
https://doi.org/10.31449/inf.v43i4.2629 Informatica 43 (2019) 495–506 495

AMF-IDBSCAN: Incremental Density Based Clustering Algorithm

using Adaptive Median Filtering Technique

Aida Chefrour and Labiba Souici-Meslati

LISCO Laboratory, Computer Science Department, Badji Mokhtar-Annaba University

PO Box 12, Annaba, 23000, Algeria

Computer Science Department, Mohamed Cherif Messaadia, Souk Ahras, Algeria

E-mail: aida_chefrour@yahoo.fr, labiba.souici@univ-annaba.dz

Keywords: incremental learning, DBSCAN, canopy clustering, adaptive median filtering, f-measure

Received: December 28, 2018

Density-based spatial clustering of applications with noise (DBSCAN) is a fundamental algorithm for

density-based clustering. It can discover clusters of arbitrary shapes and sizes from a large amount of

data, which contains noise and outliers. However, it fails to treat large datasets, outperform when new

objects are inserted into the existing database, remove noise points or outliers totally and handle the

local density variation that exists within the cluster. So, a good clustering method should allow a

significant density modification within the cluster and should learn dynamics and large databases. In

this paper, an enhancement of the DBSCAN algorithm is proposed based on incremental clustering

called AMF-IDBSCAN which builds incrementally the clusters of different shapes and sizes in large

datasets and eliminates the presence of noise and outliers. The proposed AMF-IDBSCAN algorithm uses

a canopy clustering algorithm for pre-clustering the data sets to decrease the volume of data, applies an

incremental DBSCAN for clustering the data points and Adaptive Median Filtering (AMF) technique for

post-clustering to reduce the number of outliers by replacing noises by chosen medians. Experiments

with AMF-IDBSCAN are performed on the University of California Irvine (UCI) repository UCI data

sets. The results show that our algorithm performs better than DBSCAN, IDBSCAN, and DMDBSCAN.

Povzetek: V članku je predstavljen nov algoritem AMF-IDBSCAN, izboljšana različica DBSCAN, ki

uporablja grozdenje krošenj za zmanjšanje obsega podatkov in tehnike AMF za odpravo hrupa.

1 Introduction
Data mining is an interdisciplinary topic that can be

defined in many different ways [1]. In the field of

database management industry, data analysis is mainly

concerned with a number of large data repositories and

aims to identify valid, useful, novel and understandable

patterns in the existing data.

Clustering is a principal data finding technique in

data mining. It separates a data set into subsets or clusters

so that data values in the same cluster have some

common characteristics or attributes [2]. It aims to divide

the data into groups (clusters) of similar objects [3]. The

objects in the same cluster are more identical to each

other than to those in other clusters. Clustering is widely

used in Artificial Intelligence, Pattern recognition,

statistics, and other information processing fields.

Many clustering algorithms have been progressed;

they may be divided into the following major categories

[4]: hierarchical clustering algorithms (BIRCH,

CHAMELEON,..), partitioning algorithms (K-means, K-

medoids), density-based algorithms (DBSCAN,

OPTICS) and grid-based algorithms (STING, CLIQUE).

The input of a cluster analysis system is a set of

samples and a measure of similarity (or dissimilarity)

between two samples. The output is a set of clusters that

form a partition, or a structure of partitions of the data

set. Generally, finding clusters is not a simple task and

the current clustering algorithms take much time when

they are applied to large databases.

In addition, most of the databases are dynamic in

nature, data is inserted and deleted from them frequently.

The static clustering does not process this kind of

databases that’s why the concept of incremental

clustering was introduced and used.

The difference between the traditional clustering

methods (batch mode) and those of incremental

clustering is the ability of the latter to process new data

included in the data collection without having to perform

a full re-clustering. This allows a dynamic following of

updates to the database during clustering.

Incremental learning is a research area that received

great attention in recent years since it allows effective

reuse of data, fast and pragmatic learning based on

context, augmentation of knowledge, learning in

dynamic and large databases, exploration and smart

decision making [5].

In our research, we are interested in evolving

incremental clustering to cluster the data objects which

the process of updating an existing set of clusters

incrementally rather than mining them from scratch on

each database update [6]. Evolving clustering algorithms

allow incremental changes to be made both structurally

mailto:aida_chefrour@yahoo.fr

496 Informatica 43 (2019) 495–506 A. Chefrour et al.

and parametrically through different data-driven

mechanisms [7].

In our study, we focus on the DBSCAN (Density-

Based Spatial Clustering of Applications with Noise)

clustering algorithm. The core idea of DBSCAN is that

each object within a cluster must have a certain number

of other objects in its neighborhood. Compared with

other clustering algorithms. DBSCAN has many

attractive benefits and was used by many researchers in

recent years with its several extensions and applications.

We were particularly interested in the incremental

version of DBSCAN since (1) it is capable of discovering

clusters of random shape; (2) it requires just two

parameters and is most inconsiderate to the ordering of

the points in the database; (3) it reduces the search space

and facilitates an incremental update in the clusters; (4) it

is more adaptive to various datasets and data space

without some initial information [8] and (5) the

DBSCAN with incremental concept saves a lot of time

and effort efficiently, whereas static DBSCAN has

already suffered from some drawbacks and these

problems are mainly faced in dynamic large databases in

the existing system [9];

In this paper, we propose an AMF-IDBSCAN

algorithm an enhanced version of the DBSCAN. Our

algorithm consists of three main phases. After importing

the original database, it preprocesses it to prepare the

clustering step and to reduce the volume of the dataset

using Canopy clustering. Then, the classical DBSCAN

algorithm is applied to the results of the first step to

produce another database. Next, the incremental

DBSCAN algorithm is applied to the incremental dataset.

The adaptive median filtering technique is applied to the

results of the previous step to remove noise and outliers.

Then, the results are compared and the performance is

evaluated.

The rest of the paper is organized as follows. In the

next section, we survey in brief the literature of enhanced

DBSCAN algorithms. In Section 3, we describe in details

our contribution to AMF-IDBSCAN. Section 4 describes

the experiment we conducted and the results obtained by

our algorithm. It also compares them with top-ranked

algorithms. Finally, we draw some conclusions and show

ongoing research aspects in Section 5.

