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Abstract: The approach adopted in this paper focuses on the faults prediction in 

asynchronous machines. The main goal is to explore interesting information regarding 

the diagnosis and prediction of electrical machines failures by the use of a Bayesian 

graphical model. The Bayesian forecasting model developed in this paper provides a 

posteriori probability for faults in each hierarchical level related to the breakdowns 

process. It has the advantage that it can give needed information’s for maintenance 

planning. A real industrial case study is presented in which the maintenance staff 

expertise has been used to identify the structure of the Bayesian network and completed 

by the parameters definition of the Bayesian network using historical file data of an 

induction motor. The robustness of the proposed methodology has also been tested. The 

results showed that the Bayesian network can be used for safety, reliability and planning 

applications. 
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1. Introduction 

In a concept evolution, corrective maintenance has become a disadvantage 

with regard to preventive maintenance. This preventive maintenance must make 

it possible to avoid faults of equipment in use. The cost analysis must highlight 

a gain in relation to the faults that it avoids. To implement this type of 

maintenance on vital electric motors, monitoring systems have been put in place 

[1]. Through these systems, preventive visits make it possible to accumulate 

information relating to the behaviour of the motor. The majority of vital electric 

motors are monitored in real time. Conditional based maintenance of large 
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electric motors is therefore maintenance depending on experience and involving 

information collected in real time. Conditional based maintenance is 

characterized by the highlighting of the weak points of the induction motor. 

Depending on the case, it is desirable to put them under surveillance and, from 

there, to decide on an intervention when a certain threshold is reached. 

Indicators are initially defined for monitoring the induction machine. These 

indicators depend mainly on the type of constraint. Besides electrical 

constraints, thermal stresses, mechanical stresses and environmental conditions, 

improper operation can affect the life of the induction motor. The most 

important parts of the motor to be inspected are: the stator windings, the rotor 

winding, and the mechanical part of the rotor. The vibration analysis, the 

analysis of the signature of the electric current, and the acoustic analysis are 

mainly the techniques used for the monitoring and the diagnosis of induction 

motors. In recent decades these techniques have been improved by the use of 

artificial intelligence methods. This hybridization of techniques has shown 

promising results and made the conditional maintenance of induction motors 

more efficient.   

Adaptive Neuro-Fuzzy Inference System (ANFIS) have been used to analyse 

vibration signals of a faulty induction motor [2]. In this study, the correlation 

between the motor fault types and their corresponding characteristic frequency 

spectra using the Adaptive Neuro-Fuzzy Inference System show that the 

developed system is very performing and robust for fault diagnosis. In another 

research work [3], the technical orbits Park was implementing, strengthened by 

the application of the Fourier transforms to the Park vector of the stator current 

allowed the identification of the unbalance defect at low frequency. Other re-

searchers have used both vibration and current signature for fault prediction in the 

induction motor. In [4] it was presented a contribution in which multiclass support 

vector machine (MSVM) algorithms have been trained at various operating 

conditions using the radial basis function kernel and tested for the same operating 

conditions. The obtained results are in the form of percentage fault prediction. 

Other works have been based on the acoustic signature for the isolation, diagnosis 

and early detection of electrical and mechanical faults [5, 6, 7]. 

Recent contributions have been developed in the last years based on 

probabilistic and statistical analysis. Fuzzy algorithm-based induction motor 

fault diagnosis systems have been designed in [8]. The main objective of this 

algorithm is to evaluate the probability of various types of motor faults. In a 

similar contribution [9], the authors tried to show how to construct the 

hierarchical fuzzy inference nets with the propagation of probabilities 

concerning the uncertainty of faults. A probabilistic model for induction 

machines was developed by [10]. Based on measuring the current of a healthy 

induction motor a recursive probability density estimation algorithm was 
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proposed for real-time fault detection. All the models developed and the 

techniques used are specific to certain specific situations. It also does not allow 

the detection and diagnosis of all faults at the same time and give information 

on isolated faults. The diagnosis is a complex procedure especially in the case 

of simultaneous faults. However, the only way to better diagnose the induction 

motor is to exploit feedback and information’s about fault occurrence in the 

equipment.  

