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The maximum norm analysis of a nonmatching grids
method for a class of parabolic equation with linear
source terms

Mohammed Cherif Bahi, Salah Boulaaras,
Mohamed Haiour and Abderrahman Zarai

Abstract. Motivated by the idea which has been introduced by Haiour
and Boulaaras’ work in [11], we provide a maximum norm analysis of a
theta scheme combined with finite element Schwarz alternating method
for a class of parabolic equation on two overlapping subdomains with
nonmatching grids. We consider a domain which is the union of two over-
lapping subdomains where each subdomain has its own independently
generated grid. The two meshes being mutually independent on the over-
lap region, a triangle belonging to one triangulation does not necessarily
belong to the other one. Under a stability analysis on the theta scheme
which given by our work in [4], we establish, on each subdomain, an opti-
mal asymptotic behavior between the discrete Schwarz sequence and the
asymptotic solution of parabolic differential equations.

M.S.C. 2010: 656M60, 34A37, 65K15, 49J40, 49M25.
Key words: Maximum norm analysis; nonmatching grids method; Schwarz sequence;
parabolic differential equations; linear source terms.

1 Introduction

This paper deals with the error analysis in the maximum norm, in the context of
the nonmatching grids method, of the following evolutionary equation: find u €
L?(0,T; H} () N C? (0, T, H' (2)) solution of

%—Aquau:f in X,
(1.1) u=0in I'/T,
g—z = in o, u(.,0) = ug, in

Avrpriep SCIENCES, Vol.20, 2018, pp. 1-17.
© Balkan Society of Geometers, Geometry Balkan Press 2018.



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

2Mohammed Cherif Bahi, Salah Boulaaras,Mohamed Haiour and Abderrahman Zarai

where X is a set in R? x R defined as X = Q x [0, 7] with T"< +oco , where § is a
smooth bounded domain of R? with boundary T.
The function o € L> (€2) is assumed to be non-negative satisfies

(1.2) a<pB, B>0.

f is a regular function such that

feL?(0,T,L*(Q))NnC' (0,T,H ().

Let (.,.)q be the scalar product in L?(f2) and (., Jr, be the scalar product in
L? (T'y), where Ty is the part of the boundary defined as

FO:{xEQQ:FsuChthatV§ >0, x+§¢Q}.

Schwarz method has been invented by Herman Amandus Schwarz in 1890. This
method has been used to solve the stationary or evolutionary boundary value problems
on domains which consists of two or more overlapping sub-domains (see [1], [11],
[20], [2]). We refer to ([1], [11]-[6]) , and the references therein for the analysis of
the Schwarz alternating method for elliptic obstacle problems and to the proceedings
of the annual domain decomposition conference beginning with [10]. For results on
maximum norm error analysis of overlapping nonmatching grids methods for elliptic
problems we refer, for example, to [5].

In [11], we studied the overlapping domain decomposition method combined with
a finite element approximation for elliptic equation related for Laplace operator A,
where on uniform norm of an overlapping Schwarz method on nonmatching grids has
been used, where we proved that the discretization on every subdomain converges on
uniform norm norm. Furthermore, a result of asymptotic behavior in uniform norm
has been given. In this paper, similar to that in [11], we extend the last work for evolu-
tionary equation with mixed boundary conditions, where we provide a maximum norm
analysis of a theta scheme combined with finite element Schwarz alternating method
for a linear parabolic equations on two overlapping subdomains with nonmatching
grids. We consider a domain which is the union of two overlapping subdomains where
each subdomain has its own independently generated grid. The two meshes being
mutually independent on the overlap region, a triangle belonging to one triangulation
does not necessarily belong to the other one. Under a stability analysis on the theta
scheme which given by our work in [4], we establish, on each subdomain, an opti-
mal asymptotic behavior between the discrete Schwarz sequence and the asymptotic
solution of parabolic differential equations.