2 Related work
Several algorithms for improvements of DBSCAN exist

in the literature. In this section, we outline the best

known and most recent ones. We noticed that all of these

algorithms have shown good results, in the last few

years. However, no one of them could be said to be the

best but all depend on the content of input parameters

and their application domain:

DVBSCAN (A Density-Based Algorithm for

Discovering Density Varied Clusters in Large Spatial

Databases) [10] is an algorithm which handles local

density variation within the cluster. The following input

parameters are introduced: minimum objects (μ), radius,

and threshold values (α, λ), to calculate the growing

cluster density mean and the cluster density variance for

any core object, which appears to be developed further

by considering the density of its Neighborhood with

respect to cluster density mean. A comparison between a

cluster density variance for a core object and a threshold

value is affected if the first is less than the second and is

also satisfying the cluster similarity index, and then it

will allow the core object for expansion.

ST-DBSCAN (Spatial-Temporal Density-Based

Clustering) [11] is constructed to improve the DBSCAN

algorithm by introducing the ability to discover clusters

with respect to spatial, non-spatial, and temporal values

of the objects. ST-DBSCAN works in three stages: (1) It

can cluster spatial-temporal data according to spatial,

non- spatial, and temporal attributes. (2) To resolve the

problem of no detection of the noise input in DBSCAN,

ST-DBSCAN assigns density factor to each cluster. (3)

To solve the conflicts in border objects, it compares the

average value of a cluster with new coming value.

VDBSCAN (Varied Density-Based Spatial

Clustering of Applications with Noise) [12] is a new

improvement to DBSCAN, it detects cluster with a

varied density as well as automatically selects several

values of input parameter Eps for different densities. It

has a two-step procedure. In the first step, the values of

Eps are calculated for different densities according to a

K-dist. plotting. These calculated values are then further

used to analyze the clusters with different densities. In

the second step, the DBSCAN algorithm is applied with

the parameter Eps values calculated in the previously

discussed step. It ensures that all of the clusters with

corresponding densities are clustered.

VMDBSCAN (Vibration Method DBSCAN) [13] is

designed for modifying the DBSCAN algorithm. Unlike

to existing density-based clustering algorithm, it detects

the clusters of different shapes, sizes that differ in local

density. VMDBSCAN first extracts the “core” of each

cluster after applying DBSCAN. Then it “vibrates"

points towards the cluster that has the maximum effect

on these points.

DMDBSCAN (Dynamic Method DBSCAN) [14] is

a new enhancement of DBSCAN which has pointed out

that in clusters, generated by DBSCAN, there is wide

density variation. Compared to DBSCAN which uses

global Eps. It has successfully given the method to

compute Eps automatically for each of the different

density levels in the dataset based on k-dist. plot. The

major success of this technique includes (1) easy

interpretation of generated clusters; (2) no limit on the

shape of the generated clusters. DMDBSCAN will use

the dynamic method to find a suitable value of Eps for

each density level of data set.

L-DBSCAN [15] tries to improve the DBSCAN by a

hybrid clustering technique, where l stands for leaders. It

works as follows: (1) it finds the suitable prototypes from

the large dataset; (2) and then it uses the clustering

methods on these selected prototypes. The leader

clustering method is a fast method and it runs in linear

time of the input dataset size. In l-DBSCAN, the first two

prototypes are derived with the help of the leader

clustering method. Afterwards, DBSCAN is applied to

AMF-IDBSCAN: Incremental Density Based clustering... Informatica 43 (2019) 495–506 497

perform density-based clustering on this prototype

respectively.

GRIDBSCAN [16] is another important variation of

DBSCAN that addresses the issue that exists in most of

the density-based clustering algorithms, which is the lack

of accurate clustering in the presence of clusters with

different densities. It has a three-level mechanism. In the

first level, it provides appropriate grids such that density

is similar in each grid. In the next level, it merges the

cells having the same densities. At this level, the

appropriate value of 𝐸𝑝𝑠 and MinPts are also identified

in each grid. In the final step, the DBSCAN algorithm is

applied to these identified parameters values to obtain the

required final number of clusters.

FDBSCAN (Fast Density-Based clustering algorithm

for large Database) [17] is an improved version of

DBSCAN clustering. This was developed to overcome:

(1) its slow speed (slow in comparison due to

neighborhood query for each object); (2) and setting the

threshold value of the DBSCAN algorithm. The

FDBSCAN starts by ordering the dataset object by

certain dimensional coordinates. Then it considers a

point having a minimal index and retrieves its

neighborhood. If this point is demonstrated as a core

object then a new cluster is created to label all objects in

its neighborhood. In this way, the next unlabeled point is

analyzed outside the core object to expand clusters.

When all the points are analyzed for clustering then these

objects are further passed through a Kernel function. This

will ensure the distribution of object as uniform as

possible.

MR-DBSCAN [18] is a parallel version of DBSCAN

in a MapReduce manner. It provides a method to divide a

large dataset into several partitions based on the data

dimensions. In the map phase, localized DBSCANs can

be applied to each partition in parallel. During a final

reduce phase, the results of each partition are then

merged. For the overall cost, a partition-division phase is

added into DBSCAN. A Cost Balanced Partition division

method is used to generate partitions with equal

workloads. This parallel extension meets the

requirements of scalable execution for handling large-

scale data sets and the MapReduce approach makes it

suitable for many popular big data analytics platforms

like Hadoop MapReduce and ApacheSpark.

M-DBSCAN (Multi-Level DBSCAN) [19] is an

algorithm where neighborhood is not defined by a

constant radius. Instead, the definition of the neighboring

radius is performed based on the data distribution around

the core using standard deviation and mean values. To

obtain the clustering results, M-DBSCAN is applied on a

set of core-mini clusters where each core-mini cluster

defines a virtual point which lies in the center of that

cluster. In M-DBSCAN, the value of DBSCAN is

replaced by local density cluster which the clusters are

extended by adding core-mini clusters that have similar

mean values with a little difference determined by the

standard deviation of the core.

FI-DBSCAN [20] is a Frequent Itemset Ultrametric

Trees with Density Based Spatial Clustering of

Applications with Noise (DBSCAN) on MapReduce

framework is used in the proposed system to solve the

evolution and efficiency problem in an existing frequent

itemset. It incorporates the Density Based Frequent

Itemset Ultrametric Tree by adding additional hash tables

rather than using conventional FP trees, there are by

achieving compressed storage and avoiding the necessity

to build conditional pattern bases. FI-DBSCAN

integrates three MapReduce jobs to accomplish parallel

mining of frequent itemsets. The first MapReduce job is

responsible for mining all frequent one- itemsets. The

second MapReduce job applies the second round of

analyzing the database to eliminate infrequent items from

each transaction record. At the end of the third

MapReduce job, all frequent K-itemsets are created.

