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ABSTRACT: Motivated by the idea which has been introduced by M. Haiour and
S.Boulaaras (Proc. Indian Acad. Sci. (Math. Sci.) Vol. 121,No. 4, November
2011,pp.481-493), we provide a maximum norm analysis of Euler combined with
finite element Schwarz alternating method for a class of parabolic equation on with
nolinear source terms two overlapping subdomains with nonmatching grids. We
consider a domain which is the union of two overlapping subdomains where each
subdomain has its own independently generated grid. The two meshes being mu-
tually independent on the overlap region, a triangle belonging to one triangulation
does not necessarily belong to the other one. Under a stability analysis on Euler
scheme which given by our work in (App. Math. Comp., 217, 6443-6450 (2011)), we
establish, on each subdomain, an optimal asymptotic behavior between the discrete
Schwarz sequence and the asymptotic solution of parabolic differential equations.
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1. Introduction

This paper deals with the error analysis in the maximum norm, in the context
of the nonmatching grids method, of the following evolutionary equation: find
uwe L*(0,T; Hy (2)) N C? (0, T, H~' (22)) solution of

0

a—?—Au—i—au:f(u), in ¥,

u=01in I'/Ty, (1.1)
g—:; = in Lo, u(.,0) = ug, in

where ¥ is a set in R? x R defined as X = Q x [0, 7] with T"< 400, where Q is a
smooth bounded domain of R? with boundary T.
The function o € L™ (§2) is assumed to be non-negative satisfies

a<pB, >0 (1.2)

The function f (-) is a nonlinear and Lipschitz functions with Lipschitz constant
¢ and satisfying the following condition

feL?(0,T,L*(Q)nC (0,7, H 1 (Q))
(1.3)
c < p.

Let (.,.)q be the scalar product in L? (€2) and (.,.)p, be the scalar product in
L? (Ty), where 'y is the part of the boundary defined in [25] as impulse control
problem:
FO:{:c€8Q:FsuchthatV§ >0, :E+§§ZQ}.

Schwarz method has been invented by Herman Amandus Schwarz in 1890. This
method has been used to solve the stationary or evolutionary boundary value prob-
lems on domains which consists of two or more overlapping sub-domains (see [1],
[9], [24], [26]). We refer to ([1], [9]-[11]), and the references therein for the analysis
of the Schwarz alternating method for elliptic obstacle problems and to the pro-
ceedings of the annual domain decomposition conference beginning with [17]. For
results on maximum norm error analysis of overlapping nonmatching grids methods
for elliptic problems we refer, for example, to [6].

In [9], we studied the overlapping domain decomposition method combined with
a finite element approximation for elliptic equation related for Laplace operator
A, where on uniform norm of an overlapping Schwarz method on nonmatching
grids has been used, where we proved that the discretization on every subdomain
converges on uniform norm norm. Furthermore, a result of asymptotic behavior
in uniform norm has been given. In this paper, similar to that in [9], we extend
the last work for evolutionary equation with mixed boundary conditions, where we
provide a maximum norm analysis of a theta scheme combined with finite element
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Schwarz alternating method for a linear parabolic equations on two overlapping
subdomains with nonmatching grids. We consider a domain which is the union
of two overlapping subdomains where each subdomain has its own independently
generated grid. The two meshes being mutually independent on the overlap region,
a triangle belonging to one triangulation does not necessarily belong to the other
one. Under a stability analysis on the theta scheme which given by our work in
[3], we establish, on each subdomain, an optimal asymptotic behavior between
the discrete Schwarz sequence and the asymptotic solution of parabolic differential
equations with respect the nonlinearity of the right hand side.

The outline of the paper is as follows: In section 2, we introduce some necessary
notations, then we prove a full-discrete weak formulation of the presented problem
using Euler time scheme combined with a finite element method. In section 3 we
state a continuous alternating Schwarz sequences and define their respective finite
element counterparts in the context of nonmatching overlapping grids. Section 4
is devoted to the asymptotic behavior of the method.