The outline of the paper is as follows: In section 2, we introduce some necessary
notations, then we prove a full-discrete weak formulation of the presented problem
using the theta time scheme combined with a finite element method. In section 3
we state a continuous alternating Schwarz sequences and define their respective finite
element counterparts in the context of nonmatching overlapping grids. Section 4 is
devoted to the asymptotic behavior of the method.
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The maximum norm analysis of a NGM for PE with LST 3

2 The discrete parabolic equation

The problem (1.1) can be reformulated into the following continuous parabolic vari-
ational equation: find u € L? (0, T, H} (Q)) solution of

(‘th‘,v) +a(u,) = (f,0) + (9, 0)p,

u=01in T'/Ty,
(2.1) S
oy ¥ in Iy,

u(z,0) = up in £,
where a (.,.) is the bilinear form defined as:

(2.2) u,v € Hy (Q) : a(u,u) = (Vu, Vu) — (qu, u)

2.1 The space discretization

Let Q be decomposed into triangles and 75, denotes the set of those elements, where
h > 0 is the mesh size. We assume that the family 73, is regular and quasi-uniform. We
consider the usual basis of affine functions ¢; i = {1,...,m (h)} defined by ¢; (M;) =
0;; where M is a vertex of the considered triangulation. We introduce the following
discrete spaces V}, of finite element

ve (L2 (0,T,Hy () nC (0,T, Hy (Q)))
such that vy, |k= P1, k € 73,

() _ b
(2:3) Vi vp (.,0) = vpg in Q, QL: = e in Ty,

vp =0 in T\ T,

where P; Lagrangian polynomial of degree less than or equal to 1 and m, is an
interpolation operator on I'y.
We consider r;, be the usual interpolation operator defined by

m(h)

THU = Z v (M) i (z) .

=1

2.1.1 The discrete maximum principle assumption (DMP)

We assume the matrices whose coefficients a (¢;, ;) are M-matrix ([16] and [17]).
For convenience in all the sequels, C' will be a generic constant independent on h.It
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can be approximated the problem (1.1) by a weakly coupled system of the following
parabolic equation v € H! ()

(2.4) (?;:, v>Q +a(u,v)=(f,v)g+ (V) -

We discretize in space, i.e., we approach the space H} by a space discretization of
finite dimensional V}, C (L2 (O,T, H} (Q)) nc (O,T, H} (Q))) , we get the following
semi-discrete system of parabolic equation

0
(25) (Fon) +atunon) = (froda+ (oo,
Q
2.2 The time discretization

Now we apply the f-scheme in the semi-discrete approximation (2.5). Thus we have,
for any 8 € [0,1] and k = 1,...,p

(uﬁ - u’fl_l,vh)g + (At)a (ui’k,vh) =

(2.6)
(At) {(fe’kavh)g + (we’k,vh)po} ;
where
uZ’k = Quf +(1-0) u’ffl,
(2.7) FOR =0+ (1—0) !
and
(2.8) @ PP = 0% + (1 —0) 1.
1
By multiplying and dividing by 6 and by adding ﬁ,vh to both parties of

the inequalities (1.1), we get

0,k

5 6,k—1
u u
(ehAt’vh> Jra(uz’k’”h) = <f 7Y ’Uh> +
Q Q

+ (gae’k,vh)ro , Up € Vh(w.

(2.9)

Then, the problem (2.9) can be reformulated into the following coercive discrete
system of parabolic variational equation
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(210) b (uf;’“,vh> = (/" 4 Y on) o + (7%, 0n) s ons up® € VP,

83 where

b (ui’k, vh) =pu (uz’k,vh)ﬂ +a (ui’kmh) , vp € Vh("a),
(2.11)
_ 1 _r
H=%a: = oT"

ss  Theorem 2.1. (see [11]). Under suitable regqularity of the solution of problem (1.1),
s there exists a constant C' independent of h such that

(2.12) 16 = ¢l < Ch? |logh].

s Lemma 2.2. (see [15]) Let w € H' () N C (Q) satisfies a (w, ) + A (w,¢) > 0 or

s all nonnegative ¢ € H' (Q) and w >0 on T, then w > 0 on .