AnyDBC (An Efficient Anytime Density-based

Clustering Algorithm for Very Large Complex Datasets)

[21] is an anytime algorithm which requires very small

initial runtime for acquiring similar results as DBSCAN.

Thus, it not only allows user interaction but also can be

used to obtain good approximations under arbitrary time

constraints.

IDBSCAN [22] proposes an enhanced version of the

incremental DBSCAN algorithm for incrementally

building and updating arbitrarily shaped clusters in

extensive datasets. The proposed algorithm ameliorates

the incremental clustering process by limiting the search

space to partitions instead of the whole dataset, and this

gives significant improvements in performance compared

to relevant incremental clustering algorithms. To enhance

this algorithm further, [23] proposes an incremental

DBSCAN which is fused with a suitable noise removal

and outlier detection technique inspired by the box plot

method. It utilizes a between network measure to dense

regions to frame the last number of clusters.

3 The proposed AMF-IDBSCAN

clustering algorithm
To overcome the limitations of the high complexity and

the non scalability of the traditional clustering

algorithms, we have developed in this work AMF-

DBSCAN: An enhanced incremental DBSCAN using a

canopy clustering algorithm and an adaptive median

filtering technique.

The proposed AMF-IDBSCAN consists of four

phases as shown in Figure 1. The first phase is pre-

clustering employing Canopy clustering. The second

phase is the clustering of data objects in which

Incremental DBSCAN is used. The third phase is post-

clustering applying Adaptive Median Filtering method

that aims to reduce the number of outliers by replacing

them with chosen medians. The last phase is used to

evaluate the performance of clustering algorithms using

different evaluation metrics:

In the next subsections, we describe in details the

main steps of our algorithm.

498 Informatica 43 (2019) 495–506 A. Chefrour et al.

Pre-clustering:

Original

Database

Canopy clustering

Adaptive Median Filtering
Performance evaluation

Incremental

Database

Actual DBSCAN

Clustering

Incremental DBSCAN

Clustering

Result1 Database

(canopies)

Result2

Database

Static DBSCAN:

Incremental DBSCAN:

Performance Evaluation
Post-clustering:

Figure 1: The methodology of the proposed incremental AMF-IDBSCAN clustering algorithm.

3.1 Pre-clustering

This step is aims to prepare the clustering. We used the

canopy clustering algorithm which is an unsupervised

pre-clustering algorithm introduced by [24]. We have

chosen a canopy clustering method for pre-processing the

data because (1) it is efficient when the problem is large

(2) it can greatly reduce the number of distance

computations required for clustering by first cheaply

partitioning the data into overlapping subsets, and then

only measuring distances among pairs of data points that

belong to a common subset and (3) it tries to speed up

the clustering of large data sets that are a high dimension

by dividing the clustering process into two subprocesses,

where using another algorithm directly may be

impractical due to the size of the data set (see Figure 2).

First, the data set is divided into overlapping subsets

called canopies. This is done by choosing a distance

metric and two thresholds, T1 and T2, where T1 > T2.

All data points are then added to a list and one of the

points in the list is picked at random. The remaining

points in the list are iterated over and the distance to the

initial point is calculated. If the distance is within T1, the

point is added to the canopy. Further, if the distance is

within T2, the point is removed from the list. The

algorithm is iterated until the list is empty.

The output of the Canopy clustering is the input of

static DBSCAN;

Figure 2: Canopy clustering description [25].

AMF-IDBSCAN: Incremental Density Based clustering... Informatica 43 (2019) 495–506 499

3.2 Classical static DBSCAN clustering

algorithm

When used with canopy clustering, the DBSCAN

algorithm can reduce the computations in the radius

(Eps) calculation step that delimits the neighborhood area

of a point hence improving the efficiency of the

algorithm. The implementations of the DBSCAN

algorithm with Canopy Clustering involves the following

steps (see Figure 3):

Figure 3: DBSCAN algorithm with Canopy Clustering.

1. Prepare the data points: the input data needs to be

transformed into a format suitable and utilizable for

distance and similarity measures.

2. Choose Canopy Centers

3. Attribute data points to canopy centers: the canopy

assignment step would simply assign data points to

generated canopy centers.

4. Associate the cluster's centroids to the canopies

centers. The data points are now in clustered sets.

5. Repeat the iteration until all data are clustered.

6. Apply the DBSCAN algorithm with radius 𝜀<=

canopy radius and iterate until clustering. The

computation to calculate the minimum number of

points (Minpts) is greatly reduced as we only

calculate the distance between a clusters centroids

and data point if they share the same canopy.

7. DBSCAN is a widely used technique for clustering

in spatial databases. DBSCAN needs less

knowledge of input parameters. The major

advantage of DBSCAN is to identify arbitrary shape

objects and removal of noise during the clustering

process. Besides its familiarity, it has problems with

handling large databases and in the worst case, its

complexity reaches to O(n2)[26]. Additionally,

DBSCAN cannot produce a correct result on varied

densities. That's why we used canopy clustering in

our case to reduce its complexity:

In the AMF-IDBSCAN algorithm, we partition the

data (n is the number of data) into canopies C by canopy

clustering, each containing about (n / C) points. Then the

complexity will decrease to (n2 /C) for the AMF-

IDBSCAN algorithm.

In the sub-section, we describe the static DBSCAN:

The static DBSCAN algorithm was first introduced

by [27]. It uses a density-based notion of clustering of

arbitrary shapes, which is designed to discover clusters of

arbitrary shape and also has the ability to handle noise. It

relies on the density-based notion of clusters. Clusters are

identified by looking at the density of points.

Regions with a high density of points depict the

existence of clusters, whereas regions with a low density

of points indicate clusters of noise or clusters of outliers.

The key idea of the DBSCAN algorithm [28] is that,

for each point of a cluster, the neighborhood of a given

radius has to contain at least a minimum number of

points, that is, the density in the neighborhood has to

exceed some predefined threshold. This algorithm needs

two input parameters:

Eps, the radius that delimits the neighborhood area

of a point (Eps-neighborhood);

MinPts, the minimum number of points that must

exist in the Eps-neighborhood.

The clustering process is based on the classification

of the points in the dataset as core points, border points,

and noise points, and on the use of density relations

between points (directly density-reachable, density-

reachable, density-connected) to form the clusters (see

Figure 4).

Core point: lies in the interior of density based

clusters and should lie within Eps (radius or threshold

value), MinPts (minimum number of points) which are

user-specified parameters.

Border point: lies within the neighborhood of core

point and many core points may share the same border

point.

Noise point: is a point which is neither a core point

nor a border point.

