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Abstract

In this paper, we introduce the notion of Cλ1,λ2,.....,λn mappings as an extension
of Suzuki mappings. Some results concerning fixed points of theses mappings and
the the convergence of Kirk’s Process associated to them are studied.
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1 Introduction

It’s well known that the works of W. A. Kirk, D. Gohde and F. E. Browder (1965-
1966) [2, 8, 12] on the existence of fixed points for nonexpansive mappings have been
of great impact on fixed point theory, by involving the geometry of Banach spaces in
the study which was new since the famous Banach contraction principle (1922). The
problem that a nonexpansive mapping on a convex bounded subset of an arbitrary
Banach space has or not at least a fixed point is in general delicate, it needs a good
knowledge of the geometry of the space or its closed bounded subsets as was the case of
Hilbert spaces which is reflexive having the normal structure or others characterized by
certain quantities linked to the norm of the space. The question of wether nonexpansive
mappings defined on the closed bounded convex subsets of Banach spaces have or not
fixed points is known under the abbreviation FPP (fixed point property). After the
works mentioned above, L. A. Karlovitz (1976) [9] established the FPP property for
spaces without normal structure, after, B. Maurey [15] showed that the space c0 and
each reflexive subspace of L1([0, 1]) have the property FPP, in 1981, D. Alpasch [1] gave
a counter-example of a fixed point free nonexpansive mapping on a closed bounded
convex subset of L1([0, 1]), notice that his example is an isometry and the problem is
always open concerning the contractive case. In 1997, P. L. Dowling and C. J. Lennard
[3] proved that in L1([0, 1]) the reflexivity of subspaces is a necessary and sufficient
condition to have the property FPP. Notice that Goebel-Karlovitz [5, 6] Lemma and
ultra-product spaces [10, 11] are a power full tools which have helped to overcome many
problems in the theory. For a good read on this subject, we can quote [5, 6, 7, 10, 11, 14]
and the references therein.
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In (2008), T. Suzuki [16] introduced the notion of Cλ(λ ∈ (0, 1))-mappings as an ex-
tension of nonexpansive mappings. He showed that this class of mappings is wider
than that of nonexpansive ones and he established some remarkable properties. In this
work, we observe that the reasoning of T. Suzuki can be generalized to the case of

Cλ1,λ2,.....,λn-mappings with
n∑
i=1

λi ≤ 1 by noticing that the Krasnoselskii process used

by Suzuki can be replaced by Kirk’s process more general. Our results are extensions
of some one given respectively in [13, 16].

2 Notations and Preliminaries

Definition 2.1 Let T be a mapping on a subset C of a Banach space X and λ ∈ (0, 1).
T is said to satisfy condition Cλ if

λ‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖

For λ =
1

2
, T is said to satisfy condition C or T is said to be Suzuki mapping. These

classes of mappings are introduced by T. Suzuki as an extension of nonexpansive map-
pings and it is shown that we can construct a lot of Cλ mappings which are not nonex-
pansive. On the other hand is clear that if λ1 ≤ λ2 thus Cλ1 implies Cλ2 . On the other
hand, if C is convex and T satisfies condition Cλ for λ ∈ (0, 1), then for every α ∈ (λ, 1)
the mapping Tα : C −→ C defined by Tαx = αTx+ (1− α)x satisfies condition (C λ

α
).

Also, notice that it is possible that the mapping is not Cλ but one of its powers satisfy
this property as the following example indicated in [4].

Example 2.1 Define the mapping T on [0, 3] by

T (x) =

{
0 if x 6= 3
2 if x = 3.

T does not satisfy the condition C, but it is easy to observe that T 2 ≡ 0 and hence T 2

satisfies trivially this condition.

Definition 2.2 Let T : X −→ X be a mapping acting on a metric space (X, d) and
let (xn) be a sequence in X. (xn) is said to be an approximate fixed point sequence for
T if

lim
n−→∞

d(xn, T (xn)) = 0.