&s  Notation 2.1. (F9F k) (FO* 39k) be a pair of data and ¢k = 9(FOF, 0+); COk =
s O(F%* 5%F) the corresponding solutions to (2.10) .

o Proposition 2.3. Under the previous notation, we have

1 ~
913 H 0k Q,kH < max () HFe,k _ pok 0k — G0k .
213) |67 =, e { 3 e ™" =& o}
o1 Proof. First, putting
1 -
0.k _ 1 0.k _ 90k 0k _ ~0k
(2.14) uot = max{(ﬁ) HF F HLOO(Q)) @ ¥ HLOQ(F)}7
then
FOk < ok 4 HFe,k _ ok
- Loo ()
0.k <)‘> 0.k _ 0.k
< FOk 4 (2 HF _ F9Y,
6 Loo ()
1 ~ -
< FO% 1 \max{ () HFG,k _ ok 7’|@0,k _ gDe,icH }
B Loo(Q) Loo(T)
S FOF 4 Auf>,
92 SO

(2.15) b(C7,6) <B(C*,6) + A (u"*,6), for all 9 >0, 6 € H(S)
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and thus _
b(C7F,0) b (4 uTE 6) = (F7F 4+ 2, ).

On the other hand,we have

(2.16) COF 4+ ¢ — % >0 on Ty,
So
(2.17) b + ¢ — C0F > 0.

By using the result of lemma 1, we get

(2.18) OFrp—¢®*>00nQ

Similarly, interchanging the roles of the couples (F%*, o) and (F%*, %), we get
(2.19) CF 4 — (%% >00nQ,

which completes the proof. O

Remark 2.2. Proposition 1 stays true for the discrete case.

Lemma 2.4. ([15]) Let w € Vj, satisfy b(w?*, ¢5) > 0 for s = 1,2..m(h)and w’* >0

on Tg.then w?* >0 on (Q).

Notation 2.3. (FOF 0%); (FOk 30%) be a pair of data and CZ’k = Q(FOFk, ok Zz’k =
O(F%F Z%F) the corresponding solutions to (2.10) .

Proposition 2.5. Let DMP hold, we have

0.k 70,k 1 ~ _
T e B L R Eet

Loo(Q) — Loo(Tg)

Proof. The proof is similar to that of the continuous case. ]

3 Schwarz Alternating Methods for parabolic equa-
tion

We decompose (£2) in two overlapping smooth subdomain ; and € such that Q =
01 U Qy, we denote by 9€; the boundary of {; and I'; = 9€2; N 2; and assume that
the intersection of I'; and I';;7 # j is empty. Let

) _ ve (L2 (0,T,Hg () nC(0,T,Hj (2)))

2
such that v = w; on I';.
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We associate with problem (2.10) the following system: find (v, u*) e V* x

V;)’k solution to

b (uf*,v) = (F"" v)ar + (¢, v)re,,
(3.1)
ba(uy™,v) = (F"", v)az + (¢, v)rys.
where
(3.2) bi(uf’k,v) = /(vue’k.Vve’k + aue’k.va’k)dx
Q;
and

O,k _ 0k R
" =u"" Qi =1,2

3.1 The Continuous Schwartz Sequences

Let ug be an initialization in Cj (ﬁ) ,i.e., continuous functions vanishing on 02 such

that

(3.3) b(ug,v) = (F%F v).

Starting from ug = ug/ 2 , we respectively define the alternating Schwarz sequences (u?“)on

)1 such that

0,k,n
1 u
uftrtl e Vl( =) solves of

(3.4) by (uf* " v) = (F)F,v),

Where
0,]{ 0 0,]{)7 ,n+1
Fl f 7k} >\u1 1,n

0.k uf kot
and (ug™" yon €y such that uf ™" e V2( “ ) solves
0.k 0,k
(3.5) bQ(u27 ,n+1’v) = (Fl ),
where

0,k _ 0.k 0,k—1,n+1
F7 = 78 4 dug

Theorem 3.1. [11] The sequences (u}™); (ujt!), n > 0 produced by the Schwarz
alternating method converge geometrically to a solution u of the elliptic obstacle prob-
lem. More precisely, there exist ki, ko € (0,1) which depend on (21,72) and (Q2,~1)

such that for all n > 0,

(3.6) sup |up — w?" | < 6765 sup |up — uj|
[N 71

and

(3.7) sup|uh —u2”| < 51‘5721_1sup|uh —u2| )
Qo Y2
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3.2 The discrete Schwartz sequences

As we have defined before, for i = 1,2, let 7" be a standard regular and quasiuniform
finite element triangulation in ;; h; , being the mesh size. The two meshes being
mutually independent 1 N s , a triangle belonging to one triangulation does not
necessarily belong to the other and for every w € C (§;) , we set
s ve (L2 (0,T,H} () NC (0,T,H} (Q)))

(w?

