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ABSTRACT

Background subtraction is an essential step in the process of monitoring videos. Several works have
proposed models to differentiate the background pixels from the foreground pixels. Mixtures of
Gaussian (GMM) are among the most popular models for a such problem. However, the use of a
fixed number of Gaussians influence on their results quality. This article proposes an improvement
of the GMM based on the use of the artificial immune recognition system (AIRS) to generate and
introduce new Gaussians instead of using a fixed number of Gaussians. The proposed approach
exploits the robustness of the mutation function in the generation phase of the new ARBs to create
new Gaussians. These Gaussians are then filtered into the resource competition phase in order to keep
only ones that best represent the background. The system tested on Wallflower and UCSD datasets
has proven its effectiveness against other state-of-art methods.
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INTRODUCTION

Moving objects segmentation from scenes that are captured with a stationary/non-stationary camera
is one of the most difficult and interesting activities in computer vision (Brutzer et al., 2011; Lim and
Keles, 2018b). Subtracting the background requires a powerful method that ensures a good separation
between the background and the foreground.

In the literature, there are several methods for detecting moving objects without knowing any
prior information about them (Toyama et al., 1999). Generally, all these methods share the following
steps (Bouwmans, 2012):

Background Initialization

In this step, a primary background model is constructed and learned by a set of frames that have
no moving objects. There are many ways which can be designed this model like (statistical, fuzzy,
neuro-inspired, etc.).
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Foreground Detection

After initializing the background model, each frame is compared with the background model to
define the foreground.

Background Maintenance

During this step, all settings of the background model are updated to pick up any novel changes in
the background within a video.

GMM is one of the most popular methods that has achieved considerable success in detecting
changes in videos. However, this method has failed in problems related to: lighting changes and
hidden areas. Several studies showed that the number of Gaussians in GMM influence on the results
quality. The contribution of this work is to manage dynamically the number of Gaussians based on
the AIRS algorithm instead of fixing them a priori by the user. This paper proposes to generate a set
of new Gaussians using two different strategies: the first one (Random generation) uses the AIRS to
improve the system decision while the second one (Directed generation) uses the AIRS to improve
the GMM learning phase.

Random Generation

Firstly, the system stars with a learning phase using the GMM algorithm. During the classification
stage, the AIRS generates several Gaussian models using Memory cell identification and ARB
generation process for all pixels regardless their nature. These models are filtered according to the
resource competition and memory cell development process of the AIRS algorithm to select only the
best models. Once the AIRS algorithm is finished, the GMM method is used to decide the pixels nature.

Directed Generation

It begins with the same first step as a random generation method and consists to apply Memory cell
identification and ARB generation process only for pixels representing the background. Indeed, the
system used the GMM algorithm to filter background from foreground pixels before the mutation
process to reduce the time consumed to generate new models and to improve accuracy since the
mutation process is based only on pixels representing the background.

To cover all sections, the paper is organized as follows: Section 2 provides an overview of literature
works related to background subtraction in which we proposed a taxonomy. Section 3 and 4 present
a definition of methods used (GMM, AIRS). Section 5 is dedicated to our contribution in which we
present two propositions. Some experiments on Wallflower and UCSD datasets are discussed in
section 6. Section 7 concludes the paper.

RELATED WORKS

Subtracting the background from videos remains a crucial problem due to the background variations.
Several studies have been proposed to improve the quality of background subtraction results. These
studies can be divided into two groups: the first group is focused on selecting a good feature (color,
texture, edge), while the other try to choose the best algorithm for video changes detection. Among
the approaches that are interested in selecting the right features:

St-Charles et al. (2015b) proposed a new universal pixel-level segmentation method based on
the selection of spatiotemporal binary features and colors to detect video changes. Authors in (Wang
et al., 2018) exposed a type of multi-view learning based on the use of heterogeneous features such
as: brightness variation, chromaticity and texture variation to define background and foreground
pixels. In (Allebosch et al., 2015), authors proposed a model that combines RGB color space and
edge descriptors to classify the pixels.