Definition 2.3 Let T : X −→ X be a mapping acting on a metric space (X, d). T is
said to be asymptotically regular if for every x0 ∈ C, the sequence xn = Tn(x0) is an
approximate fixed point sequence for T .

Lemma 2.1 Let C be a bounded convex subset of a Banach space X. Assume that
T : C −→ C satisfies condition Cλ for λ ∈ (0, 1). For α ∈ (λ, 1) define a sequence (xn)
in C by taking x1 ∈ C and
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xn+1 = αTxn + (1− α)xn, for all n ≥ 1

Then (xn) is an approximate fixed point sequence.

Recall that for α =
1

2
, the sequence xn+1 = 1

2Txn + 1
2xn is called the Krasnoselskii

process associated to T and (xn).

Remark 2.1 Let C be a bounded convex subset of a Banach space X and let (xn) be
a sequence in C. If λ ∈ (0, 1), one of the advantages of Krasnoselskii process is that
(xn) is an approximate fixed point sequence for T if and only if (xn) is an approximate
fixed point sequence for S = λI + (1 − λ)T (I is the identity mapping on C). Indeed,
this fact follows immediately from the formula

‖S(xn)− xn‖ = (1− λ)‖T (xn)− xn‖

which is not true for other processes.

Definition 2.4 A uniformly convex Banach space X is a Banach space such that
for every 0 < ε ≤ 2 there is some 0 < δ such that for any two vectors x, y with

‖x‖ = ‖y‖ = 1, the condition ‖x− y‖ ≥ ε implies
‖x+ y‖

2
≤ 1− δ.

A strictly convex Banach space X is a Banach space such that for every x, y ∈ X, if
x 6= 0, y 6= 0 and ‖x+ y‖ = ‖x‖+ ‖y‖ then necessarily we obtain that x = cy for some
c > 0.

It is known that every uniformly convex Banach space is strictly convex while the
converse is not true in general (see [6]). Also uniformly Banach spaces are reflexive.

Definition 2.5 Let T : C −→ C be a mapping acting on a convex subset C of a

Banach space X. Let λ0, ......, λn ∈ (0, 1) such that λ1 > 0 and
n∑
i=0

λi = 1. The

sequence (xm) ⊂ C defined by x1 ∈ C and

xm+1 = λ0xm + λ1xm + ......+ λnT
n(xm).

is called Kirk’s process associated to the sequence (xn) and the mapping T .

Definition 2.6 Let T be a mapping on a subset C of a Banach spaceX and λ1, ......., λn ∈

(0, 1) such that
n∑
i=1

λi < 1 with λ1 > 0. T is said to be Cλ1,λ2,.....λn mapping if

n∑
i=1

λi‖x− T ix‖ ≤ ‖x− y‖ =⇒
n∑
i=0

λi‖T ix− T iy‖ ≤ ‖x− y‖

where λ0 ∈ (0, 1) is such that

n∑
i=0

λi = 1.

Remark 2.2 Cλ1,λ2,....,λn can be seen as an extension of (α = (α1, ......, αn)) nonex-
pansive mappings introduced by M. J. Pineda for λ0 = 0 (for more details, see [7]).
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3 Main Results

Lemma 3.1 For n = 1 the previous definition is reduced to the case of Cλ mappings.

Proof. Indeed, if for λ1 ∈ (0, 1) we have

λ1‖x− Tx‖ ≤ ‖x− y‖ =⇒
1∑
i=0

λi‖T ix− T iy‖ ≤ ‖x− y‖

Then if λ0 ∈ (0, 1) for which λ0 + λ1 = 1 we obtain that

λ0‖x− y‖+ λ1‖Tx− Ty‖ ≤ ‖x− y‖ = λ0‖x− y‖+ λ1‖x− y‖

It follows that

λ1‖Tx− Ty‖ ≤ λ1‖x− y‖

Since, λ1 ∈ (0, 1) then λ1 6= 0, we get

‖Tx− Ty‖ ≤ ‖x− y‖

which is the desired result.