Directly Density-Reachable: a point P is directly

density-reachable from a point Q with respect to (w.r.t)

Eps, MinPts if P belongs to NEps(Q) |NEps (Q)| >=

MinPts

Density-Reachable: a point P is density-reachable

from a point Q w.r.t Eps, MinPts if there is a chain of

points P1, …, Pn, P1 = Q, Pn = P such that Pi+1 is directly

density-reachable from Pi

Density-Connected: a point P is density-connected

to a point Q w.r.t Eps, MinPts if there is a point O such

that both, P and Q are dense-reachable from O w.r.t Eps

and MinPts.

The steps of the DBSCAN algorithm are as follows

[27]:

500 Informatica 43 (2019) 495–506 A. Chefrour et al.

Figure 4: DBSCAN working.

3.3 Incremental DBSCAN clustering

The static DBSCAN approach is not suitable for a large

multidimensional database which is frequently updated.

In that case, the incremental clustering approach is much

finer. In our study, we use incremental DBSCAN to

enhance the clustering process by incrementally

partitioning the dataset to reduce the search space of the

neighborhood to one partition rather than the whole data

set. Also, it has embedded flexibility regarding the level

of granularity and is robust to noisy data.

We have chosen as a foundation of our incremental

DBSCAN clustering algorithm, the algorithm of [29]

which works in two steps:

Step 1. Compute the means between every core

object of the clusters and the new data. Insert the new

data into a specific cluster based on the minimum mean

distance. Sign the data as noise or border if it cannot be

inserted into any clusters.

Step 2. Form new core points or clusters when noise

points or border points fulfill the Minpts (the minimum

number of points) and radius criteria.

Sometimes DBSCAN may be applied on a dynamic

database which is frequently updated by the insertion or

deletion of data. After insertions and deletions to the

database, the clustering located by DBSCAN has to be

updated. Incremental clustering could enhance the

chances of finding the global optimum. In this approach,

first, it will form clusters based on the initial objects and

a given radius (eps) and Minpts. Thus the algorithm

finally gets some clusters fulfilling the conditions and

some outliers. When new data is inserted into the

existing database, we have to update the existing clusters

using DBSCAN. At first, the algorithm computes the

means between every core object of clusters and the new

coming data and insert it into a particular cluster based

on the minimum mean distance. The new data which is

not inserted into any clusters, is treated as noise or

outlier. Sometimes outliers which fulfill the Minpts &

Eps criteria, combined can form clusters using

DBSCAN.

We have used the Euclidean distance because it is

currently the most frequently used metric space for the

established clustering algorithms [30].

The steps of incremental DBSCAN clustering

algorithm are as follows:

Pseudo-code of incremental DBSCAN

Input
D: a dataset containing n objects {X1,X2, X3 …, Xn};

n: number of data items;

Minpts: Minimum number of data objects ;

eps: radius of the cluster.

Output
K: a Set of clusters.

Procedure
Let, Ci (where i=1, 2, 3 …) is the new data item.

1. Run the actual DBSCAN algorithm and clustered the

new data item Ci properly based on the radius(eps) and

the Minpts criteria. Repeat till all data items are

clustered.

Incremental DBSCAN Pseudo-code:

Start:

2. a> Let, K represents the already existing clusters.

b>When new data is coming into the database, the new

data will be directly clustered by calculating the

minimum mean(M) between that data and the core

objects of existing clusters.

for i = 1 to n do

find some mean M in some cluster Kp in

K such that dis (Ci, M) is the smallest;

If (dis (Ci, M) is minimum) && (Ci<=eps) &&

(size(Kp)>=Minpts) then

Kp = Kp U Ci ;

Else

If dis (Ci != min) || (Ci>eps) ||(size(Kp)<Minpts) then

Ci Outlier(Oi) .

Else

If Count(Oi) Minpts then Oi Form new cluster(Mi).

C > Repeat step b till all the data samples are clustered.

End.

3.4 Post-clustering

We illustrate the clusters and the outliers points by a

rectangular window 𝑊on a hyperplane of n dimensions

equivalent to the data dimensions. We apply the

Adaptive Median Filtering (AMF) to reduce the noise

2 1 0 1 2

-1.5

-1

-0.5

-0

0.5

1

1,5

2
Eps=1

Noise Point

Border Point
Core Point

MinPts=4

• Arbitrary select a point P

• Retrieve all points density-reachable

from P w.r.t Eps and MinPts.

• If P is a core point, a cluster is

formed.

• If P is a border point, no points are

dense-reachable from P and

DBSCAN visits the next point of the

database.

• Continue the process until all of the

points have been processed.

AMF-IDBSCAN: Incremental Density Based clustering... Informatica 43 (2019) 495–506 501

data. We have taken the key idea of this method and we

have applied it to our proposition. This is an important

advantage of our approach.

We have selected Adaptive Median Filtering (AMF)

among various filtering techniques because it removes

noise while preserving shape details [31]. AMF

technique is used to replace the outliers generated by

incremental DBSCAN by a cluster contains an object.
The adaptive median filtering [32] has been widely

applied as an advanced method compared with standard

median filtering. The adaptive filter works on a

rectangular region 𝑊 (illustration of the set of clusters

and outliers generated by the previous stage on a

hyperplane). It changes the size of W during the filtering

operation depending on certain criteria as listed below.

The output of the filter is a single value which replaces

the current noise data value at (x, y,....), the point on

which 𝑊 is centered at the time.

Let Ix,y,.....be the selected noise data according to the

dimensions, Imin be the minimum noise value and Imax be

the maximum noise value in the window, W be the

current window size applied, Wmax be the maximum

window size that can be achieved and Imed be the median

of the window designated. The algorithm of this filtering

technique completes in two levels as described in [33]:

Level A:

a) If Imin< Imed< Imax then the median value is not an

impulse, so the algorithm goes to Level B to check if the

current noise is an impulse.

b) Else the size of the window is increased and Level

A is repeated until the median value is not a stimulus so

the algorithm goes to Level B; or the maximum window

size is reached, in which case the median value is

assigned as the filtered selected noise value.

Level B:

a) If Imin < Ix,y,.... < Imax, then the current noise value is

not a stimulus, so the filtered selected noise is unchanged

b) Else the selected noise data is either equal to Imax

or Imin, then the filtered selected noise data is assigned the

median value from Level A.

These types of median filters are widely used in

filtering data that has been denoised with noise density

greater than 20%.