2. The discrete parabolic equation

The problem (1.1) can be reformulated into the following continuous parabolic
variational equation: find u € L? (0,7, Hg (2)) solution of

(%,QQ +a(u,v) = (f (1) ,0)q + (9, 0)r,

u=0in /T,
(2.1)
g—:; = in I'p,

u (z,0) = up in £,
where a (.,.) is the bilinear form defined as:

a(u,u) = (Vu, Vu)g — (au, u)q (2.2)
2.1. The spatial discretization

We discretize the problem (2.1) with respect to time by using Euler scheme.
Therefore, we search a sequence of elements u* € Hg (2) which approaches u (¢),
ti, = kAt, with initial data u® = wo.

Thus, we have for k =1,...,n

(“ka:kil’U) +a(uf,v) = (f (u*),0) + (o, 0)p,

uw=01in I'/T,
(2.3)
g—z = in I,

u(z,0) =uo in Q.
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2.2. The spatial discretization

Let €2 be decomposed into triangles and 75 denote the set of all those elements
h > 0 is the mesh size. We assume that the family 7, is regular and quasi-uniform.
We consider the usual basis of affine functions ¢;, | = {1,...,m (h)} defined by
¢; (My) = ;5 where M is a vertex of the considered triangulation. We introduce
the following discrete spaces V" of finite element

ve L?(0,T,H () NC(0,T,Hj (Q)), such that
vh = v k€ P, K €71y, and u(.,0) =wug in Q, (2.4)

u=01inT'/To, u(x,0) =ug in Q.
where 7, is the usual interpolation operator defined by
- m(h)
ve L (0,7, Hy ()N C(0,T,Hy (Q)), rav=>_v(M) g, (x) (2.5)
i=1
and P denotes the space of polynomials with degree at most 1.

In the sequel of the paper, we shall make use of the discrete maximum principle
assumption (dmp). In other words, we shall assume that the matrices (4),, =
a (¢, ¢s) is M-matrices (cf. [13]).

We discretize in space the problem (2.3), i.e. that we approach the space H{ by
a space discretization of finite dimensional V}, C H}, we get the following discrete
PQVIs.

up — uﬁ_l k k
7 +a (uh,vh) > (f (uh) ,vh) + (‘va)ro ,
un = 0 in /T,
(2.6)
%—1;7]1 =¢in I,
up (x) = upp in Q,
which implies
ujp k k “271
Eavh +a(uhavh) > f(uh)—’—yavh +((10’/U)F07
up = 01in I'/T,
h /To (2.7)
%—fj =g in I,
up () = upo in
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Then, the problem (2.7) can be reformulated into the following coercive discrete
system of elliptic quasi-variational inequalities (EQVIs)

b (uﬁ,vh) = (f (uﬁ) + )\ul,j_l,vh) + (‘va)ro , up e v,
up =0 in T'/Ty,
Dun (2.8)
oy 7 in Io,
ud) (x) = upo in Q,
such that
b (ufl,vh) =A (ufl,vh) +a (ufl,vh) , uZ evh,
1 LT (2.9)
=—=—-=—k=1,..,n.
Atk n et

2.3. An iterative discrete algorithm

As we have chosen before in the iterative semi-discrete algorithm u9 = upo the
solution of the following full-discrete equation

b (up,vn) = (9% vn), va € V", (2.10)

where ¢° is a linear and a regular function.
Now we give the full following discrete algorithm

uf =Tk =1,..,n, (2.11)

where u} is the solution of the problem (2.8).
Let FF=1(w) = f(uf) + Aw, FF1(w) = f(af) + b € L*®(Q) be the
corresponding right-hand sides to the EQVIs.

Lemma 2.1. [¢f. 4,6] Under the previous assumption and the dmp we have, if

FF1(w) 2 F*1 (@)

3

then
uk =0 (P (w) 2 i = 0 (F1 ().

We shall first recall some results related to coercive quasi variational inequalities
that are necessarily in proving some useful qualitative properties.

Proof. The proof of the Lemma is very similar to that in ([7] and [10]) for free
boundary problem. O
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Definition 2.2. QZ is said to be a subsolution for the system of EQVIs (2.8) if

b(Chioe) < (F(Ch) AT 0) + (0r0)r,» Vw8 =1,sm (),

up, =0 in T'/T,
0
ainh =@ in Iy,

ud (x) = upo in Q,

Notation 1. Let X}, be the set of discrete subsolutions. Then, we have the following
theorem.

