subspaces are established. We start by the following Proposition.

Theorem 5.1 [28] Let X,Y be two complex infinite dimensional Banach spaces.

(ı) If K ∈ K(X,Y ) then for all closed infinite dimensional subspace Z ⊆ X if K(Z) is
closed in Y then K|Z : Z −→ K(Z) ∈ FR(Z,K(Z));

(ıı) If S ∈ S(X,Y ) then for all closed infinite dimensional subspace Z ⊆ X if S(Z) is
closed in Y then S|Z : Z −→ S(Z) ∈ S(Z, S(Z));

(ııı) If S ∈ S(X,Y )
⋂
N (X,Y ) with dim(R(S)) =∞ then S(X,Y ) 6= K(X,Y ) ;

(v) S ∈ S(X,Y ) if and only if for all closed infinite dimensional subspace Z ⊆ X such
that S(Z) is closed in Y then S|Z : Z −→ S(Z) /∈ Φ+(Z, S(Z));

(ıv) If S ∈ S(X,Y ) with α(S) < ∞ then R(S) = S(X) does not contain any closed
infinite dimensional subspace of Y ;

(vı) If T ∈ F+(X,Y ) then if for all closed infinite dimensional subspace Z ⊆ X such
that T (Z) is closed in Y we have T|Z : Z −→ T (Z) ∈ F+(Z, T (Z)) thus F+(X,Y ) =
S(X,Y );

(vıı) If T ∈ F(X,Y ) then if for all closed infinite dimensional subspace Z ⊆ X such
that T (Z) is closed in Y we have T|Z : Z −→ T (Z) ∈ F(Z, T (Z)) thus F(X,Y ) =
F+(X,Y ) = S(X,Y );

Proof. (ı) We have the mapping K|Z : Z −→ K(Z) is onto then by it is an open
mapping, moreover it maps any bounded set in Z to a relatively compact set in K(Z)
thus we obtain necessarily that dim(K(Z)) <∞;

(ıı) Assume that S(X,Y ) = K(X,Y ) then S ∈ K(X,Y ) with R(S) is a closed subspace
for which dim(R(S)) = ∞ then S : X −→ R(S) is a compact onto operator, then by
the open mapping theorem dim(R(S)) <∞ which is a contradiction hence S(X,Y ) 6=
K(X,Y ).

(ııı) Assume that S|Z : Z −→ S(Z) is not strictly singular then there exists an infinite
dimensional closed subspace M ⊆ Z such that S|Z : M −→ S|Z(M) is an isomorphism
then S|Z(M) is closed in S(Z) but S(Z) is closed in Y hence S|Z(M) is closed in
Y and M ≈ S|Y (M), consequently S : X −→ Y is not strictly singular which is a
contradiction.

(v) Assume that there exists Z ⊆ X such that S(Z) is closed in Y and S|Z : Z −→
S(Z) ∈ Φ+(Z, S(Z)) then there exists a closed infinite dimensional subspace M of Z
such that Z = M ⊕H where dim(H) < ∞ and M ≈ S|Z(M), this implies that M is
an infinite dimensional closed subspace of X with S|M : M −→ Y is an isomorphism
, consequently S /∈ S(X,Y ) which is a contradiction. Conversely, if S /∈ S(X,Y ) then
there exists a closed infinite dimensional subspace M ′ ⊆ X such that S|M ′ : M ′ −→ Y
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is an isomorphism which proves that S(M ′) is closed in Y and S|M ′ : M ′ −→ S(M ′) ∈
Φ+(M ′, S(M ′)) which is a contradiction.

(ıv) Let S ∈ S(X,Y ) with α(S) < ∞ and assume that there exists an infinite dimen-
sional closed subspace M of Y such that M ⊆ R(S) = S(X) then M ′ = S−1(M) is an
infinite closed subspace of X. Consequently, S|M ′ : M ′ −→ M ∈ Φ+(M ′,M) which is
a contradiction by (v).

(vı) Assume that F+(X,Y ) 6= S(X,Y ) then there exists an infinite dimensional closed
subspace M ⊆ X such that S|M : M −→ S(M) is an isomorphism thus S(M)
is closed in Y and S|M /∈ F+(M,S(M)) which is a contradiction (since we have
Iso(M,S(M))

⋂
F+(M,S(M)) = ∅). The converse can be obtained by combining

that the restriction of strictly singular operators to closed subspaces such that this
restriction has a closed range is strictly singular and the fact that the class of strictly
singular operators is included in the class of upper-semi Fredholm perturbations.

(vıı) Can be proved as in (vı).

From Theorem 5.1, it is easy to observe that the properties of compactness and strictly
singular are inherited by the operators restrictions to infinite dimensional closed sub-
spaces having closed ranges which is not the case of upper semi-Fredholm perturbations
and Fredholm perturbations as the following examples show:

Example 5.1 Assume that X = XGM×XGM and Y = XGM then we have L(X,Y ) =
F(X,Y ), in particular the projector operator Pr : X −→ Y defined by Pr(x, y) = y is
a Fredholm perturbation but Pr|{0}×Y : {0} × Y −→ Y is an isomorphism hence it is
not a Fredholm perturbation in L({0} × Y, Y ).