This technique has three main purposes:

• To remove noise;

• To smoothen any non-stimulus noise;

• To reduce excessive shapes of clusters

3.5 Performance evaluation

To evaluate the performance of our approach, the

canopies are applied to the original dataset and store the

result into another database, and then the actual

DBSCAN algorithm is applied to the results to this

database. The incremental DBSCAN algorithm is applied

to the incremental dataset. The results of these two

algorithms are compared and their performances are

evaluated.

The proposed algorithm AMF-IDBSCAN is shown

as pseudo-code in Algorithm 2:

Pseudo-code of AMF-IDBSCAN

Input
D: a dataset containing n objects {X1,X2, X3 …, Xn};

n: number of data items;

Minpts: Minimum number of data objects ;

eps: radius of the cluster.

CN: canopies centers

Output
K: a Set of clusters.

A single value: Ix,y,.... or Imed

Procedure
1. Run Canopy clustering :

1.1. Put all data into a List, and initialize two distance

radius about the loose threshold T1 and the tight

threshold T2 (T1> T2).

1.2. Randomly select a point as the first initial center

of the Canopy cluster, and delete this object from the

List.

1.3. Get a point from the List, and calculate the

distance d to each Canopy clusters.

 If d < T2, the point belongs to this cluster; if

T2≤d≤T1, this point will be marked with a weak label;

 If the distance d to all Canopy center is greater

than T1, then the point will be classed as a new

Canopy cluster center. Finally, this point should be

eliminated from the List;

1.4. Run the step1.3 repeatedly until the list is empty,

and recalculate the canopy centers CN.

2. Run the actual DBSCAN algorithm and clustered

the new data item Ci properly based on the radius(eps)

and the Minpts criteria. Repeat till all data items are

clustered:

2.1. Choosing Canopy Centers CN

2.2. Attribute data points D to canopy centers CN;

2.3. Apply the DBSCAN algorithm with radius 𝜀 <=

canopy radius with dist(CN, Ci)<Minpts

2.4. Repeat the iteration until all data are clustered.

3. Run the incremental DBSCAN:

3.1. a> Let, K represents the already existing clusters.

3.2. When new data is coming into the database, the

new data will be directly clustered by calculating the

minimum mean(M) between that data and the core

objects of existing clusters.

For i = 1 to n do

find some mean M in some cluster Kp in

K such that dis (Ci, M) is the smallest;

If (dis (Ci, M) is minimum) && (Ci<=eps) &&

(size(Kp)>=Minpts) then

Kp = Kp U Ci ;

Else

If dis (Ci != min) || (Ci>eps) ||(size(Kp)<Minpts) then

Ci Outlier(Oi).

3.3. Elimination of noise objects Oi:

The new dataset contains Oi and the clusters closest to

it.

3.4. Adaptive Median Filtering Technique:

For i=1 to m do {where m is the number of outliers}

Illustrate a new rectangle on a hyperplane;

502 Informatica 43 (2019) 495–506 A. Chefrour et al.

Let:

Ix,y....be the selected noise data (Oi) at the coordinates

(x,y,...); % corresponding the data dimensions;

Imin be the minimum noise value;

Imax be the maximum noise value in the window;

W be the current window size applied; % It contains K

clusters and Oi

Wmax be the maximum window size that can be

reached;

Imed be the median of the window assigned

Algorithm

Level A: A1= Imed - Imin

 A2= Imed - Imax

 If A1 > 0 AND A2 < 0, Go to level B

Else increase the window size

If window size W<= Imax repeat level A

Else output Ix,y...

 Level B: B1 = Ix,y,.. – Imin

 B2 = Ix,y,..– Imin

 If B1 > 0 And B2 < 0 output Ix,y,..

 Else output Imed.

3.5. Repeat step b till all the data samples are

clustered.

4. Evaluate performance.

4 Experiments and results
This section presents a detailed experimental analysis

carried out to prove our proposed clustering technique

AMF-IDBSCAN is better than other state of art methods

used for high dimensional clustering. We have taken

five high dimensional data sets (Adult, Wine, Glass

identification, Ionosphere, and Fisher's Iris) from UC

Irvine repository (refer Table 1) to test the performance

in terms of F-measure, number of clusters, error rate,

number of uncluttered instances and time is taken to

build the model. F-measure is defined in equation (1), it

is the harmonic average of precision and recall. It is a

one only summary statistic that does not credit an

algorithm for correctly placing the very large number of

pairs into different clusters [34]. F-Measure is commonly

used in evaluating the efficiency and the reliability of

clustering and classification algorithms.

Our proposed noise removal and outlier labeling

method are compared with static DBSCAN, an

incremental density based clustering algorithm

(IDBSCAN) [22], DMDBSCAN [14] presented below is

the brief related work, about evaluation metrics used for

evaluating clustering results:

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (1)

𝑊ℎ𝑒𝑟𝑒 ∶

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

Where TP: True positive, FP: False positive, FN:

False negative

DBSCAN:

We apply the DBSCAN algorithm on wine dataset

with Eps = 0.9 and MinPts = 6, F-measure= 0.175 and

obtain an average error index of 26.18%, number of

clusters = 3. While applying DBSCAN on Iris data set,

we get an average error index of 35.33% with the same

Eps and Minpts, F-measure= 0.264, number of clusters =

3. Another real data set is Glass dataset and when we

apply DBSCAN on it, we get an average error index of

68.22 %, F-measure= 0.423 with a number of = 6. We

get for Adult dataset an average error index of 32%, F-

measure= 0.475 with number of clusters=1216. For

ionosphere, an average error index= 31.62%, F-measure=

0.854 and number of clusters=2 (see Table 2)

Dataset

Name

N
°

o
f

cl
u

st
er

s

F
-m

ea
su

re

T
im

e
ta

k
en

 t
o

b
u

il
d

 a
 m

o
d

el

E
rr

o
r

ra
te

 (
%

)

N
°

o
f

U
n

cl
u

st
er

ed

in
st

an
ce

s
Fisher's iris 3 0.264 0.02 35.33 0

Wine 3 0.175 0.06 26.18 1

Glass

identification
6 0.423 0.04 68.22 4

Adult 1216 0.475 1638,35 32 15813

Ionosphere 2 0.854 0.23 31.62 111

Table 2: Results of applying DBSCAN.

IDBSCAN:

We apply IDBSCAN algorithm on wine dataset with

Eps = 0.9 and MinPts = 6, F-measure= 0.274 and obtain

an average error index of 23.45%, number of clusters =

4. While applying IDBSCAN on Iris data set, we get an

average error index of 28.54% with the same Eps and

Minpts, F-measure= 0.354, number of clusters = 3.