Recently, many works focused on the development of parametric models for the background
subtraction. Among this works: Wren et al. (1997) proposed a unimodal representation of the
background based on the use of a single Gaussian probability distribution (SG) to describe pixel
variations. This model is simple, very fast and computationally inexpensive, but it is sensitive to fast
pixel variations. Indeed, only one Gaussian cannot memorize the old states of the pixel. This requires
migration to more robust and multi-modal approach. Friedman and Russell (1997) proposed the first
model, which describes the variance of the recent values of each pixel by a mixture of the Gaussians.
In this model, the Expectation Maximization (EM) algorithm is used to initialize and estimate the
parameters of each Gaussian. However, Stauffer and Grimson (1999) proposed a standardization of
this model with efficient update equations.

Several studies have been proposed to improve GMM accuracy in complex scenes. Among this
works, there are which interested in hybrid models such as GMM and Block matching (Farou et al.,
2017), boosted Gaussian Mixture Model (Martins et al., 2017) which combines chromatic features
by a hysteresis to classify pixels, GMM with a spatio-temporal distribution (Xia et al., 2016), GMM
and k-means (Charoenpong et al., 2010).

There are also methods that focused on non-parametric background model. In (Elgammal et al.,
2000) authors estimated the probability density function of the recent N values of each pixel with
a kernel estimator (KDE). Jianzhao et al. (2017) proposed an improvement of this method with the
LUT method. Authors of (Haritaoglu et al., 2000) used the notion of a visual dictionary words to
model the pixels of the background. An identical approach (St-Charles et al., 2015a) modeled the
background with a visual dictionary words, but it adds an automatic mechanism for updating inner
parameters. Authors of (Krungkaew and Kusakunniran, 2016) presented a combination between the
visual dictionary words and the lab colorimetric space (light, color channels) for the background
subtraction in dynamic scenes.

Some research works have introduced the fuzzy concept to develop more efficient and robust
methods for modeling the background, such as (El Baf et al., 2008; Sigari et al., 2008; Bouwmans
and El Baf, 2010; El Baf et al., 2009; Zhao et al., 2012).

There are many approaches that used sub-spatial learning for the background subtraction. One of
these methods used the principal component analysis (PCA) (Oliver et al., 2000) to create and to learn
the background model. Works presented in (Javed et al., 2018; Hunziker et al., 2018; Shen et al., 2016)
proposed to improve the performance of the PCA for the background subtraction. Authors in (Tsai
and Lai, 2009) defined another type of sub-spatial learning which use the independent component
analysis (ICA) in the video change detection. Another work of (Bucak and Gunsel, 2007) presented
a decomposition of video content by an incremental non-negative matrix factorization (SL-INMF).

Recently, several methods used deep learning for subtracting the background, among this method:
FgSegNet_S (FPM) (Lim and Keles, 2018a), Cascade CNN (Wang et al., 2017), DeepBS (Babaee et
al., 2018). However, deep leaning methods require a large number of simples and needs more time for
training. In addition, any change in the background leads to restart the learning of the model, which
is impossible in a real monitoring application because of the high cost in time and power required
for this operation (figure 1).

GAUSSIAN MIXTURE MODEL (GMM)

Gaussian mixture model (GMM) proposed by Stauffer and Grimson (1999) assumes that the
observation of a given pixel value will be in one of K Gaussian distributions at one time.

The concept of the method is simple, for each new pixel, their intensity in the HSV color space is
compared with the existing Gaussian probability distributions (figure 2). A high probability to these
Gaussian mixtures indicates that the pixel represents the background. The probability of observing
the value of the current pixel is:



Figure 1. Proposed taxonomy for Background subtraction
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Where:

K'is the number of Gaussians, w, , the weight of the la k" Gaussian at time t, X, and My,
respectively the covariance matrix and the average of the k™ Gaussian at time t and nis the Gaussian
probability density function.

