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Abstract

In this note, we study some fixed point results for generalized nonexpansive
mappings containing in particular Cλ mappings (called also Suzuki mappings) by
means of the notion of orthogonality in Banach spaces.
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1 Introduction

Let X be a Banach space, we say that X has the property FPP (fixed point property)
if for every convex weakly compact subset C of X and every nonexpansive selfmapping
T on C, T has a fixed point in C. The first works in this direction were established
by [5, 10, 15] and they have been of great benefit showing the close link between
the study of existence of fixed points and the geometry of Banach spaces. Since,
the subject has attracted the attention of several mathematicians who contributed
to establish pertinent results, we can quote for example, Goebel-Karlovitz Lemma
[8, 9, 12, 13] proving that the existence of an approximatively fixed point sequence
for a nonexpansive selfmapping on a convex weakly compact subset C implies that
every point of C is diametral, this result is a crucial tool in the theory on which are
based many well known results. The fact that the space L1([0, 1]) has not the property
FPP proved by D. Alspach [4] is a striking result, it appeared one year after another
remarkable result established by B. Maurey [17] claiming that every closed reflexive
subspace of L1([0, 1]) has the property FPP. In 1985, P. K. Lin [16] showed that if X

has an unconditional basis with a basic constant less than

√
33− 3

2
then X has the

property FPP. In 1997, P. N. Dowling and C. J. Lennard [6] proved that the reflexivity
is necessary and sufficient for a closed subspace of L1([0, 1]) to have the property FPP.
In 2008, T. Suzuki [7, 18] has defined the notion of Cλ mappings and he showed that
this class contains strictly that of nonexpansive mappings. This class of mappings was
explored by several authors (for example see [1] and the references therein). Moreover,
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it was shown that many results which hold for nonexpansive mappings can be extended
to the case of Cλ mappings. In this paper, we work in this direction and we prove in
particular that the results of L. A. Karlovitz [12] hold for the case of continuous Cλ
mappings.

2 Notations and Preliminaries

Definition 2.1 Let X be a normed space and x1, x2 ∈ X. We say that x1 is orthogonal
to x2 and we denote x1⊥x2 if ‖x1‖ ≤ ‖x1 + λx2‖ for all scalars λ.

In the following, we denote by D(0, ε) the open disc with center 0 and radius ε in the
complex plane C.

Definition 2.2 Let X be a normed space and SX its unit sphere. Let x1, x2 ∈ X; we
say that the relation ⊥ is approximatively symmetric if for each x ∈ X and each ε > 0
there exists a finite codimensional subspace Vx,ε of X (which depends on x and ε) such
that

‖v‖ ≤ ‖v + λx‖ ∀v ∈ Vx,ε
⋂
SX and ∀λ /∈ D(0, ε). (?)

Definition 2.3 Let X be a dual space, in other words, there exists a normed space Y
such that Y = X?. We say that the relation ⊥ is weak? approximatively symmetric if
Vx,ε in Definition 2.2 can be chosen weak? closed.

Definition 2.4 Let X be a normed space.

(ı) We say that the relation ⊥ is uniformly approximatively symmetric if it is approx-
imatively symmetric and (?) is replaced by the following:

‖v‖ ≤ ‖v + λx‖ − δ, for some δ = δ(x, ε) > 0, ∀v ∈ Vx,ε
⋂
SX and ∀λ /∈

D(0, ε). (??)

(ıı) If X is a dual space. Then ⊥ is said to be uniformly weak? approximatively
symmetric if it is weak? approximatively symmetric and (??) is satisfied.

Example 2.1 As examples of Banach spaces satisfying the previous properties, we
have

1. If X is one of the following Banach spaces, then the relation ⊥ is uniformly
approximately symmetric.

(a) Hilbert spaces.

(b) lp spaces (1 < p <∞).

2. If X is one of the following Banach spaces, then the relation ⊥ is weak? uniformly
approximately symmetric.
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(c) James space.

(d) l1 space.

3. In Lp spaces p 6= 2 and c0, the relation ⊥ fails to be approximatively symmetric.

For more details on these notions of orthogonality, we can see for example [3, 11].

Definition 2.5 Let T be a mapping on a subset C of a Banach space X and λ ∈ (0, 1).
T is said to satisfy condition Cλ if

λ‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖

For λ =
1

2
, T is said to satisfy condition C or T is said to be Suzuki mapping. These

classes of mappings are introduced by T. Suzuki [18] as an extension of nonexpansive
mappings and it is shown that we can construct a lot of Cλ mappings which are not
nonexpansive. It is clear that if λ1 ≤ λ2 thus Cλ1 implies Cλ2 . On the other hand, if
C is convex and T satisfies condition Cλ for λ ∈ (0, 1), then for every α ∈ (λ, 1) the
mapping Tα : C −→ C defined by Tαx = αTx+ (1− α)x satisfies condition (C λ

α
).