Another real data set is Glass dataset and when we apply

IDBSCAN on it, we get an average error index of

49.52%, F-measure= 0.323 with a number of clusters = 8.

We get for Adult dataset an average error index of

Dataset
No. of

instances

No. of

attributes
Attribute type Data types

Ionosphere 351 34 Integer, real Multivariate

Wine 178 13 Integer, real Multivariate

Glass

Identification
214 10 Real Multivariate

Adult 48842 15
Categorical,

Integer, Real
Multivariate

Fisher's Iris 150 4 Real Multivariate

Table 1: Description of UCI databases.

AMF-IDBSCAN: Incremental Density Based clustering... Informatica 43 (2019) 495–506 503

27.96%, F-measure= 0.475 with number of

clusters=1265. For ionosphere, an average error index=

29.15%, F-measure= 0.639 and number of clusters=3

(see Table3).

Table 3: Results of applying IDBSCAN.

AMF-IDBSCAN:

In our experiments, we have used for canopy

clustering implementation, a Weka tool (Waikato

Environment for Knowledge Analysis) [35] which is an

open-source Java application produced by the University

of Waikato in New Zealand. It functions like

Preprocessing Filters, Attribute selection,

Classification/Regression, Clustering, Association

discovery, Visualization. The set of training instances has

to be encoded in an input file with.ARFF (Assign

Relation File Format) extension to be used by the Weka

tool in order to generate the canopies that will be used as

inputs in our algorithm.

We apply our proposed AMF-IDBSCAN algorithm

on wine data set with Eps = 0.9 and MinPts = 6, number

of canopies= 4, F-measure= 0.354 and obtain an average

error index of 18.25%, number of clusters = 4. While

applying AMF-IDBSCAN on Iris data set, we get an

average error index of 25.63% with the same Eps and

Minpts, number of canopies= 3, F-measure= 0.758,

number of clusters = 4. Another real data set is Glass

data set and when we apply our proposed algorithm on it,

we get an average error index of 35.96% , number of

canopies= 8, F-measure= 0.695 with number of = 6. We

get for Adult dataset an average error index of 29.46%,

number of canopies= 100, F-measure= 0.495 with

number of clusters=1285. For ionosphere, an average

error index= 27.64%, number of canopies= 11, F-

measure= 0.821 and number of clusters=5 (see Table 4).

DMDBSCAN:

We apply the DMDBSCAN algorithm on the wine

data set, and applying k-dist for 3-nearest points, we have

3 values of Eps which are 4.3, 4.9 and 5.1. F-measure=

0.125, the average error index is 23.15% and number of

clusters = 3. While applying DMDBSCAN on Iris data

set, and applying k-dist for 3-nearest points, we have 2

values of Eps which are 0.39 and 0.45. The average error

index is 38.46%, F-measure =0.295 and a number of

clusters = 3.

Another real data set is Glass dataset and when we

apply DMDBSCAN on it and applying k-dist for 3-

nearest points, we have 3 values of Eps which are 0.89,

9.3 and 9.4. F-measure= 0.623, the average error index is

58.39% and the number of clusters = 6. We get for Adult

dataset an F-measure= 0.474, the average error index of

34.66%, with a number of clusters=1301. For ionosphere,

F-measure= 0.754, an average error index= 30.04%, and

number of clusters=6 (see Table 5).

D
at

as
et

 N
am

e

T
1

T
2

N
°

o
f

ca
n

o
p

ie
s

N
°

o
f

cl
u

st
er

s

F
-m

ea
su

re

E
rr

o
r

ra
te

 (
%

)

T
im

e
ta

k
en

 t
o

b
u

il
d

 a
 m

o
d

el

F
is

h
er

's
 i

ri
s

1.092 0.874 3 4 0.798 25.63 0.01

W
in

e
1,561 1,249 4 4 0.354 18.25 0.02

G
la

ss

id
en

ti
fi

ca
ti

o
n

1,237 0,989 8 6 0.695 35.96 0.04

A
d

u
lt

2,020 1,616 100
1

2
8
5

0.495 29.46 0.07

Io
n
o

sp
h

er
e

2,700 2,160 11 5 0.821 27.64 0.04

Table 4: Results of applying AMF-IDBSCAN.

Dataset Name
N° of

clusters

F-

measure

Error

rate

(%)

Time is

taken to

build a

model

Fisher's iris 3 0.293 38.46 0.08

Wine 3 0.125 23.15 0.13

Glass

identification
6 0.623 58.39 0.24

Adult 1301 0.474 34.66 0.64

Ionosphere 6 0.754 30.04 0.09

Table 5: Results of applying DMDBSCAN.

Dataset Name
N° of

clusters
F-measure

Time taken

to build a

model

Error

rate (%)

Fisher's iris 3 0.354 0.03 28.54

Wine 4 0.274 0.05 23.45

Glass

identification
8 0.323 0.09 49.52

Adult 1265 0.475 5476.9 27.96

Ionosphere 3 0.639 0.84 29.15

504 Informatica 43 (2019) 495–506 A. Chefrour et al.

Dataset

Name

DBSCAN AMF-IDBSCAN DMDBSCAN IDBSCAN

N
°

o
f

cl
u

st
er

s

F
-m

ea
su

re

E
rr

o
r

ra
te

(%
)

N
°

o
f

cl
u

st
er

s

F
-m

ea
su

re

E
rr

o
r

ra
te

(%
)

N
°

o
f

cl
u

st
er

s

F
-m

ea
su

re

E
rr

o
r

ra
te

(%
)

N
°

o
f

cl
u

st
er

s

F
-m

ea
su

re

E
rr

o
r

ra
te

(%
)

Fisher's iris 3 0.264 35.33 4 0.798 25.63 3 0.293 38.46 3 0.354 28.54

Wine 3 0.175 26.18 4 0.354 18.25 3 0.125 23.15 4 0.274 23.45

Glass

identification
6 0.423 68.22 6 0.695 35.96 6 0.623 58.39 8 0.323 49.52

Adult 1216 0.475 32 1285 0.495 29.46 1301 0.474 34.66 1265 0.475 27.96

Ionosphere 2 0.854 31.62 5 0.821 27.64 6 0.754 30.04 3 0.639 29.15

Table 6: Comparison against the results of DBSCAN, IDBSCAN, DMDBSCAN

and our proposed algorithm AMF-IDBSCAN.