After initializing the Gaussian parameters (w, , b, ,,%, ), each new pixel value is tested with

these K Gaussian distributions to find the Gaussian that correspondent to it using the following

|f)t—l,lk|

equation: <25 (2)

k



If the Equation (2) is satisfied, the parameters of the matched Gaussian are updated using the
following equations:

w,=1-ou,, +a 3)
w,=0=-9)un, , +9o.7h )
ot =(1-9,)0l, +o, (P -n,) s)
o, = an(P, |p,,0,) ©6)

Only the weights are updated for the other unmatched distributions (see Equation (7)).

W, = (1 - a)wk.t—l @)

After this step, all weights are normalized to ensure that their sum always equals 1.
If the match is not made for all the K Gaussians, the pixel is classified as foreground pixel and
the least probable Gaussian will be replaced by a new distribution whose parameters are defined with:

O'i = O’i ®)
W, = ¢, ®)
w =P (10)

To distinguish the foreground pixels from the background pixels, the distributions will be ordred
according to the value of w,, / o, . The first B distributions that verified Equation (11) are selected
to represent the background.

K
B= argmin{z w,, > B (11)

k=1

Where B is the minimum part of the data corresponding to the background.



Figure 2. Flow chart of GMM method
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ARTIFICIAL IMMUNE RECOGNITION SYSTEM (AIRS)

In recent years there has been considerable interest in exploiting the bio-inspired approaches in
computer applications. Among the approaches that have achieved great success in the optimization
problem and machine learning is the artificial immune recognition system (AIRS). The first supervised
artificial immune system was proposed by Watkins (2001), this model based on antigen-antibody
representation, which measures a degree of “closeness” or similarity between training data (antigens)
and cell B. The algorithm takes an antigen as an input and produces a set of memory cells. Memory
cells represent the model that can be used in the classification stage. AIRS is described on four phases:

Phase One (Initialization)

Itis considered as a data pre-processing stage, since all data will be normalized such that the Euclidean
Distance (affinity) between two feature vectors is always in [0, 1]. After normalized the data, the
affinity threshold (AT) will be calculated to use later in the decision of which memory cells will be
replaced. At the end of this stage memory cell set MC and ARB set are initialized by some antigens
selected randomly from AG set.
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Once the initialization step is finished, each antigen in the learning set through the following
phases.

Phase Two (Memory Cell Identification and ARB Generation)

The first step in this stage is to determine the memory cell (mc__ ) the most stimulated with the
current antigen ag and which has the same class of the latter. AIRS generates several new clones by
mutating the feature vector m¢__ according to a probability rate. The new clones placed with the
clones previously generated in the AB set.

€y, = argmax . Stimulation(ag, mc) (13)
With:
Stimulation(ag, mc) = 1 — Affinity(ag, mc) (14)

Phase Three (Competition for Resources and
Development of a Candidate Memory Cell)

AIRS has a mechanism to organize the survival of individuals within the ARB population (AB),
this mechanism removes the bad quality of ARBs using the cumulative resource division technique
according to the nature of the antigen class. ARBs of the same class of ag have half of the cumulative
resources, the other half will be divided on the rest of the ARBs. Each class has a maximum resource
allocation, if the allocation of resources of a class exceeds their maximum allocation, the excess
resources will be removed from the least stimulated ARBs. Each ab has a number of resources
less than or equal to 0 will be removed from the AB set. The remaining ARBs are given another
opportunity to generate new clones. The new clones will be also filtered through the competition
for resources process. These two steps will be repeated until the average stimulation of each class
exceeds the stimulation threshold.

Once the stopping criterion is reached, the AIRS selects only one ab that is most stimulated with

the current antigen ag as a candidate memory cell (mc__.. ).