Proposition 3.1 Let T be a mapping on a subset C of a Banach space X and let

λ1, ......., λn ∈ (0, 1) for which λ1 > 0 and
n∑
i=1

λi < 1. Assume that for each i = 1, ......n,

T i is a Cλi mapping. Then T is a Cλ1,λ2,.....,λn mapping.

Proof. Assume that
n∑
i=1

λi‖x− T ix‖ ≤ ‖x− y‖

For every i = 1, ...., n, this implies that

λi‖x− T ix‖ ≤ ‖x− y‖

By hypothesis, the fact that T i is a Cλi mapping implies that

‖T ix− T iy‖ ≤ ‖x− y‖

and hence

λi‖T ix− T iy‖ ≤ λi‖x− y‖ for all i = 1, ....., n

Consequently, by summation and using the fact that

n∑
i=0

λi = 1, we infer that

n∑
i=0

λi‖T ix− T iy‖ ≤ ‖x− y‖

which is the desired result.
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Corollary 3.1 Let T be a nonexpansive mapping on a subset C of a Banach space
X. Then T is a Cλ1,λ2,.....,λn mapping for every λ1, ......., λn ∈ (0, 1) with λ1 > 0 and
n∑
i=1

λi < 1.

Proof. For every integer i ≥ 1 we have

‖T ix− T iy‖ ≤ ...... ≤ ‖x− y‖

which implies that T i is a nonexpansive mapping for all integer i ≥ 1. Hence for all
i = 1, ..., n, T i ia a Cλi mapping. Now the result is an immediate consequence of
Proposition 1.1.

Lemma 3.2 (see [16], Lemma 5) Let T be mapping on a subset C of a Banach space
X. Assume that T is a C mapping. Then for every x, y ∈ C, the following hold.

(ı) ‖Tx− T 2x‖ ≤ ‖x− Tx‖.

(ıı) Either
1

2
‖x− Tx‖ ≤ ‖x− y‖ or

1

2
‖Tx− T 2x‖ ≤ ‖Tx− y‖ holds.

(ııı) Either ‖Tx− Ty‖ ≤ ‖x− y‖ or ‖T 2x− Ty‖ ≤ ‖Tx− y‖.

As an extension of Lemma 1.3, we have the following result concerning Cλ1,......,λn
mappings.

Lemma 3.3 Let T be mapping on a subset C of a Banach spaceX and let λ0, ......., λn ∈

(0, 1) and
n∑
i=0

λi = 1. Assume that T is a Cλ1,λ2,.....,λn mapping. Then for every x, y ∈ C,

the following hold.

(ı)
n∑
i=0

λi‖T ix − T i+n(x)x‖ ≤ ‖x − Tn(x)x‖ where n(x) is the integer such that ‖x −

Tn(x)‖ = max{‖x− T (x)‖, ........, ‖x− Tn(x)‖}.

(ıı) If λ0 ≥
1

2
. Then, either

n∑
i=1

λi‖x − T ix‖ ≤ ‖x − y‖ or
n∑
i=1

λi‖T ix − T i+n(x)x‖ ≤

‖Tn(x)x− y‖

(ııı) If λ0 ≥
1

2
. Then either

n∑
i=0

λi‖T ix− T iy‖ ≤ ‖x− y‖ or

n∑
i=0

λi‖T ix− T i+n(x)y‖ ≤

‖Tn(x)x− y‖+
n∑
i=0

λi‖T i+n(x)x− T i+n(x)y‖.

Proof. (ı) Let x ∈ C. Assume that n(x) ≥ 1 is the integer for which ‖x− Tn(x)(x)‖ =
max{‖x− T (x)‖, ........, ‖x− Tn(x)‖}. Thus from the inequality

n∑
i=1

λi‖x− T ix‖ ≤ ‖x− Tn(x)x‖

it follows that
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n∑
i=0

λi‖T ix− T i+n(x)x‖ ≤ ‖x− Tn(x)x‖

(ıı) Arguing by contradiction and assume that

n∑
i=1

λi‖x− T ix‖ > ‖x− y‖ and
n∑
i=1

λi‖T ix− T i+n(x)x‖ > ‖Tn(x)x− y‖

Hence, it follows that

‖x− Tn(x)x‖ ≤ ‖x− y‖+ ‖Tn(x)x− y‖

<

n∑
i=1

λi‖x− T ix‖+

n∑
i=1

λi‖T ix− T i+n(x)x‖

By using (ı), it follows that

‖x− Tn(x)x‖ < 2(1− λ0)‖x− Tn(x)x‖

Since λ0 ≥
1

2
we get a contradiction.