This paper deals with the fault analysis of a vital induction motor. The main 

objective of the work was to investigate stator element problems in the high 

power motor. The proposed method relies on two main phases: The first phase 

is the definition of causal links between causes and consequences. This will 

allow defining the probabilities of each fault in the induction machines. The 

second phase of the study concerns the definition and the implementation of an 

appropriate corrective maintenance program to combat the issue.  

The paper is organized as follows. Section 2 is dedicated to present the 

Bayesian approach. In section 3 we describe steps to build a Bayesian graphical 

model. Before ending by giving some conclusions in section 5, section 4 is 

devoted to the application of the developed Bayesian network in a real case 

study. 

2. The Bayesian approach 

Probabilistic inference has been widely used in recent years to solve a 

variety of problems. One of the best-known techniques is Bayesian inference. It 

is used in diagnosis and prediction initially in the field of medicine and is 

currently widely used in the industrial field. Bayesian reasoning is the basis for 

solving reasoning problems under uncertainty and in the presence of incomplete 

information. These tools have also shown a great interest in the field of 

maintenance, reliability and safety. 

Bayesian networks are graphical models, called also causal networks or 

probabilistic networks. They combine graph theory and probability theory [11]. 

To solve problems related to diagnosis we will give preference to the Bayesian 

networks since they are simple and easily readable and understandable by a 

non-specialist. The second advantage is the use of new information. In the 

presence of new information, the Bayesian network takes over the calculation of 

the branch concerned by this new information only. This is something that 

makes Bayesian network easy to calculate and therefore minimizes errors. 

Another advantage of Bayesian networks is the ability to make inference for 

diagnosis and prediction from the same model. A Bayesian network is a 

compact tool that allows conducting at a time, quantitative and qualitative fault 

analysis. 
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Bayesian network consists mainly of nodes and a set of edges. Discrete or 

continuous random variables are modelled by the nodes. The edges define the 

causal relationships between the variables. Inference in a Bayesian network 

represents the calculation of probabilities. Two types of nodes exist in Bayesian 

graphical models: parent nodes and children. For child nodes without parents 

the a priori probabilities are defined by the modeller, while for the parent nodes 

the probabilities are conditional and they are calculated by the Bayes theorem 

given by the formula (1). 

 𝑃(A B⁄ ) =  
P(A).P(B A⁄ )

P(B)
 (1) 

Example: 

The measurement of vibration and electric current are two means of 

controlling the state of induction motors widely used in conditional based 

maintenance. In this example, and in a maintenance workshop, the expert made 

the following observations in case of similar induction motors, which work in 

the same conditions: 

- If an induction motor has a current consumption higher than the rated 

current (electrical fault), then for 2 motors out of 5 there are reported 

abnormal vibrations; 

- If a motor does not show electrical fault, then 4 motors out of 5 do not 

show any vibration. 

- Half of the motors from the park present electrical fault. 

Calculate the probability that, if a motor has a vibration, then it also presents 

electrical fault? 

 

By applying formula (1):  

𝑃(𝐵) = 𝑃(𝐴) × 𝑃(𝐵 𝐴⁄ ) + 𝑃(�̅�) × 𝑃(𝐵 �̅�⁄ ) =
1

2
×

2

5
+

1

2
×

1

5
=

3

10
 

𝑃(𝐴 𝐵⁄ ) =
𝑃(𝐴) × 𝑃(𝐵 𝐴⁄ )

𝑃(𝐵)
=

1
2

×
2
5

3
10

=
2

3
 

 

A posteriori probabilities of the causes: The 2/3 of the motors presenting 

vibration, presents also electrical fault. This result denotes a clear impact of the 

electrical fault on the evolution of the vibration in the engine. From uncertain to 

certain environment the expert can make decision that the vibration in the motor 

is the consequence of an electrical fault.   