Example 5.2 Let X one of the Banach spaces given in Example 3.1 (section 3). With
the notations of Remark 3.1, B ∈ F(X) but B|M1

: M1 −→ M2 is an isomorphism
hence it is not a Fredholm perturbation in L(M1,M2).

Example 5.3 Assume that X = XGM × Y where Y ⊂ X is an infinite dimensional
subspace with dim(XGM/Y ) =∞. Denote by J : Y −→ XGM defined by J(x) = x for

all x ∈ Y . Then A =

(
0 JY
0 0

)
∈ F(X) = F+(X) (see [22]) but A|{0}×Y : {0}×Y −→

{0}×Y defined by A|{0}×Y (0, y) = (0, JY (y)) is not a Fredholm perturbation or upper-
semi-Fredholm perturbation in L({0} × Y ).

As an application of the assertion (ıv), we have the following result:

Corollary 5.1 (Corollary 5.2 in [48]): For 1 < p < 2, the range of the Fourier trans-

form = : Lp(G,m) −→ Lq(Γ, n)(
1

p
+

1

q
= 1) does not contain any infinite dimensional

closed subspace in Lq (here (G,m) is a locally compact group with its Haar measure
m and (Γ, n) is the dual group of (G,m) with its Haar measure n).

Proof. Indeed, the Fourier transform = :: Lp(G,m) −→ Lq(Γ, n) is a one-to-one strictly
singular operator (see for more details Theorem 5.1 in [48]).
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Remark 5.1 Notice that the assertion (ııı) of Proposition 5.1 shows that in a Banach
space X when it’s possible to construct a strictly singular operator T having an infinite
dimensional range then necessarily S(X) 6= K(X) as the example given by [17] to prove
that S(Lp([−1, 1])) 6= K(Lp([−1, 1]))(1 ≤ p < ∞). Indeed, the example established by
the authors has an infinite dimensional closed subspace given by the closed hull of the
set of Rademacher’s functions (see for more details [17].

Theorem 5.2 LetX,Y be two infinite dimensional Banach spaces such that Φ(X,Y ) 6=
∅. Let T ∈ F(X,Y ) and assume that for all infinite dimensional closed subspace M of
X with T (M) closed, the subspace T (M) is a complemented subspace of Y for which
Φ(X,T (M)) 6= ∅. Then

F(X,Y ) = F+(X,Y ) = S(X,Y ).

Proof. Assume that there exists T ∈ F(X,Y )\S(X,Y ) then there exists an infinite
dimensional closed subspace M of X with T (M) closed and M ≈ T (M). Now by
assumption T (M) is a complemented subspace of Y and thus there exists a projection
P : Y −→ T (M). Hence by the assertion (ı) of Proposition 2.1, the bounded linear
operator

P ◦ T ◦ JM : M −→ X −→ Y −→ T (M) ∈ F(M,T (M)).

But on the other hand, P ◦ T ◦ JM ∈ Iso(M,F (M)) ⊂ Φ(M,T (M)) which is a contra-
diction.

Corollary 5.2 Let X be two infinite dimensional Banach space and let T ∈ F(X).
Assume that for all infinite dimensional closed subspace M of X with T (M) closed, the
subspace T (M) is a complemented subspace of Y for which Φ(X,T (M)) 6= ∅. Then

F(X) = F+(X) = S(X).

Proof. Follows immediately from Theorem 5.2 by taking X = Y since Φ(X) 6= ∅.

Remark 5.2 Notice that Corollary 2.2 can be used to prove that in the case of Lp(µ)
spaces (1 ≤ p < 2), we have F(Lp(µ)) = F+(Lp(µ)) = S(Lp(µ)) (see for more details
[48]).

In the following, we give some conditions ensuring that the restriction of upper semi-
Fredholm perturbations and Fredholm perturbations to closed subspaces inherit this
property.

Theorem 5.3 Let X be an infinite dimensional Banach space and let M ⊂ X a closed
complemented infinite dimensional subspace of X. Assume that F ∈ F+(X) (resp.
F(X)) then if F (M) is closed with F (M) ⊆ M , we have F|M : M −→ F (M) ∈
F+(M,F (M)) (resp. F(M,F (M)).

Proof. Since M is complemented in X then there exists a closed subspace Z such that
X = M⊕Z. Let us to prove the result for the class of semi-Fredholm perturbation, the
same argument can be applied to prove the case for Fredholm perturbations. Assume
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that F|M /∈ F+(M,F (M)) then there exists A ∈ Φ+(M,F (M)) such that A − F|M /∈

Φ+(M,F (M)). Let us define Ã ∈ L(X) by Ã =

(
A 0
0 IZ

)
, we have Ã ∈ Φ+(X)

since α(Ã) = α(A) < ∞ and R(Ã) = R(A) ⊕ Z which is a closed subspace of X.
Moreover, we have Ã − F /∈ Φ+(X). Indeed, since A − F|M /∈ Φ+(M,F (M)) we have
two situations:

(ı) If α(A− F|M ) =∞ then α(Ã− F ) =∞ hence A− F /∈ Φ+(X);

(ıı) If R(A−F|M ) is not closed in F (M) then (A−F )(M) = R(A−F|M ) is not closed
in X hence A− F /∈ Φ+(X) (see Theorem 10, page 158 in [40]).
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