(ııı) follows immediately from (ıı). Indeed, if
n∑
i=1

λi‖x− T ix‖ ≤ ‖x− y‖, the fact that

T is a Cλ1,λ2,.....,λn mapping, we get that
n∑
i=0

λi‖T ix− T iy‖ ≤ ‖x− y‖.

Now if

n∑
i=1

λi‖T ix− T i+n(x)x‖ ≤ ‖Tn(x)x− y‖, by the triangular inequality and using

(ı) we obtain that

n∑
i=0

λi‖T ix− T i+n(x)y‖ ≤
n∑
i=0

λi‖T ix− T i+n(x)x‖+

n∑
i=0

λi‖T i+n(x)x− T i+n(x)y‖

≤ ‖x− Tn(x)x‖+
n∑
i=0

λi‖T i+n(x)x− T i+n(x)y‖

Remark 3.1 As it was indicated above, Lemma 1.3 is a particular case of Lemma 1.4
by taking n = 1 and n(x) = 1 for all x ∈ C.

T be a mapping on a subset C of a Banach space X. We denote by F (T ) the set of
fixed points of T .

Lemma 3.4 Let T be mapping on a subset C of a Banach spaceX and let λ0, ......., λn ∈

(0, 1) with λ1 > 0 and
n∑
i=0

λi = 1. Assume that T is a Cλ mapping. Let P is the real

polynomial given by

P (x) = λ0 + ....+ λnx
n.

Assume that for every x0 ∈ F (P (T )), the first alternative in (ııı) of Lemma 1.3 holds
for all x, y ∈ O(x0). Then F (T ) = F (P (T )).
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Proof. If x0 ∈ F (T ), it’s clear that x0 ∈ F (P (T )). Now assume that x0 ∈ F (P (T ))
and we denote by

δ = max{‖T ix− T jx‖, i, j = 0, ...., n, i 6= j}.

The fact that the first alternative of the assertion (ııı) in Lemma 1.3 holds for every
x, y ∈ O(x0) implies the existence of a smallest integer m0 ≥ 1 such that δ = ‖x0 −
Tm0x0‖. Assume that δ > 0. It is easy to write x0 under the form

x0 = αTx0 + (1− α)z.

where z ∈ conv{T 2x0, ....., T
nx0}. It follows that

δ = ‖x0 − Tm0x0‖ ≤ ‖αTx0 + (1− α)z − Tm0x0‖.

≤ α‖Tx0 − Tm0x0‖+ (1− α)‖z − Tm0x0‖.

This proves that δ ≤ ‖Tx0−Tm0x0‖ ≤ ‖x0−Tm0−1x0‖ which is a contradiction if m0 >
1. Hence m0 = 1, also here we obtain a contraction since we get δ ≤ ‖Tx0− Tx0‖ = 0.
Hence necessarily δ = 0 and Tx0 = x0 which proves that x0 ∈ F (T ) which is the desired
result.

Remark 3.2 Let T be mapping on a subset C of a Banach space X. Assume that T
is a Cλ mapping. If for every x0 ∈ C and let m0,m1(m0 < m1) the smallest integers
such that δ = ‖Tm0x − Tm1x‖ = max{‖T jx − T kx‖}, j, k = 0, 1, ....n. Then by (ı) of
Lemma 1.3, necessarily m1 6= m0 + 1.