Phase Four (Memory Cell Introduction)

This is the last phase in the process of training a single antigen. If the stimulation of mc__ . with the

antigen ag greater than that of theme . mc__ .. will be introduced as a new memory cell (mc). If

the affinity betweenmc__ . and mc__is less than AT X ATS, mc__ .. replaces mc_in MC set.
candidate match candidate match

PROPOSITIONS

The in-depth study made on Gaussian mixtures shows the important role of the number of Gaussians
in describing the pixel variations. Indeed the use of a fixed number of Gaussians can influence
results quality, because a small number of Gaussians can reduces the historic of the pixel, which



causes a problem in the dynamic background. However, if we use a very large number of Gaussians
without updating the Gaussian numbers we cannot correctly classify stationary objects that become
moving objects. Following this principle propose two novel strategies to introduce new Gaussians
based on the AIRS algorithm in order to be as faithful as possible to the background model (figure
3). Indeed, these ideas allows to the passage from a static model where the number of Gaussians is
fixed empirically for all pixels towards a model dynamic and adaptive according to the environment
and the background complexity.

Proposition One (Random Generation)

The first proposition consists to introduce to the GMM model of any pixel (background pixel or
foreground pixel) a set of Gaussian representing the background using the AIRS algorithm. Then
we decide the nature of this pixel according to the GMM method.

Firstly, we create a set of Gaussian (g) representing the background for the pixel P, (at time t)
that vitrifies:

Background _set = {gi,M < 2.5} 15)
O.

1

Such that each Gaussian g, is represented by: the pixel value P, the average |, , the variance O,

and the weight w, . After creating the background model, we choose the Gaussian (mc,_ ) that has
the closest distance to the value of the current pixel.

mcmatch =a g g;€Background _set c ( )

1

mc__ . is mutated in the ARBs generation phase with a mutation function described below. At
the end of this phase, a set of Gaussians (clones) are created.
The number of clones is calculated by the following equation:

NumClones = Clonal _ratex Hyper _mutation _ratex Affinity (E ,mc, .. )
a7

Clonal_Rate and Hyper_mutation_rate are two integer values chosen by the user.
Typically, the Affinity is calculated between the current pixel P and a Gaussian, in the Equation
(18) it calculated between P and the Gaussian mc_ , (figure 4):

7 -n,. |
Affzmty (R ? mcmalch ) - o = (18)

MConateh

AB = {gcl(mel ’ g(zl(m(’2 e gNumClones } (19)



Figure 3. Global architecture of the proposed system
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Mutation_rate is a value between 0 and 1.
New clones must be filtered through competition for resources process, keeping only the best
and the correct Gaussians (ab) that verified the following condition.

|Pab_”ab|

Unb

<25 (20)

The remaining ab are selected as a set of memory cell candidate (MC__ .. ) instead to choose

only the best ab as a memory cell candidate like that indicate in original AIRS.

Pab —Hy,

O-ab

= {ab, <25 (21)

candidate



Figure 4. Pseudo-code for Mutation Function used

Mutation function (a Gaussian g (pixel value P, mean 1, variance ), b : Boolean value): g

Begin
For each g g. i[2,3] do
change < random value between 0 and 1
changeto < random value between 0 and 254
If change < Mutation _rate then
g « changeto xrandom value +1

b« true
End If
End For
If b=true then
change « random value between 0 and 1
changeto < random value between 0 and 255
If change < Mutation _rate then
g,  changetoxnormalization value

End If
End If
End

The last step of the AIRS algorithm is to introduce the memory cells mc from the previous set
MC,_ ... This operation consists of choosing the most representative Gaussians among the new
Gaussians and adding them to the background model according to the following condition:

AfonZty ('Pf’ mct:undidate) < Afflnlty (})f’ mcmatch ) (22)
If the previous condition is verified, we compare the mean Affinity of m¢_ , andmc__ .~ with
the affinity threshold AT multiplied by the scalar affinity threshold ATS:
Affinity (P ,mc + Affinity (P,mc__ .
( t candzdate) ( t candzdatc) < A T x ATS (23)

2

Where AT is the average distance of all background models generated in the learning phase.
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Z Avrage _ Affinity(P, G, )
j=1 )

AT = = (24)

nxm

G is a set of Gaussians for the pixel P
If the Equation (23) is satisfied, mc__ w111 be removed from MC set.

After these steps, GMM method is applied on the background model of this pixel to determine
whether the pixel belongs to the background or foreground.