Vo =

hi
such that v = ¢ on g1 NTo2; v = 7, (w) on Ty,

where 7;,,denote an interpolation operator on I';.
Now, we define the discrete counterparts of the continuous Schwarz sequences
defined in (3.4) and (3.5) .

Indeed, let ugp be the discrete analog of ug, defined in (3.3), we respectively, define
0,k,n

by uf;f’"“ € Vh(lu% ) such that

(3.8) by (uS P v) = (FOF WS ), Yo e Vh(“a); n>0

0.kl (ufjlomh)
and u.),” eV, such that

(3.9) by (uS L ) = (FOF@lEm 1) v), vo € V95 n > 0.

4 Maximum norm analysis of asymptotic behavior

4.1 Error Analysis for the stationary case

We begin by introducing two discrete auxiliary sequences and prove a fundamental
lemma.

4.1.1 Two auxiliary Schwarz sequences

0 1 0 1 0 1
Fo(r ;“’gh )Z g, , we define the sequences w{;*" " and wh;*" ! such that u{;>*" " €

W8
Via solves

0,00,n+1 _ 0.k, 0,00n+1 ().
(4.1) by (w3, ,v) = (F%(uy), ),v),Yv € V,77in >0,
0,00,n+1
0 1 u
and wg; " € Vg(h " ) solves

(4.2) bg(wg;loo’”"’l,v) = (Fe’k(ugfo’"ﬂ),v),Vv € Vh(;p); n >0,
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900n+1 900n+1

respectively. It is then clear that w; and w are the finite element

approximation of uf ©ontl and g‘x’ et defined in (4.1), (4.2), respectively. Then,

’Fe,k (u?,k,nﬂ) ’ <\ u?,k,n—&-lH
oo

Therefore, making use of standard maximum norm estimates for linear parabolic
problems, we have

as F%* (\) is continuous,

, (independent i of n).
oo

0,k,n 0,k.n
phn < Ch? [log h|

4.3 ‘
(4.3) " Loo(£24)

where C' is a constant independent of both h and n.

Notation 4.1. From now on, we shall adopt the following notations: |.|; = |‘|Loo(l"1),
o = [iooa), Il = Mzoory) » -2 = -l Loo(ry), and we set mn, = mh, = .
4.2 TIterative discrete algorithm

We give our following discrete algorithm

an)

(4.4) L B Y Sl A

where ui’k is the solution of the problem (2.10) and the first iteration u{ is solution
of (3.3).

Proposition 4.1. [//Under the previous hypotheses and notations, we have the fol-

lowing estimate of convergence if 6 > 3

k
1
6,k,n+1 oo 00
(4.5) AT (1+9At> 2 = koo

1
if 0§9<§,wehave

2 k
0k2n+17 oo
ao) [t < (G 1 - el

where p (A) is the spectral radius of the elliptic operator.
Lemma 4.2. Let p = 2 Then, under assumption (1.2), there exists a constant C
independent of both h and n such that

2
SM7 =1,2.
i 1—p

0,00,n+1 6,00,n+1

(4.7) ‘ Uy — Uin

Proof. We know from standard error estimate on uniform norm for linear problem
[19] that there exists a constant C' independent of h such that

(4.8) Huo —u) < Ch?|logh|.

||L:(Q)
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1
Since 5 <p< 1, then 1 < p/ (1 — p) and

Ch? |log h
(4.9) ||ug - ugh||2 < Ch? [log h| < p1_|<:;g|.