Proposition 3.2 Let T be mapping on a subset C of a Banach space X and let

λ0, ......., λn ∈ (0, 1) with λ1 > 0 and
n∑
i=0

λi = 1. Assume that T is a Cλ1,λ2,.....,λn

mapping which has a fixed point. Then the mapping
n∑
i=0

λiT
i is quasinonexpansive.

Proof. If x0 a fixed point for T , then for every integer i ≥ 1, x0 is a fixed point for T i,
then for x ∈ C, since

n∑
i=1

λi‖x0 − T ix0‖ = 0 ≤ ‖x0 − x‖

The fact that T is a Cλ1,λ2,.....,λn mapping gives that

‖x0 −
n∑
i=0

λiT
ix‖ = ‖

n∑
i=0

λiT
ix0 −

n∑
i=0

λiT
ix‖

≤ ‖x− x0‖

which is the desired result.

Proposition 3.3 Let T be mapping on a subset C of a Banach space X and let

λ0, ......., λn ∈ (0, 1) with λ1 > 0 and
n∑
i=0

λi = 1. Assume that T is a Cλ1,λ2,.....,λn

mapping.
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(ı) Then the set F (T ) is closed.

(ıı) Assume that C is convex and the Banach space X is strictly convex. If F (T ) =
F (P (T )), then F (T ) is convex.

P (x) = λ0 + .......+ λnx
n.

Proof. Let (xn) be a sequence in F (T ) converging to some x0 ∈ C. Thus (xn) ⊆ F (T k)

for all integer k = 2, ...., n. Since
n∑
i=1

λi‖xn − T ixn‖ = 0 ≤ ‖xn − x0‖ for n ∈ N. The

fact that T is a Cλ1,λ2,.....,λn mapping implies that

Then

lim sup
m−→∞

n∑
i=0

λi‖T ixm − T ix0‖ ≤ lim sup
m−→∞

‖xm − x0‖ = 0.

Since λ1 > 0, it follows that for i = 1, we get

lim sup
m−→∞

‖xm − Tx0‖ = 0.

Hence, the sequence {xn} converges to Tx0 which gives that Tx0 = x0.

(ıı) Let x, y ∈ F (T ) = F (P (T )) with x 6= y, put z = λ1x + (1 − λ1)y ∈ C. Thus we
have

‖x− y‖ ≤ ‖x− P (T )(z)‖+ ‖P (T )(z)− y‖

≤
n∑
i=0

λi‖x− T i(z)‖+
n∑
i=0

λi‖y − T i(z)‖.

=

n∑
i=0

λi‖T ix− T i(z)‖+

n∑
i=0

λi‖T iy − T i(z)‖.

Since T is a Cλ1,....,λn mapping and
n∑
i=1

λi‖x − T i(x)‖ =
n∑
i=1

λi‖y − T i(y)‖ = 0. It

follows that
n∑
i=0

λi‖T ix− T i(z)‖ ≤ ‖x− z‖ and

n∑
i=0

λi‖T iy − T i(z)‖ ≤ ‖y − z‖.

This implies that

‖x− y‖ ≤ ‖x− P (T )(z)‖+ ‖P (T )(z)− y‖ ≤ ‖x− z‖+ ‖y − z‖.

Since X is strict convex, there exists λ2 ∈ [0, 1] such that P (T (z)) = λ2x + (1− λ2)y.
A similar argument as above shows that

(1− λ1)‖x− y‖ = ‖P (T )(x)− P (T )(y)‖ ≤ (1− λ2)‖x− y‖.

and

λ2‖x− y‖ = ‖P (T )(x)− P (T )(y)‖ ≤ λ1‖x− y‖.

So we obtain 1 − λ2 ≤ 1 − λ1 and λ2 ≤ λ1 which gives that λ1 = λ2. Consequently,
z ∈ F (P (T )) = F (T ) which is the desired result.
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4 Convergence of Kirk’s process

This section is devoted to the study of Kirk’s process and to extend some of results
given in [13].