Proposition Two (Directed Generation)

This proposition is based on the same principle of proposition one, but we have led the production
of the new Gaussians that are generated by the AIRS algorithm only for pixels representing the
background instead to precede for all pixels whatever their nature (background or foreground). This
mechanism started by classifying the pixels using GMM method (see section two). After this step,
if the pixel belongs to the background, the memory cell mc that satisfies the Equation (25), is
chosen from the first f distribution Gaussians.

match’

= argmin 25)

C"umrh

P _
[w Cos
GZ

g,€B_GMM

The mc_ , is muted to create a NumClones novel Gaussians according to the mutation function
algorithm. The affinity is calculated between P, and the Gaussian mc__ , according to the Equation (18).
The AB set (see Equation (19)) contains all the new Gaussians that are created in the mutation
step. During the competition for resources process the ab are filtered and only AB set which satisfies
Equation (20) is kept. To minimize the used memory space in the memory cell introduction step, only

one memory cell (mc )is introduced. This latter represents the average of Gaussians of the AB set.

candidate

me = Avrage(AB) (26)

candidate

If the Equation (22) is satisfied, the system introduced the Gaussianmc__ .. ~asanew background
model and compare the mean Affinity of mc and mc__ . with AT xXATS according to the

match candidate
Equation (23) and Equation (24). The mc thatl verifies Equatlion (23) is removed from the set of
background models.

match

EXPERIMENTAL VALIDATION AND DISCUSSION

The system presented in this paper is implemented in Python on a computer with an Intel Core 17 and
8 GB memory capacity. This section presents the results of our methods on the datasets Wallflower
(Toyama et al., 1999) and UCSD (Mahadevan and Vasconcelos, 2009).

After several empirical tests, the learning rate, the minimum part of the data corresponding to
the background, Clonal_rate, Hyper_mutation_rate, Mutation_rate, ATS) are respectively fixed to
0.01, 0.3, 10, 2, 0.1, 0.2.

Qualitative Approach

The following table shows the observable results of the propositions based on Wallflower and UCSD
datasets (table 1 and 2). Obtained results are compared with images of the ground truth and with some



method cited in the state of the art. However, the qualitative result does not describe objectively the
system performance (figure 5). For this purpose, quantitative tests are necessary to bravely demonstrate
the robustness of the approaches.

Quantitative Approach

In the quantitative approach, the authors have chosen as metrics: Recall, precision, F-measure to
evaluate the performance of the propositions. Indeed these three metrics are the popular and the most
used in the pattern recognition and information extraction with binary classification (Makhoul et al.,
1999; Liang et al., 2015) (Table 3).

e Recall (Re):

TP+ FN
o TP
e Precision: ———
TP+ FP
2xPrecisionxRecall
e F-measure: —
Precision+Recall

Where:

e True positive (TP): The result is positive (255), while the ground truth is also positive (255).
o False positive (FP): The result is positive (255), but the ground truth is negative (0).
o False negative (FN): The result is negative (0), but the ground truth is positive (255).

Discussion

This section discuss the obtained results of the two propositions on Wallflower and UCSD datasets,
these results are compared with the most referenced state of art methods in the modeling of the
background and with the ground truth (s 4 and Figures 6-8).

Proposition one achieved good results in moved object, Foreground Aperture, Camouflage,
Bootstarp, Waving trees videos, but they have some false detection. However, this proposition failed
to detect objects in scenes that have a large change in illumination like Light Switch and Time of Day
videos. For UCSD dataset, the random generation realized generally acceptable results, indeed, all
moving objects are detected, but this proposition has achieved poor detection quality in scenes that
have a progressive pixel variation. This due to the random generation of Gaussians.

The second proposition achieved good detection rate for Wallflower dataset compared to the
other methods cited in the state of the art, it occupies the third place with a total error of 5180. Indeed,
the directed generation has reduced the drawbacks of the first proposition when scenes have a large
change in illumination, this is due to the mechanism that generates new Gaussian models only for
pixels that represent the background. The obtained results on UCSD clearly show that this proposition
has obtained good results compared to the proposition one, since it has detected all moving objects
with some false negative in Hockey and Jump videos, this is due to the nature of the videos which
does not contain a sufficient number of samples for learning the system.