Definition 2.6 Let T : X −→ X be a mapping acting on a metric space (X, d) and
let (xn) be a sequence in X. (xn) is said to be an approximate fixed point sequence for
T if

lim
n−→∞

d(xn, T (xn)) = 0.

Definition 2.7 Let T : X −→ X be a mapping acting on a metric space (X, d). T is
said to be asymptotically regular if for every x0 ∈ C, the sequence xn = Tn(x0) is an
approximate fixed point sequence for T .

Lemma 2.1 (see [1, 2]) Let C be a bounded convex subset of a Banach space X.
Assume that T : C −→ C satisfies condition Cλ for λ ∈ (0, 1). For α ∈ (λ, 1) define a
sequence (xn) in C by taking x1 ∈ C and

xn+1 = αTxn + (1− α)xn, for all n ≥ 1

Then (xn) is an approximate fixed point sequence.

Lemma 2.2 (see [1, 2, 7]) Let C be a nonempty convex weakly compact subset of a
Banach space X which is minimal and invariant under the mappaing T : C −→ C. If
T is continuous and Cλ mapping for some λ ∈ (0, 1), then there exists r ≥ 0 such that
for any approximate fixed point sequence for T and every x ∈ C we have

lim
n−→∞

‖xn − x‖ = r.

In the case λ =
1

2
, the continuity assumption can be dropped.
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Definition 2.8 Let C be a nonempty subset of a Banach space X. We say that
T : C −→ C satisfy condition Eµ on C if there exists µ ≥ 1 such that for all x, y ∈ C,
we have

‖x− Ty‖ ≤ µ‖x− Tx‖+ ‖x− y‖.

T is said to be satisfy the condition E on C if there exists a certain µ ≥ 1 such that T
satisfies Eµ.

Remark 2.1 It is easy to show that every nonexpansive mapping satisfies condition
E1 but the converse is not true. Moreover, every C 1

2
mapping satisfies condition E3

(for more details, see Definition 2 in [7]).

Definition 2.9 A Banach space X is said to satisfy the Opial property whenever for
every sequence (xn) with xn converges weakly to z (denoted by xn ⇀ z) we have

lim inf
n−→∞

‖xn − z‖ < lim inf
n−→∞

‖xn − x‖

whenever x 6= z.

Example 2.2 Hilbert spaces lp(1 ≤ p < ∞) satisfy Opial property. On the other
hand, it is known that every separable Banach space can be renormed to satisfy Opial
property (see [19]).

3 Main Results

We start this section by the following Lemma which will be used in the rest of the
paper.

Lemma 3.1 Let T be mapping on a subset C of a Banach space X. Assume that T
is a Cλ mapping (λ ∈ (0, 1)). Then for every x, y ∈ C, the following hold.

(ı) ‖Tx− T 2x‖ ≤ ‖x− Tx‖.

(ıı) Either λ‖x− Tx‖ ≤ ‖x− y‖ or (1− λ)‖Tx− T 2x‖ ≤ ‖Tx− y‖ holds.

(ııı) If moreover T is C1−λ mapping. Then, either ‖Tx−Ty‖ ≤ ‖x−y‖ or ‖T 2x−Ty‖ ≤
‖Tx− y‖.

Proof.

(ı) For λ ∈ (0, 1) we have λ‖x − Tx‖ ≤ ‖x − Tx‖. Since T is Cλ mapping we get
‖Tx− T 2x‖ ≤ ‖x− Tx‖.

(ıı) Assume that λ‖x− Tx‖ > ‖x− y‖ and (1− λ)‖Tx− T 2x‖ > ‖Tx− y‖. Thus

‖x− Tx‖ ≤‖x− y‖+ ‖y − Tx‖
<λ‖x− Tx‖+ (1− λ)‖T 2x− Tx‖.
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By (ı) it follows that

‖x− Tx‖ <λ‖x− Tx‖+ (1− λ)‖x− Tx‖
=‖x− Tx‖

which is a contradiction.

(ııı) Follows directly from (ıı).

Remark 3.1 By taking λ =
1

2
in Lemma 2.1, Lemma 5 in [18] can be deduced. On

the other hand for each λ ∈ (0,
1

2
] then if T is Cλ mapping then necessarily T is C1−λ

mapping.

Lemma 3.2 Let T be mapping on a subset C of a Banach space X. Assume that T
is a Cλ and C1−λ mapping (λ ∈ (0, 1)). Then T satisfies condition E3.

Proof. The proof of this lemma can be adapted from that given in Lemma 7 of [18].

Theorem 3.1 Let C be a weakly compact convex subset of a Banach space X. Assume
that the relation ⊥ is uniformly approximately symmetric in X. If T : C −→ C is a
continuous Cλ and C1−λ mapping, then T has a fixed point.