Theorem 2.3. Under the discrete mazimum principle, the solution of the system
of EQVI (2.8) is the maximum element of Xj,.

Proof. We denote by o+ = max(p,0), ¢~ = max(—,0).

Let wy, € V}, be a solution of the following of the full discrete system of parabolic
quai variational inequalities using Euler time scheme combined with a finite element
spatial approximation (cf. [3,4])

b (wh,Or) = (f (wn) + Awn, 0n) + (@, On)p, » Y0n € Vi,
up, =0 in T'/Ty,
ouy, - (2.12)
— =¢pin
an ¥ 0,
ud (x) = upo in Q,
m(h)
where U, = Y Usp,.
s=1
Since v is a trial function, we choose v, = wy, — vy, and v, > 0. Thus
b(wh, ) < (f (2n) + Awn, ¢,) , (2.13)
that is to say wy, € Xp.
On the other hand; let z; be a subsolution, such that
wp < 2p. (2.14)

Then we have
b(zn, ¢5) < (f (wn) + Awn, @) -

Setting vy, = (25 — wh)Jr > 0 as a trial function. Yields

b (zns (on = wn)™) < (f (zn) + s (21— ) )
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and since wy, is a subsolution too, we have

b (wh, (zn — U}h>+) < (f (zn) + Awp, (2 — U}h>+) ,
Thus, we deduce
b ((zn = wn)*, (2 = wn)*) > 0.
Under the coerciveness of the bilinear, we can get
(zn —wp)T =0.

Therefore
Zh S Wp . (215)

Thus, from (2.14) and (2.15) we obtain zp = wp,. O

Theorem 2.4. see [9] . Under suitable regularity of the solution of problem (1.1),
there exists a constant C' independent of h such that

IG7° — ¢ll < Cn? flog ] (2.16)

Lemma 2.5. (see [20]) Let w € H' (Q) N C (Q) satisfies a (w, ) + A (w,¢) > 0
or all nonnegative ¢ € H* () and w > 0 on T, then w > 0 on Q.

Notation 2. (F* 1, ¢);(FF1,3) be a pair of data and ¢ = I(F*',¢);( =
O(F*=1.%) the corresponding solutions to (2.3) .

Proposition 2.6. Under the previous notation, we have

16 = Cll ooy < max{c|ju® —a*| + AW =t lle—ell 1

Loo(Q) Loo() Loo(T)

(2.17)

Proof. First, putting

=l — A=l ) (a9
then
F* < P4 || e - F*
Loo ()
< F* 4+ max{c Huk — HkHLx(Q) + A Huk*1 - akflubo(m Nl — &HLW(F)}

< FF 4 Ak,

So
b(C"0) <b(¢50) +A(10), forall 20,6 € HY(Q)  (219)
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and thus
b(C"0) <b(ch+uk0) = (F* + b 0).
On the other hand, we have
-3 >00n T (2.20)

So i
(¢ +p—C >0. (2.21)

By using the result of lemma 2.1, we get

~k A _

C +¢—C">00nQ (2.22)
Similarly, interchanging the roles of the couples (F*, o) and (ﬁ k. @k), we get

~k & _

¢ +¢—C¢">0onQ, (2.23)
which completes the proof. O

Remark 2.7. Proposition 2.6 stays true for the discrete case.

Lemma 2.8. ([20]) Let w € Vj,_satisfy b(w*,¢,) > 0 for s = 1,2...,m(h)and
w?* >0 on Tg.then w?* >0 on (Q).

~ ~k ~
Notation 3. (F¥,¢); (F¥, &%) be a pair of data and ¢F = O(F*,): ¢, = O(F*, )
the corresponding solutions to (2.3) .