Noted that these propositions can achieve more efficient results by adding other features. Indeed,
the authors used H component of HSV color space as a feature. This choice was based on the capacity
of this space compared to the RGB space since it allows to channel the light into a single component
(V). Although variations related to light are reduced, only one feature remains insufficient for
background modeling. This study used only the H component, since the objective in this work is to
propose a new method of background subtraction and not selecting the good discriminator features.



Table 1. Qualitative results on UCSD dataset

Video Lliirds Boats Bottle Chopper Cyclists Flock
Frame 63 #25 11 51 23 171
Test Images T o | 1 ] e

Proposition 1
Random
Generation
Proposition 2
Directed
Generation
Video Name

Freeway Hockey ump Landing Ocean Peds
41 32 151 100

] . ~ "‘,

. S

Test Images

Proposition 1
Random
Generation

Proposition 2
Directed
Generation
Video Name

Surfers raffic Zodiac
102 126

Test Images e A

Proposition 1
Random
Generation
Proposition 2
Directed
Generation

CONCLUSION

This paper proposed two new mechanisms, which allows to reduce the drawbacks of GMM for
background subtraction. The idea is to introduce new Gaussian models randomly for all pixels or
only for pixels that represent background using Artificial Immune Recognition System. This allows to
move from a static to dynamic approach that can easily adapt the model to nature of the environment.
Obtained results on several videos from a public benchmark (Wallflower, UCSD) showed the
effectiveness of these propositions with small variations in the background. However, the random
generation of Gaussians is sensitive when the scene contains high illumination. This is due to the
nature of the method that create background models for all pixels (background, foreground pixels).

Based on the promising results of this work, further work is recommended to test the proposed
system on another public datasets as CDnet 2014 and to increase the number of features used to have
additional discriminative power instead to use only H value of HSV color space.



Table 2. Comparison of qualitative results with well-known background subtraction methods on Wallflower dataset

MO D LS WT Ca Bo FA
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Table 3. Comparison of quantitative results with well-known background subtraction methods on the Wallflower dataset.

Generation

Algorithm Error MO TD LS WT Ca Bo FA Total Total
Type Errors

SG FN 0 949 | 1857 | 3110 |4101 | 2215 | 3464 | 15696

FP 0 535 | 15123 | 357 |2040 |92 1290 | 1oaz7 |0
MOG FN 0 1008 | 1633 | 1323 | 398 | 1874 | 2442 | 8678

FP 0 20 a6 | 341 |00 |27 |0 |uess |
KDE FN 0 1208 | 760 | 170 | 238 | 1755 | 2413 | 6634

FP 0 25 | 14153 |s80  | 3392 |93 |eoa | 1osie | o0
SL-PCA FN 0 879 |962 | 1027 |350 | 304 | 2441 | 5963

FP 1065 | 16 362 | 2057 | 1548 |61 |53 |1oeao |0
SL-ICA FN 0 1199 | 1557 | 3372 | 3054 |[2560 |2721 | 14463

FP 0 0 210 | 148 |43 16 08 | 845 15308
SL-INMF FN 0 724 | 1593 | 3317 |e6626 | 1401 | 3412 | 17073

FP 0 s |30 e |24 |10 |16 |25 |00
SL-IRT FN 0 1282 | 2822 | 4525 | 1491 |1734 | 2438 | 14292

FP 0 159 |38 |7 114 | 2080 |12 e |
GMM and Block | EN 0 64 88 367 | 184 | 187 |89 979
Matching FP 0 90 605|783 |eas  |as7 |aer | zomr |
MOG with MRF | FN 0 47 204 |15 16 1060 | 34 1376