Let us now prove (4.7) by induction. Indeed for n = 1, using the result of Propsitionl,
we have in

061 0k1 0.k 0k1 061 0k1
e R e B Tt
< Ch*|loghl| + wak T 1H
1
2 0.k (,0.k1 0.k (,0.k1 0_ .0
< Ch 10gh+max{< )HF uy ) F (ulh )H |ud —udp|,
1

(
(o

< C’hQIOgh—i—max{( ) Hng ) Fok (u?;lkJ)H ,Hug
1
< Ch?flogh] + max{p [ul™" — ufi| g — udil,-
1
We then have to distinguish between two cases
(@10)  max{p [uftt =l g — ugul) = p [l -l
or
@iy maxg [ttt o g -l = o -l
1

(4.10) implies

0.k,1 0,k1 0,k,1 0,k,1
[t =it < cnmoghl+pfur™ — i

HUZ u2hH2<pH 0,k,1 u?hle ,
then
H 0.k, 1 MlH <Ch2|logh|
1= 1—-p
i1, < 45 - ) < e

1 1-p

(4.11) implies

[t — | < o2 pog i + [ —

S

—uzn
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0, by multiplying (4.11) by p we get

(4.12) p [t - Uf’hk’lHl < pCh? [logh| + p ||ul — u3, ||, -
So,p Huf’k’l - uf;f’l is bounded by both pCh?|log h|+p Hug — uthQand [|ud — ugh||2,
1

this implies that

(113 o llud =l < PO loghl + o ~ ],
or
(4.14) pCh? |logh|—|—p||ug—ugh||2 < ||u8—ugh||2,
that is (4.13) implies
pCh? |log h|
(4.15) lu = wdnll, < = ——
and (4.14) implies
pCh? |log h|
(4.16) g =, > 2o
p
It follows that only the case (4.13) is true, that is,
pCh? |log h|
p
then
0.k, 0.k,
pHul ol 1H1 < Ch*|logh| + ||u§ — ugy ||,
Ch? log h
< CR? flogh| + LI os ]
1—p
Ch? |log h|
— 1 _ p -

So, in both cases (4.10) and (4.11), we have

h? |logh
Hue,k,l 0,1@,1H < Ch? |log |
1

(4.18) 1 T U 1—p

Similarly, we have in

Hug’k’l — ug;f’lH < Ch*|logh| + ng’k’l — ug’hk’ng
< Ch?|log h| + max{ (;) HFG’k (ug’k’l) — Fok (ug}lk’l) 0 uf’k’l
< Ch?|logh| + max{ (;) HFG”c (ug’k’l) — FOk (ug;lk’l) ) u?’k’l
< Ch?|logh| + max{p Hug’k’l — ug’hk’l' ) ' u?’k’l — u(;’hk’ll }.

0k
Uih

0k
Uip

I
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So
0k,1 _ 0.k1 0k1 Ok _ 0,k,1
(4.19) max{pHu2 — Uy, H2 uyt =gy H } = pHu2
or
(4.20) max{p Hug’k’l ughk 1H2 , uf’]’“l u(;h]f 1H } = Huf’k’l U

cases (4.19) implies

0,k,1 0,k,1 2 0,k,1 0,k,1
Huz — Ugp H < Ch |10gh|+PHU2 — Ugp Hz’
0,k,1 0,k,1 < 0,k,1 0,k,1
Uy — Uy S pUy T T Ugy )
SO )
Hue,k,l MIH < Ch? [log h| O,k,lH
2 Uap, 9 = 1— P ’ 1 1h 1

0,k 6,k1
S

2 2
< pCh?|log h| < Ch? |log h|
- 1—p I )

)

while case (4.20) implies

H 0,k,1 ghk,lH < COh? llog h| + H 0.k, 1 «ihk 1H1
(4.21)

S 0,k,1 < 9k1 0,k,1
pllug” " — Ugyp — Uy .

So, by multiplying (4.21) by p we get

(422) p Hug,k,l o ug,hk,le S pChQ |10gh| + p Huﬁ,k,l U?hk 1H1 ]

Hence pH 0.k, ug;f’lH is bounded by both pCh?|logh| + pH 8.k,1

H ?kl u?hkl‘ , then
1
(4.23) Huf kol ufhle < pCh? |logh|+pHuf’k’1 ufhlel
or
0.k1 0.kl 0.k1 _ 0.k1
(4.24) Ch? |logh|—l—pHu1 —uy) ng Hul — Uy Hl,

which (4.23) implies

2 2
Hue,k,1 leH < pCh? |log hl < Ch? [log h|
1

4.25

0,k,1
u2h 9

MIH
1|,

0,k,1
— Uy’