Proposition 2.9. Let DMP hold, we have

ko k_ ~k k—1 _ ~k—1 ~
HQh - ChHLm(Q) <max{efup @] e —wm e =@l Y-
(2.24)
Proof. The proof is similar to that of the continuous case. O

3. Schwarz Alternating Methods for parabolic equation

We decompose (€2) in two overlapping smooth subdomain € and Q9 such that
2 =y Uy, we denote by 8Qi_the boundary of ; and I'; = 0§2; N Q2; and assume
that the intersection of I'; and I';;i # j is empty. Let

) ve (L2 (0,T,H ()N C(0,T,Hg (2)))

such that v = w; on I';.
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We associate with problem (2.8) the following system: find (u¥,u%) € V}F x Vif
solution to

bi(uf,v) = (F"", v)or + (¥, 0)ro,,
(3.1)
ba(uf,v) = (F" )az + (&%, 0)res.
where
bi(uf,v) = /(vuk.Vvk + au® v*)dx (3.2)
Q
and

uf = u Qi = 1,2
3.1. The Continuous Schwartz Sequences
Let ug be an initialization in Cy (ﬁ) Ji.e., continuous functions vanishing on 92
such that
b(uo,v) = (F*,0). (3.3)

Starting from wy = wp/Q2, we respectively define the alternating Schwarz

sequences (u’f“)on ) such that

k,n
TR= Vl( 2" solves of

bi(uy™ ™, v) = (Ff,v), (3.4)

where
FF=f* (u’f’"ﬂ) + )\u]f_L"+1
kont1 kol oy (Red" )

and (uy™"" )on Qg such that wusg eV, solves

ba(uy ™ v) = (Ff,v), (3.5)
where

ke,n+1 k—1,n+1
Fy = fk (u2 s ) + Ay~

Theorem 3.1. [/] The sequences (uj™'); (uf™), n > 0 produced by the Schwarz
alternating method converge geometrically to a solution u of the elliptic obstacle
problem. More precisely, there exist ki,ka € (0,1) which depend on (21,75) and
(Q2,791) such that for alln >0,

sup ‘uh — u2"+1‘ < 6765 sup ’uh - u?L’ (3.6)
1 Y1

and
sup lup, — u®"| < 660 sup |un —up . (3.7)

Qo Y2
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3.2. The discrete Schwartz sequences

As we have defined before, for i = 1,2, let 7 be a standard regular and quasi-
uniform finite element triangulation in €2;; h;, being the mesh size. The two meshes
being mutually independent §2; €2, a triangle belonging to one triangulation does
not necessarily belong to the other and for every w € C (£2;), we set

s ve (L2(0,T,H} (2)NC(0,T,H} (2)))
such that v = ¢ on g1 NTo2; v =mp, (W) on Ty,

where 75, denote an interpolation operator on I';.

Now, we define the discrete counterparts of the continuous Schwarz sequences
defined in (3.4) and (3.5) .

Indeed, let ugp, be the discrete analog of ug, defined in (3.3), we respectively,

k,n
define by uf;" ™ € Vh(f% ) such that

by (ub" 1 v) = (FF v), Yo € VP n >0 (3.8)
Lt ()
and ug), € Vs such that

by (uby" T v) = (FF,v), Yo € Vh(‘p); n > 0. (3.9)
4. Maximum norm analysis of asymptotic behavior
4.1. Error analysis for the stationary case

We begin by introducing two discrete auxiliary sequences and prove a funda-
mental lemma.

4.1.1. Two auziliary Schwarz sequences. For wgh = ugh, we define the sequences

oo,
oo,n+1 oo,n+1 oco,n+1 (u’2 ' )
wy, and waqy, such that u;, eV solves

by (w3 v) = (FFLv), Yo € Vi >0, (4.1)
oco,n+1
and wyy "t € VQ(hu”” ) solves
by (w1 v) = (FF,v),Yw € V& in >0, (4.2)
respectively. Tt is then clear that w(y ™™ and wyy ™" are the finite element approx-

imation of u*" " and w3 defined in (4.1), (4.2), respectively. Then, as F* (.)

F* (uf’”“) H <A Huf"“‘ , (independent i of n). Therefore,
o0 (o]

making use of standard maximum norm estimates for linear parabolic problems,

we have

is continuous,

up™ — ukm < Ch?|loghl, (4.3)

Loo(82:)




MAXIMUM NORM ANALYSIS OF NGM FOR PARABOLIC EQUATION 11

where C' is a constant independent of both h and n.