FP 0 w02 |sa6 a1t |asr |10z |eos |2am |00
Proposition FN 0 348|527 |3 18 542|786 | 2204
ég‘;ﬂgﬁ‘n FP 0 15686 | 15678 | 2000 | 460 | 430 | 815 | 35060 |12
Proposition FN 758 1087 60 140 709 227 2981
2 Directed FP 200|712 | 1713 | 185 | 424 |03 | 2199 | MO




Figure 5. Total errors on the Wallflower dataset
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Table 4. Comparison in term of Recall, Precision and F-measure with well-known background subtraction methods on the

Wallflower dataset

Algorithm Error MO TD LS WT Ca Bo FA
Type

SG Recall 1.000 [ 0949 | 0545 | 0.835 |0.761 | 0.884 | 0.807
Precision 1.000 | 0.971 0.128 | 0978 | 0.865 | 0.995 | 0918

F-measure | 1.000 | 0.960 | 0.207 | 0.901 |0.810 |0.936 | 0.859

MOG Recall 1.000 | 0932 | 0.849 | 0.991 0.985 | 0.904 | 0.870
Precision 1.000 | 0.993 |0.232 |0.969 |0.821 0.947 | 0.963

F-measure | 1.000 | 0.962 | 0.365 | 0.980 |0.896 |0.925 |0914

SL-PCA Recall 1.000 | 0.954 | 0.949 | 0.940 |0.980 |0.977 | 0.869
Precision 0945 0999 |0.980 |[0.887 |[0918 |[0.676 | 0.968

F-measure | 0971 | 0976 |0.964 | 0913 |0.948 |0.799 |[0.916

SL-ICA Recall 1.000 | 0938 | 0918 |0.823 |0.841 0.867 | 0.855
Precision 1.000 | 1.000 | 0988 | 0.991 |[0.997 |0.999 [0.974

F-measure | 1.000 | 0.968 | 0.952 |[0.899 |[0912 |[0.928 |0.911

SL-INMF Recall 1.000 | 0961 |0916 |0.821 |[0.651 |[0.926 |0.821
Precision 1.000 | 0974 |0.983 |[0.959 |0.981 0.989 | 0.990

F-measure | 1.000 | 0.968 | 0.948 |[0.885 [0.782 |[0.957 | 0.897

SL-IRT Recall 1.000 | 0933 |0.850 |[0.764 [0.922 |[0.899 |0.873
Precision 1.000 | 0.991 | 0.976 1.000 | 0.994 | 0.881 |0.999

F-measure | 1.000 | 0.961 0909 |0.866 |[0.956 |0.890 |[0.932

GMM and Block Matching Recall 1.000 | 0997 |0.995 |[0.980 [0.990 |[0.990 |0.995
Precision 1.000 | 0995 |0.968 |[0.958 |[0.966 |0.976 |0.981

F-measure | 1.000 [ 0.996 [0.982 |0.969 |0.978 |0.983 |0.988

MOG with MRF Recall 1.000 [ 0.997 [0.989 |0.999 |0.999 |0.944 |0.998
Precision 1.000 [ 0979 [0.971 |0.984 |0.976 |0.994 |0.968

F-measure | 1.000 [ 0.988 [0.980 | 0.991 0987 |0.969 |0.983

Proposition 1 Random Generation Recall 1.000 |0.732 | 0.823 0.999 0.998 0.784 | 0.841
Precision 1.000 [ 0.057 [0.135 |0.746 |0.957 |0.821 0.836

F-measure | 1.000 | 0.106 |[0.232 |0.854 |0.977 |0.802 |0.838

Proposition 2 Directed Generation | Recall 1.000 | 0416 |[0.635 [0.990 |0986 |0.717 |0.954
Precision 1.000 [0.728 [0.726 |0.974 |0.982 |0.807 |0.904

F-measure | 1.000 [0.530 |0.678 |0.982 |0.984 |0.758 |0.928




Figure 6. Recall results on the Wallflower dataset
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Figure 7. Precision results on the Wallflower dataset
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Figure 8. F-measure results of well-known background subtraction methods on the Wallflower dataset.
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