Proof. Assume that T is a free fixed point mapping and define

Ξ = {K ⊂ C,K 6= ∅, closed convex and TK ⊂ K}

Using Zorn’s Lemma, it follows that the family Ξ has a minimal element (see [14]).
Let K0 one these minimal elements, since C is weakly compact, then K0 is a bounded
convex subset of X and by Lemma 1.1, T has an approximate fixed point sequence (xn).
On the other hand K0 is weakly compact, thus from xn we can extract a subsequence
xnk such that lim

k−→∞
‖Txnk − xnk‖ = 0 and xnk ⇀ z. Afterwards, Lemma 2.1 implies

the existence of a positive number r such that lim
k−→∞

‖xnk − z‖ = r. Let γ = Tz − z.
If γ = 0 or r = 0 then the proof is finished. Now, assume that r > 0 and γ 6= 0. By
a same argument given in the proof of Theorem 1 in [12], it follows that for all integer
k ≥ 1, we have

xnk − z = λnkγ + vnk + v′nk .

and for all integer k ≥ 1 we have

‖xn′
k
− Tz‖ ≥ ‖vn′

k
‖(1 + δ)− ‖v′n′

k
‖ for some δ > 0,

where ‖vn′
k
‖ −→ r and ‖v′n′

k
‖ −→ 0 for some subsequences (vn′

k
)k and (v′n′

k
)k of (vnk)k

and (v′nk)k respectively.

Afterwards, by using Lemma 2.2 and the triangular inequality, we get

‖xn′
k
− Tz‖ ≤ 3‖xn′

k
− Txn′

k
‖+ ‖xn′

k
− z‖.

By taking k −→∞ and using the inequality above, it follows that
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r ≥ (1 + δ)r.

which is a contradiction. Hence necessarily r = 0 which achieves the proof.

By the same reasoning given in Theorem 2.1 we can prove the following result.

Corollary 3.1 Let C be a weak? closed convex bounded subset of l1 or the James
space J0. If T : C −→ C is a continuous Cλ and C1−λ mapping, then T has a fixed
point.

Theorem 3.2 Let C be a bounded closed convex subset of a reflexive separable Banach
space X. Assume that the relation ⊥ is uniformly approximately symmetric in X. If
T : C −→ C is a continuous asymptotically regular Cλ and C1−λ mapping, then for
each x ∈ C the sequence {Tnx} converges weakly to some fixed point z of T .

Proof. First of all, the reflexivity of X implies that C is weakly compact. Let x0 ∈ C
arbitrary. Taking xn = Tnx0 (n ≥ 1). The fact that T is asymptotically regular
shows that lim

n−→∞
‖T (xn) − xn‖ = 0. Hence by the same argument given in the proof

of Theorem 2.1, (xn) has a subsequence (xnk) such that xnk ⇀ z with Tz = z. On the
other hand since z is a fixed point for T , it follows that

λ‖Tz − z‖ = 0 ≤ ‖z − xn‖

Since T is Cλ mapping, we get

‖xnk+1 − z‖ = ‖Txnk − Tz‖ ≤ ‖z − xnk‖

which proves that the sequence ‖z−xnk‖ is decreasing and hence there exists a positive
number r such that lim

n−→∞
‖xnk − z‖ = r. By using Theorem 2 in [12], X satisfies Opial

condition and consequently lim inf
n−→∞

‖xnk − z′‖ > r for z′ 6= z. Now if there exists a

subsequence {xn′
k
} such that xn′

k
⇀ z′ 6= z. The previous argument repeated for the

subsequence xn′
k

together with Opial condition leads to

lim inf
n−→∞

‖xnk − z
′‖ = lim

n−→∞
‖xn − z′‖ < lim inf

n−→∞
‖xn′

k
− z‖ = lim

n−→∞
‖xn′

k
− z‖ = r.

which is a contradiction. This achieves the proof.

By the same reasoning as in the proof of Theorem 2.2, the following result can be
established.

Corollary 3.2 Let C be a bounded closed convex subset of a dual of separable Banach
space X. Assume that the relation ⊥ is weak? uniformly approximately symmetric in
X. If T : C −→ C is a continuous asymptotically regular Cλ and C1−λ mapping, then
for each x ∈ C the sequence {Tnx} converges weakly? to some fixed point z of T .

Remark 3.2 By Remark 2.1, the assumption that T is C1−λ in Theorem 2.1, Theorem

2.2, Corollary 2.1 and Corollary 2.2 can be dropped for λ ∈ (0,
1

2
].

Remark 3.3 Notice that Lemma 3.2, Theorems 3.1, Theorem 3.2, Corollaries 3.1 and
3.2 extend those established in [12] for the case of nonexpansive mappings.
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