Notation 4. From now on, we shall adopt the following notations: |.|; = |.|p o))

2 = Frooa), I = I-llzeeryy » Il = l-llpocqr,), and we set mp, = mhy = 7.

P

4.2. Tterative discrete algorithm

We give our following discrete algorithm

k,n
ubm = Tt =1, W e v,ff? ) (4.4)
where u} is the solution of the problem (2.8) and the first iteration uf is solution
of (3.3).

Proposition 4.1. [5]Under the previous hypotheses and notations, we have the
following estimate of convergence

Ae\”

k,n+1 0o o)

st =] < <ﬁ“) 5 = ang | - (4.5)
Atc . .

Lemma 4.2. Let p = m Then, under assumption (1.2), there exists a con-

stant C independent of both h and n such that

|

Proof. We know from standard error estimate on uniform norm for linear problem
[19] that there exists a constant C' independent of h such that

< Ch? |log h|

i 1—p

oo,n+1 - oo,n+1
i ih

L i=1,2. (4.6)

0 < Ch*logh|. (4.7)

[ *u2||L:(Q)

1
Since 5 <p< 1, then 1 < p/(1—p) and

[[ug — udy ||, < Ch*|logh| <

2
1
pCh |0gh|. (4.8)
I—p

Let us now prove (4.6) by induction. Indeed for n = 1, using the result of Propo-
sition 1, we have in €

k1 k1 k1 Kl kil k1
T A R R
k1l k1l
< ChQ|log‘h|+Hw1 fulhul
ki k1
< Ch2|logh|—|—max{pHu1 —uyp, H Jus = udy ), }-
1
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We then have to distinguish between two cases

ma{p|uf = uli'|| 8 = u]l,} = ofud =it (4.9)
or
masc{p [uf —uly | [Juf — adall;) = [[ud — uall,- (4.10)

(4.9) implies

bt =i < on® poghl+p fub! —ull|
1

’
1

[ ud — uly ||, < p H“’f’l _ u’;#‘ .

then )
H ko1 le Ch? |log h
Uy — Uy, < —.
I—-p

Ch? |log h
o8 — e, < ot o < P17|<;g|

(4.10) implies

Hullcl _ u’fthl < Ch?|logh| + HuS - Ugh”2

< Jlug = udall,
so, by multiplying (4.10) by p we get

k, k,
pubt = bil]| < pCn®oghl + p 1w — uu]l, (4.11)
1

So, p Hulf’l - u’f;jH is bounded by both
1

p0h2| logh| +p HU(Q) - Ugh”g

and
[ = 3 »

this implies that

pHug—Uthz < pCh? [log h| + p ||ug — ugy |, » (4.12)
or
o oghl 4 o8 — 3, < [ — . (113)
that is (4.12) implies
Ch?|logh
g — S|, < LM oshl (4.14)

I—p
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and (4.13) implies

pCh? |log h|
|us —udy ||, > —Y (4.15)
p
It follows that only the case (4.12) is true, that is,
pCh? |log h|
[|ud — uy |, < —Y (4.16)
—p
then
pHu’fl—u’fth < Ch? [log h| + Hug—uthQ
Ch?|logh
< Ch*|logh| + pOR” Jlog h]
I—p
Ch? |log h|
1—p
So, in both cases (4.9) and (4.10), we have
Ch? |log h|
k1 ok
— Uy, < — 4.17
Hul Yin Hl - 1—p ( )
Similarly, we have in {29
b —bt]| = cnloghl+ |u! — ufil|
< Ch? |logh|erax{pHu;C ugth ub! fulfth }.
So
masco ot ol | o =il = o 8t o], a9
or
max{p Hug - ugth ubt — ulh H } = H - ulh H (4.19)
cases (4.18) implies
Huglfughlu < Ch? |10gh|+pHu§’ fughlu
k1 k1 k1 ok
e ]
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SO

k.1 k,1
Hu2 ~ Y2n Hz =

2 2
< pCh?|log h| - Ch? |log h|

O Noghl o —ut|
1 7p ) 1 1h 1

k,1 k,1
SPHUQ 7u2hH2

while case (4.19) implies

1—p - 1-p

)

k,1 k,1 2 k,1 k,1
o s, < om mog " -]