H and
1
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or (4.24) implies
Ch? [log h Ch? |logh
14 [log A < Hu{f,k,l _ ui?hk,lu < [log |.
1-p 1 1-p

Hence, (4.23) and (4.24) are true because they both coincide with (4.18). So, there
is either a contradiction and thus case (4.19) is impossible or case (4.20) is possible
only if

(4.26)

(4.27) Hu§k1 B u(;hm”l — pCh [log h| + p Hu?,k,l _ U?hk’l‘ 7
that is
pCh? |log h|
4.9 H 0,k1 9,k,1” _ peh sl
(4.28) uy u |, T,
thus
v g, < ot s )
Ch? |log h
< Ch?|logh| + plim
Ch? |log h|
1—p

that is, both cases (4.19) and (4.20) imply

Ch? |log h|
4.99 H 0.k, 1 O,k,lH < .
( ) Ugy Ugp, 9 = 1— p
Now, let us assume that

Ch? |log h|
4.30 H 0,kn  0,kn <
( ) Ug Ugp, P

and prove that
Ch?|logh
Hugy,k,nﬂ B u%lk,nHH < |log h
1 1—p

0,k,n+1 0,k,n+1 Ch? log A
Ug - u2h 9 < 1— p

O

Theorem 4.3. Let h = max (hy,ha). Then, for n large enough, there exists a con-
stant C independent of both h and n such that

ch?|log h .
udknt _ u9»k7n+1H < ch” [log h| Vi=1,2.
1

4.31 | - :
( ) % ih 1— P)
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Proof. Let us give the proof for ¢ = 1. The one for ¢ = 2 is similar and so will be
omitted. Indeed, Let § = d1J2, then making use of Theorem 2 and Lemma 3, we get

e R Lt ey rer
h? |log h
S 5116;L‘u0_u|1 c ‘Og ‘
IL—p
h? [log h
< 52"‘u0—u|1+7c [log |
L—p
So, for n large enough, we have
(4.32) 52" < h?
and thus
Hu?’“ - uf;f*"“H < ch?+ ch? [loghl
1
< ch?|loghl|,
which is the desired result. O

4.3 Asymptotic behavior

This section is devoted to the proof of main result of the present paper, where we
prove the theorem of the asymptotic behavior in L°°-norm for parabolic variational
inequalities, where we evaluate the variation in L between wuy, (T'), the discrete
solution calculated at the moment T = pAt and u®°, the asymptotic continuous
solution of (2.11)

Theorem 4.4. According to the results of the proposition 8 and the theorem 3, we
have

1
for the first case 8 > 3

1 p
0,p,n+1l oo < 2
(4.33) H“m u HOO <C {h [log h| + (1 n GAt) } ;
and
0,pn+1 2 1 b
sPsm e o} <
(4.34) Hth u HOO <C {h [log h| + (1 +9At> } )

1
and for the second case 0 < 0 < 3

2 p
6,p,n+1 ) < 2
(4.35) |uti u Hoo =0 [h flog | -+ <2+9(1 - 29),0(A)> }
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and

2 p
0,pn+l oo < 2
(4.36) (5 w| <o {h [log h + <2+9(1 - 29)p(A)) } ’

where C' is a constant independent of h and k.

Proof. We have

R IR Tt
o0 o0

h oo
Using the proposition 4.1 and the theorem 4.3, we have for § > %
0.p.2n+1 oo 2 3 1 P
Huh v Hoogo{h [log hi +<1+0At) }

1
and for 0 < 0 < 3 we have

0,p.2n+1 oo 2 3 2 g
| u Hocfc[h fog A +(2+9(12@>p<A>> }

The proof for (4.35) and (4.36) case is similar. O
1 p
Remark 4.2. It can be seen in the previous estimates (4.33) up to (4.36), (1—&—69&5) )
2 p
(2 O —20)p (A)) , goes to 0 when p tend to infinity. Therefore, the estimation
order for both the coercive and noncoercive problems is
o) oo,n+1 2 3
—uly < Ch* |logh
[ = a5 HLOO(Ql) < Ch” llog h
and ,
u® — uoo’"'HH < Ch?|loghl|’.
H 2l (a,) = llog A
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