Lemma 4.1 Let T be mapping on a convex subset C of a uniformly convex Banach

space X and let λ0, ......., λn ∈ (0, 1) with λ1 > 0 and

n∑
i=0

λi = 1. If T has at least

a fixed point in C and T i is a Cλi mapping for every integer i ≥ 1. Then for every
x0 ∈ C, the sequence {xn}n≥1 defined by Kirk’s process is an approximate fixed point

sequence for the mapping S = P (T ) =
n∑
i=0

λiT
i.

Proof. For x0 ∈ C. Define the sequence {xn} by xn+1 =
n∑
i=0

λiT
i(x0). Assume that

z is a fixed point for T in C. Then z is a fixed point for the mappings T i for every
integer i = 2, ......, n. Thus

‖xn+1 − z‖ = ‖
n∑
i=0

λiT
i(xn)−

n∑
i=0

λiz‖

On the other hand, since for every integer i ≥ 1, we have

λi‖T i(z)− z‖ = 0 ≤ ‖z − xn‖

It follows that

‖T i(xn)− T iz‖ ≤ ‖z − xn‖

Hence
n∑
i=0

λi‖T i(xn)− T iz‖ ≤
n∑
i=0

λi‖xn − z‖ = ‖xn − z‖.

which proves that {‖xn − z‖} is a decreasing sequence. Then lim
n−→∞

‖xn − z‖ = l ≥ 0.

Thus

S(xn)− z =
n∑
i=0

λiT
i(xn)− z.

= λ0(xn − z) + (1− λ0)yn.

such that

yn = 1
(1−λ0)

n∑
i=1

λi(T
i(xn)− z).

Since

‖T i(xn)− z‖ = ‖T i(xn)− T i(z)‖ ≤ ‖xn − z‖.
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Moreover, since
n∑
i=0

λi = 1, we get lim sup ‖zn‖ ≤ l. Afterwards, the fact that lim
n−→∞

‖xn−

d‖ = l, lim
n−→∞

‖xn+1 − d‖ = l.

The uniform convexity of the space X implies that

lim
n−→∞

‖xn − z − yn‖ = 0.

Since S(xn) − xn = xn+1 − xn = (1 − λ0)(xn − z − yn) and lim
n−→∞

‖xn − z − yn‖ = 0.,

we obtain

lim
n−→∞

‖xn+1 − xn‖ = 0.

which is the desired result.

Lemma 4.2 Let T be compact continuous mapping on a uniformly convex Banach

space X and let λ0, ......., λn ∈ (0, 1) with λ1 > 0 and
n∑
i=0

λi = 1 and T i is a Cλi

mapping for every integer i ≥ 1. Assume that the following holds:

(ı) T has at least one fixed point,

(ıı) For every z0 ∈ F (P (T )), the first alternative in (ııı) of Lemma 1.3 holds for all
x, y ∈ O(z0).

Then for each x0 ∈ X the sequence {Sn(x0)} converges to a fixed point of T .

Proof. Lemma 1.5 shows that F (T ) = F (P (T )). Moreover, from Lemma 2.1, we
deduce that S is asymptotically regular, now the rest of the proof is the same as that
given in Corollary of [13].

Definition 4.1 A mapping T : C −→ C is said to be demiclosed at y ∈ C if Tx = y
whenever (xn) ⊂ C with xn converges weakly to x and Txn −→ y. T is said to be
demiclosed if T is demiclosed at any point of C.

By adapting the same techniques in the proof of Theorem 3 in [13] we obtain the
following result.

Proposition 4.1 Let T : C −→ C be a mapping on a closed bounded convex subset
of a uniformly convex Banach space X and let λ0, ......., λn ∈ (0, 1) with λ1 > 0 and
n∑
i=0

λi = 1 and T i is a Cλi mapping for every integer i ≥ 1. Assume that the following

holds:

(ı) T has at most one fixed point z0 ∈ C,

(ıı) the mapping I − S is demiclosed,

(ııı) For every z0 ∈ F (P (T )), the first alternative in (ııı) of Lemma 1.3 holds for all
x, y ∈ O(z0).

Then for each x0 ∈ C the sequence {Sn(x0)} converges weakly to z0 ∈ C.
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