Table 6 compares the results obtained by our

proposed algorithm against those of three other

algorithms, namely: DBSCAN, IDBSCAN, and

DMDBSCAN:

• From our experiments, and as Tables 2, 3, 4 and 5

show: by using the DBSCAN algorithm for multi-

densities data sets, we get low-quality results with

long times. DBSCAN algorithm is a time-

consuming algorithm when dealing with large

datasets. This is due to Eps and Minpts parameters

values which are very important for DBSCAN

algorithm, but their calculations are time-

consuming. In other sense, clustering algorithms

are in need to discover a better version of the

DBSCAN algorithm to deal with these special

multi-densities datasets.

• DMDBSCAN gives better efficiency results than

DBSCAN clustering algorithm but takes more time

compared with the other algorithms. This is due

that the algorithm needs to call the DBSCAN

algorithm for each value of Eps.

• The IDBSCAN algorithm is more efficient in

terms of error rate and f-measure than DBSCAN

algorithm. Also, it takes more time compared with

DBSCAN, DMDBSCAN, and AMF-IDBSCAN.

This is due to the fact that this algorithm needs to

call the DBSCAN algorithm to make the initial

clustering.

• AMF-IDBSCAN gives the best efficiency results

compared to the other studied algorithms. Table 6

presents the F-Measure values recorded for all the

data sets and all the algorithms. A high value of F-

Measure proves the better quality of the clustering

process. A significant improvement is found on

AMF-IDBSCAN and on all datasets except the

Ionosphere dataset. The maximum increase is

observed in both Iris and Glass data sets. The

improvement in F-Measure shows that our

proposed method is more efficient in terms of

noise removal and outlier labeling. Apart from F-

Measure, our proposed method allows to achieve

good clustering results in a reasonable time.

It can be easily observed from Figure 5 that our

proposed clustering method for noise removal is

well suited for high dimensional data sets and it

exceeds the other existing methods.

5 Conclusion and perspectives
In this paper, we proposed AMF-IDBSCAN an

enhanced version of the DBSCAN algorithm,

including the notions of density, canopies and noise

removal. This work presents a comparative study of

the performance of this proposed approach which is

fused with an adaptive median filtering median for

noise removal and outlier detection technique and a

canopy clustering method to reduce the volume of

large datasets.

We compared this algorithm with the original

DBSCAN algorithm, IDBSCAN, DMDBSCAN, and

our experimental results show that the proposed

approach gives better results in terms of error rate and

f-measure with the increment of data in the original

database.

In our future works, we will extend our

investigations to other incremental clustering

algorithms like COBWEB, incremental OPTICS and

incremental supervised algorithms like incremental

SVM, learn++, etc.

One of the remaining interesting challenges is

how to select the algorithm parameters like k-dist, eps,

Minpts, and number of canopies automatically.

6 Acknowledgment
The authors are grateful to the anonymous referees for

their very constructive remarks and suggestions.

AMF-IDBSCAN: Incremental Density Based clustering... Informatica 43 (2019) 495–506 505

Figure 5: F-Measure (FM) Comparison across all Datasets.

7 References
[1] Patil Y.S., Vaidya M.B. (2012). A technical survey

on cluster analysis in data mining. Journal of

Emerging Technology and Advance Engineering,

2(9):503-513.

[2] ur Rehman S., Khan M.N.A. (2010). An

incremental density-based clustering technique for

large datasets. In Computational Intelligence in

Security for Information Systems., Springer, Berlin,

Heidelberg,pp. 3-11.

http:// doi.org/10.1007/978-3-642-16626-6_1

[3] Abudalfa S., Mikki M. (2013). K-means algorithm

with a novel distance measure. Turkish Journal of

Electrical Engineering & Computer

Sciences, 21(6): 1665-1684.

https://doi.org/10.3906/elk-1010-869.

[4] Kumar K. M., Reddy A. R. M. (2016). A fast

DBSCAN clustering algorithm by accelerating

neighbor searching using Groups method. Pattern

Recognition, 58:39-48.

https://doi.org /10.1016/j.patcog.2016.03.008.

[5] Kulkarni P. A., Mulay P. (2013). Evolve systems

using incremental clustering approach. Evolving

Systems, 4(2): 71-85.

https://doi.org /10.1007/s12530-012-9068-z.

[6] Goyal N., Goyal P., Venkatramaiah K., Deepak P.

C., Sanoop P. S. (2011, August). An efficient

density based incremental clustering algorithm in

data warehousing environment. In 2009

International Conference on Computer Engineering

and Applications, IPCSIT , 2: 482-486.

https://doi.org/10.1016/j.aej.2015.08.009.

[7] Tseng F., Filev D., Chinnam R. B. (2017). A mutual

information based online evolving clustering

approach and its applications. Evolving

Systems, 8(3): 179-191.

https://doi.org/10.1007/s12530-017-9191-y.

[8] Liu X., Yang Q., He L. (2017). A novel DBSCAN

with entropy and probability for mixed data. Cluster

Computing, 20(2):1313-1323.

https://doi.org/10.1007/s10586-017-0818-3.

[9] Suthar N., Indr P., Vinit P. (2013). A Technical

Survey on DBSCAN Clustering Algorithm. Int. J.

Sci. Eng. Res, 4:1775-1781.

[10] Ram A., Jalal S., Jalal A. S., Kumar M. (2010).

DVBSCAN: A density based algorithm for

discovering density varied clusters in large spatial

databases. International Journal of Computer

Applications, pp. 0975-8887.

https://doi.org/10.5120/739-1038.

[11] Birant D., Kut A. (2007). ST-DBSCAN: An

algorithm for clustering spatial–temporal data. Data

& Knowledge Engineering, 60(1): 208-221.

https://doi.org/10.1016/j.datak.2006.01.013.

[12] Liu P., Zhou D., Wu N. (2007, June). Varied

density based spatial clustering of application with

noise. In International Conference on Service

Systems and Service Management, p. 21.

https://doi.org/10.1109/ICSSSM.2007.4280175.

[13] Elbatta M. N. (2012). An improvement for

DBSCAN algorithm for best results in varied

densities.

https://doi.org/10.1109/MITE.2013.6756302.

[14] Elbatta M. T., Ashour W. M. (2013). A dynamic

method for discovering density varied clusters, 6(1).

[15] Viswanath P., Pinkesh R. (2006, August). l-dbscan:

A fast hybrid density based clustering method.

In 18th International Conference on Pattern

Recognition (ICPR'06), IEEE, 1: 912-915.

https://doi.org/10.1109/ICPR.2006.741.