(4.20)
k,1 k1 k1 k,1
ol o], < o -]
2 1
So, by multiplying (4.20) by p we get
p Hué“ - ug;jHQ < pCh?[logh| + p Hulfl - ulf;llHl . (4.21)
k1 k1|
Hence p Hu2 — Ugy), H2 is bounded by both
pCh?|logh| + p Hu]f’l - uf;}Hl
and
k1 okl
o =],
then
Hulfl — ulf}LlHl < pCh?|logh| + p Hulfl — UIEL1H1 (4.22)
or
Ch? |logh| + p Hulfl — ulf}LlHl < Hulfl — ulfhll o (4.23)
which (4.22) implies
Ch? logh Ch? logh
Hullc,liullc;llu <P |log A |log A (4.24)
1 1—p 1—p
or (4.23) implies
pCh? |log h| k,1 k,1 Ch? |log h|
s il <= (425)

Hence, (4.22) and (4.23) are true because they both coincide with (4.17). So, there
is either a contradiction and thus case (4.18) is impossible or case (4.19) is possible
only if

Hulfl — ulfthl = pCh?|logh| + p Hulfl — ulf;f’ (4.26)

’
1
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that is on | |
k1 k1 pCh” |logh
Hu1 —uy} H1 ==, P (4.27)
thus
ekt = cnoen -]
Ch?|logh
< Ch*|logh| + P17|WE;|
Ch? |log h|
1—p
that is, both cases (4.18) and (4.19) imply
Ch? |log h|
k,1 k,1
s —sit], = == (4.28)
Now, let us assume that
Ch? |log h|
k.n k.n
R R (4.29)
and prove that
Ch? |log h|
k,n+1 k,n+1 g
ot =i, < =257
kn+1 k,n+1 Ch? [log |
L
a

Theorem 4.3. Let h = max (h1,ha). Then, for n large enough, there exists a
constant C' independent of both h and n such that
h? |log h
ubm uk,n+1H < ch” |log h| Vi=1,2. (4.30)
1

‘ ih 1_p )

Proof. Let us give the proof for ¢ = 1. The one for ¢ = 2 is similar and so will be
omitted. Indeed, Let § = 6102, then making use of Theorem 2 and Lemma 3, we
get

-t s st b )
1 1 1
2

ch® |logh

< onapfud —uf, + S lo8h

I—p

2n |0 ch2|logh|

< 5|0 — |, + SolloBh]

1 1—p
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So, for n large enough, we have

6" < h? (4.31)
and thus
Hu’f — “If}anH < ch? + ch?|log
1
< ch?|loghl,
which is the desired result. O

4.3. Asymptotic behavior

This section is devoted to the proof of main result of the present paper, where we
prove the theorem of the asymptotic behavior in L*-norm for parabolic variational
inequalities, where we evaluate the variation in L* between uy (T'), the discrete
solution calculated at the moment 7' = pAt and u°°, the asymptotic continuous
solution of (2.1)

Theorem 4.4. According to the results of the Proposition 3 and the Theorem 3,
we have

" oo A+c\?
Huf}l 1y HOO <C [hQ llog | + <5 - A) } (4.32)

and \ »
Hugfv"“ - u°°H <C [hQ llog | + <ﬁi§> } , (4.33)

where C' is a constant independent of h and k.

Proof. We have

[ il IS 7S S (i IO
o0 o0

N =

Using the Proposition 4.1 and the Theorem 4.3, we have for 6 >

A p

d

A p
Remark 4.5. It can be seen in the previous estimates (4.32) and (4.55), (ﬂ—jr_/c\)

goes to O when p tend to infinity. Therefore, the estimation order for both the
coercive and noncoercive problems is

Huf’o - u‘f}i’"HHLw( < Ch2[log h|

Q)
and
[e’) oco,n+1 2
— ’ < Ch*|logh| .
o = HLOO(QQ)_ flog £
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