Bayesian network is an acyclic oriented graph. It prohibits dependencies 

children nodes towards parent nodes. According to the conditional indepen-

dence and the chain rule, BNs represent the joint probability distribution P(V1, 
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V2,…, Vn) where C(Vi) are the parents of Vi or causes of Vi in the Bayesian 

network. In a general context, a network is called Bayesian if it realizes Markov 

factorization condition. So a Bayesian network is defined by: 

  𝑃(V1, V2,· · · , 𝑉𝑛) = ∏ 𝑃(𝑉𝑖
𝑛
𝑖=1  /𝐶𝑉𝑖)) (2) 

3. Bayesian graphical model design 

For a long time, researchers started using real-time maintenance monitoring 

data, collected from sensors, for predictive maintenance and health monitoring 

of rotating machines. However, there is a lack of prior studies that investigated 

the forecasting of faults probability. In this paper, we studied three phase 

induction machines which are widely used in industry. Some issues have not 

explicitly been addressed in prior studies such as: the possibility of fault 

predicting in induction machine using the historical file of the machine and data 

collected from trend curves given by the automatic monitoring system.  Another 

issue is the opinion of the maintenance expert regarding the faults which can 

occur, and their relationships. The objective of the Bayesian approach is to 

optimize the availability and avoid accidental breakdowns. We aim to minimize 

the probability of fault or any incident that affects the reliability of the machine. 

As discussed in the previous section, a Bayesian network consists of a 

structure and parameters. To construct the structure of the Bayesian network it 

is often necessary to call on an expert. For our case, a bibliographic 

investigation allowed us to construct the structure of the network given in Fig. 

1. The logic is to look for the causal links between the basic events representing 

in general the causes and the intermediate events representing the consequences. 

It should be noted here that the hierarchical level of the network structure 

reflects the degree of fault analysis and fault correction means. The 

consequence of a cause can itself be a cause for another consequence. 

Increasing the hierarchy of the scenarios of the breakdown gives more precision 

to the diagnosis. The top event represents in general the fault of the element 

concerned by the study, for our case study, the stator.  

Bayesian network parameters represent a priori probabilities and conditional 

probabilities. The exploitation of the experience feedback by the use of the 

information recorded in the historical files of the motor are at the base of the 

definition of the parameters of the Bayesian network. For conditional 

probabilities the causality is strict which means that the presence of a cause 

inevitably leads to the fault appearance. Also, it means that each conditional 

probability is equal to 1.  
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Figure 1: The Bayesian network modelling the fault prediction of stator element. 

 

For causes which represent the child variables in the Bayesian network of 

Fig. 1, a priori probabilities are given. For the consequences which represent the 

parent variables the probabilities are conditional and they are calculated by 

inference in the Bayesian network. For the stator fault analysis of the induction 

motor, it is possible to define 17 probable causes, and 7 intermediate 

consequences that can cause faults in the stator of the induction motor. The 

causes are: unbalanced magnetic pull, winding motion, unbalanced power 

supply, overloading, rotor strike, crushing of the turn by the carcass, thermal 

cycling, an abrasion of the insulation, laminations slack slot wedges, shock or 

vibration, damage to insulation during insertion of windings, frequent starting, 

extreme temperature, extreme humidity, overvoltage, slacking of coils, and 

slack joints. The consequences are: vibration, stator carcass fault, insulation 

fault, stator turn-turn faults, stator phase-phase faults, displacement of 

conductors, and connectors failure. 

4. Model application 

The induction motor studied in this article is three-phase. The technical 

characteristics of this device are given by the nameplate of Table 1. The role of 

the induction machine is very important and its availability is essential. It is a 

motor used by a company involved in the field of petroleum engineering.  
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Table 1: The nameplate of the motor. 