[16] Uncu O., Gruver W. A., Kotak D. B., Sabaz D.,

Alibhai Z., Ng C. (2006, October). GRIDBSCAN:

GRId density-based spatial clustering of

applications with noise. In 2006 IEEE International

Conference on Systems, Man and Cybernetics ,

IEEE, 4: 2976-2981.

http://dx.doi.org/10.1016/j.patcog.2016.03.008
http://dx.doi.org/10.1007/s12530-012-9068-z
https://doi.org/10.1016/j.aej.2015.08.009
http://dx.doi.org/10.1007/s12530-017-9191-y
http://dx.doi.org/10.1007/s10586-017-0818-3
http://dx.doi.org/10.1016/j.datak.2006.01.013
https://doi.org/10.1109/ICSSSM.2007.4280175
http://dx.doi.org/10.1109/MITE.2013.6756302

506 Informatica 43 (2019) 495–506 A. Chefrour et al.

https://doi.org/10.1109/ICSMC.2006.384571.

[17] Liu B. (2006, August). A fast density-based

clustering algorithm for large databases. In 2006

International Conference on Machine Learning and

Cybernetics IEEE,pp. 996-1000.

https://doi.org /10.1109/ICMLC.2006.258531.

[18] He Y., Tan H., Luo W., Mao H., Ma D., Feng S.,

Fan J. (2011, December). Mr-dbscan: an efficient

parallel density-based clustering algorithm using

mapreduce. In 2011 IEEE 17th International

Conference on Parallel and Distributed Systems,

IEEE, pp. 473-480.

https://doi.org /10.1109/ICPADS.2011.83.

[19] [19] Wang S., Liu Y., Shen B. (2016, July).

MDBSCAN: Multi-level density based spatial

clustering of applications with noise.

In Proceedings of the 11th International Knowledge

Management in Organizations Conference on The

changing face of Knowledge Management

Impacting Society, ACM, p. 21.

https://doi.org /10.1145/2925995.2926040.

[20] Swathi Kiruthika V., Thiagarasu Dr. V. (2017). FI-

DBSCAN: Frequent Itemset Ultrametric Trees with

Density Based Spatial Clustering Of Applications

with Noise Using Mapreduce in Big Data.

International Journal of Innovative Research in

Computer and Communication Engineering, 5: 56-

64.

https://doi.org/ 10.15680/IJIRCCE.2017. 0501007

[21] Mai S. T., Assent I., Storgaard M. (2016, August).

AnyDBC: an efficient anytime density-based

clustering algorithm for very large complex

datasets. In Proceedings of the 22nd ACM SIGKDD

international conference on knowledge discovery

and data mining, ACM, pp. 1025-1034.

https://doi.org/ 10.1145/2939672.2939750.

[22] Bakr A. M., Ghanem N. M., Ismail M. A. (2015).

Efficient incremental density-based algorithm for

clustering large datasets. Alexandria Engineering

Journal, 54(4):1147-1154.

https://doi.org/ 10.1016/j.aej.2015.08.009.

[23] Yada P., Sharma P. (2016). An Efficient

Incremental Density based Clustering Algorithm

Fused with Noise Removal and Outlier Labelling

Technique. Indian Journal of Science and

Technology, 9: 1-7.

https://doi.org/10.17485/ijst/2016/v9i48/106000.

[24] McCallum A., Nigam K., Ungar L. H. (2000,

August). Efficient clustering of high-dimensional

data sets with application to reference matching.

In Proceedings of the sixth ACM SIGKDD

international conference on Knowledge discovery

and data mining, ACM, pp. 169-178.

https://doi.org/10.1145/347090.347123.

[25] Kumar A., Ingle Y. S., Pande A., Dhule P. (2014).

Canopy clustering: a review on pre-clustering

approach to K-Means clustering. Int. J. Innov. Adv.

Comput. Sci.(IJIACS), 3(5): 22-29.

[26] Ali T., Asghar S., Sajid N. A. (2010, June). Critical

analysis of DBSCAN variations. In 2010

International Conference on Information and

Emerging Technologies, IEEE, pp. 1-6.

https://doi.org/ 10.1109/ICIET.2010.5625720.

[27] Ester M., Kriegel H. P., Sander J., Xu X. (1996,

August). A density-based algorithm for discovering

clusters in large spatial databases with noise.

In Kdd, 96(34): 226-231.

[28] Moreira A., Santos M. Y., Carneiro S. (2005).

Density-based clustering algorithms–DBSCAN and

SNN. University of Minho-Portugal.

[29] Chakraborty S., Nagwani N. K. (2011). Analysis

and study of Incremental DBSCAN clustering

algorithm. International Journal of Enterprise

Computing and Business Systems, 1: 101-130.

https://doi.org/10.1007/978-3-642-22577-2_46.

[30] Gu X., Angelov P. P., Kangin D., Principe J. C.

(2017). A new type of distance metric and its use

for clustering. Evolving Systems, 8(3): 167-177.

https://doi.org/10.1007/s12530-017-9195-7.

[31] Vijaykumar V. R., Jothibasu P. (2010, September).

Decision based adaptive median filter to remove

blotches, scratches, streaks, stripes and impulse

noise in images. In 2010 IEEE International

Conference on Image Processing, IEEE, pp. 117-

120.

https://doi.org/10.1109/ICIP.2010.5651915.

[32] Chen T., Wu H. R. (2001). Adaptive impulse

detection using center-weighted median

filters. IEEE signal processing letters, 8(1): 1-3.

https://doi.org/10.1109/97.889633.

[33] Zhao Y., Li D., Li Z. (2007, August). Performance

enhancement and analysis of an adaptive median

filter. In 2007 Second International Conference on

Communications and Networking in China, IEEE,

pp. 651-653.

https://doi.org/10.1109/CHINACOM.2007.4469475

[34] Sasaki Y. (2007). The truth of the F-

measure. Teach Tutor mater, 1(5): 1-5.

https://doi.org/10.13140/RG.2.1.1571.5369.

[35] Gokilam G. G., Shanthi K. (2015). Comparing

clustering Algorithms with Diabetic Datasets in

WEKA Tool.

http://dx.doi.org/10.1109/ICSMC.2006.384571
https://doi.org/10.1109/ICMLC.2006.258531
https://doi.org/10.1109/ICPADS.2011.83
http://dx.doi.org/10.1145/2925995.2926040
http://dx.doi.org/10.1145/2939672.2939750
http://dx.doi.org/10.17485/ijst%2F2016%2Fv9i48%2F106000
http://dx.doi.org/10.1145/347090.347123
https://doi.org/10.1109/ICIP.2010.5651915
https://doi.org/10.1109/97.889633
https://doi.org/10.1109/CHINACOM.2007.4469475