380 volts three-phase induction motor 

Type   M3KP280SMB4B3 

Power  90 kW 

Rated load current  166 A 

Speed   1491 rot/min 

Frequency  50Hz 

COS Φ  0.87 

Insulation Class  F 

Tmax 40°C 

3 PHASE  Delta connecte 

The diameter of the end of the motor shaft 75mm. 

Motor shaft length   140mm 

 

In order to exploit the experience feedback and to obtain a permanent update 

of the predictive maintenance plan of the induction motor, the priorities will be 

defined according to the determination of the most likely faults on the stator of 

the machine. For reliable prediction of faults, the starting information (model 

inputs) must be accurate. A priori probabilities given in Table 2. are defined on 

the basis of the factual information, on the one hand, and the more or less 

complex measurement results recorded in the historical files, on the other hand. 

Table 2: The inputs of the model or a priori probabilities.  

Causes Code A priori probabilities 

Unbalanced magnetic pull  111 0.088 

Winding motion  112 0.028 

Unbalanced power supply  113 0.1 

Over loading  114 0.001 

Rotor strike  115 0.001 

Crushing of the turn by the carcass  116 0.023 

Thermal cycling  117 0.001 

An abrasion of the insulation  118 0.079 

Laminations slack slot wedges  119 0.001 

Shock or vibration  120 0.045 

Damage to insulation during insertion of windings  121 0.001 

Frequent starting  122 0.075 

Extreme temperature  123 0.001 

Extreme Humidity  124 0.045 

Overvoltage 125 0.001 

Slacking of coils 126 0.001 

Slack joints 127 0.001 
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In the Bayesian approach used in this work, the relation between causes and 

effects is given by a conditional probability table. Example of the conditional 

probability table of the consequence 17 which represents Connectors Failure is 

given by Table 3.  

Table 3: Conditional probability table for variable “Connectors Failure”. 

 120 True False 

 127 True False True False 

17 True 1 1 1 0 

 False 0 0 0 1 

 

It is possible to update information by inference in the Bayesian network of 

Fig. 1. The a posteriori probabilities computed from the Bayesian network are 

given in Table 4.  
An example of calculation is given for the variable “Connectors Failure” as 

follows: 

P (17= True) =  

P (17= True/120= True, 127= True)  P (120= True)  P (127= True) + 

P (17= True/120= True, 127= False)  P (120= True)  P (127= False) + 

P (17= True/120= False, 127= True)  P (120= False)  P (127= True) + 

P (17= True/120= False, 127= False)  P (120= False)  P (127= False) 

 

P (17= True) = (1  0.045  0.001) + (1  0.045  0.999) + (1  0.955 0.001) 

+ (0  0.955  0.999)  

 

P (17= True) = 0.000045 + 0.044955 + 0.000955 + 0 = 0.045955 

Table 4: The outputs of the model or a posteriori probabilities. 

Element Fault Code 
A posteriori 

probabilities 

Stator  1 0,39925971 

 Vibration 11 0,20377724 

 Stator carcass fault  12 0,14239256 

 Insulation fault  13 0,11759662 

 Stator turn-turn faults  14 0,089798138 

 Stator phase-phase faults  15 0,1017991 

 Displacement of conductors  16 0,116625 

 Connectors Failure  17 0,045955 

 

From these a posteriori probabilities, it is possible to make decisions on the 

corrective actions to be taken in a certain environment. These diagnostic results 
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also provide the ability to organize actions in order of priority. It should be 

noted that the probability of having a defect in the stator is 0.39%, which is 

significant and the main fault in descending order are respectively: Vibration, 

Stator carcass fault, Insulation fault, Displacement of conductors, Stator phase-

phase faults, Stator turn-turn faults, and finally Connectors Failure. 

5. Conclusion 

In this work a Bayesian network model has been introduced as a mean to 

enable maintenance staff to assess the probability of faults and the priorities of 

corrective actions. By this, the company can consider a first step to incorporate 

an Information System into their supervision system and thus actively 

contribute to a reliable monitoring system. The integration of the developed 

Bayesian information system might have a significant impact on the existing 

supervision system and might thus lead to increase the availability of vital 

machines. Also, the integration of the Bayesian information system minimizes 

the costs related to accidental damages and other inconveniences caused by 

these damages. This paper also shows a concept evolution for predictive 

maintenance. In addition to decision making support, it is possible to predict 

and anticipate faults rather than real-time detection. It is found that faults could 

be identified correctly and decisions could be made with certainty. 
The model structure is standard for all induction motors. The parameters are 

specific for each machine. However, a weighting coefficient is necessary for the 

definition of intervention priorities and in order to make the presented approach 

more reliable. This coefficient must take into consideration the criticality of the 

machine. A FMECA (Failure Mode Effects and Criticality Analysis) study can 

be used to define this coefficient. 

We are going to address this approach in a future paper which will 

demonstrate the usefulness of the Bayesian methodology in rotor fault 

prediction of vital induction motors. Such an extension of this research is 

important for ensuring adequate assessment of the probability of each fault, 

whilst taking into account the influence of other monitoring parameter on the a 

posteriori probability evaluation. 

References 

[1] Gill, P. “Electrical power equipment maintenance and testing”, 2nd ed. Taylor & Francis 

Group, LLC., 2009. 

[2] Moghadasian, M., Shakouhi, S. M., and Moosavi, S. S. “Induction motor fault diagnosis 

using ANFIS based on vibration signal spectrum analysis”, in Proc. 3rd International 

Conference on Frontiers of Signal Processing (ICFSP). Paris, France, 2017. 



76 A. Ramdane, A. Lakehal, R. Kelaiaia and S. Saad

 

  

[3] Bouras, A. Bouras, S. and Kerfali, S. “Prediction of the mass unbalance of a variable speed 

induction motor by stator current multiple approaches”, Turkish Journal of Electrical 

Engineering & Computer Sciences., vol. 26, pp. 1056–1068, 2017. 

[4] Gangsar, P., and Tiwari, R., “Comparative investigation of vibration and current monitoring 

for prediction of mechanical and electrical faults in induction motor based on multiclass-

support vector machine algorithms”, Mechanical Systems and Signal Processing, vol. 94, pp. 

464–481, 2017. 

[5] Akçay, H., Germen, E., and Turkay, S. “Induction Motor Identification from Acoustic 

Noise Spectrum by a Covariance Subspace Algorithm”, in Proc. IEEE 14th International 

Conference on Control and Automation (ICCA). Anchorage, AK, USA, 2018. 

[6] Glowacz, A. “Acoustic based fault diagnosis of three-phase induction motor”, Applied 

Acoustics, vol. 137, pp. 82–89, 2018. 

[7] Hassan, O.E., Amer, M., Abdelsalam, A.K., and Williams, B.W. “Induction motor broken 

rotor bar fault detection techniques based on fault signature analysis – a review”, IET 

Electric Power Applications, vol. 12, no. 7, pp. 895–907, 2018. 

[8] Chang, H., Kuo, C., Hsueh, Y., Wang, Y., and Hsieh, C. “Fuzzy-based fault diagnosis 

system for induction motors on smart grid structures”, in Proc. IEEE International 

Conference on Smart Energy Grid Engineering (SEGE). Oshawa, ON, Canada, 2017. 

[9] Dong, M., Cheang, T., Booma, D.S., and Chan, S. “Fuzzy-expert diagnostics for detecting 

and locating internal faults in three phase induction motors”, Tsinghua Science and 

Technology, vol. 13, no. 6, pp. 817–822, 2008. 

[10] Cho, H.C., Kim, K. S., Song, C.H., Lee, Y.J., and Lee. K.S. “Online fault detection and 

diagnosis algorithm based on probabilistic model for induction machines”, in Proc. 2008 

SICE Annual Conference. Tokyo, Japan, 2008. 

[11] Darwiche, A. “Modeling and reasoning with Bayesian networks”, Cambridge University 

Press, 2009. 


