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 This paper deals with a comparative study of circle criterion based nonlinear 
observer and H∞ observer for induction motor (IM) drive. The advantage of 
the circle criterion approach for nonlinear observer design is that it directly 
handles the nonlinearities of the system with less restriction conditions in 
contrast of the other methods which attempt to eliminate them. However the 
H∞ observer guaranteed the stability taking into account disturbance and 
noise attenuation. Linear matrix inequality (LMI) optimization approach is 
used to compute the gains matrices for the two observers. The simulation 
results show the superiority of H∞ observer in the sense that it can achieve 
convergence to the true state, despite the nonlinearity of model and the 
presence of disturbance. 
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1. INTRODUCTION  

For a long time, the induction motor is considered as a principal workhorse in the industry due to its 
robustness, high reliability, relatively low cost, modest maintenance requirements and efficiency [1, 2]. 
However, induction motor is also known as a complex nonlinear system, in which time-varying parameters 
entail additional difficulties for machine control, conditions monitoring and fault diagnostic purposes [1]. 
The main problem with induction motor industrial applications is that only a few state variables of the 
machine are available for on-line measurements. This is due to technical and/or economical constraints.  

In order to perform advanced control techniques, conditions monitoring and faults diagnosis there is 
a great need of a reliable and accurate estimation of the key unmeasurable state variables of the machine. In 
this context, the observer design theory seems to be an ideal solution. Over the last two decades, nonlinear 
observer design problem has received much attention in the literature. Several attempts have been made for 
particular classes of nonlinear systems. Existing approaches can be roughly classified as follows: Nonlinear 
state linearization approaches, high-gain observers, geometric algorithms, variable structure design 
procedures, and algebraic techniques [3-6].  

The problem with sensorless induction motor industrial applications is which approach that provide 
the most accurate and reliable estimation of unmeasurable state variables of the machine system.  

In this paper we focus our attention on the performance comparison of the so called circle criterion 
approach and H∞ observer design for induction motor (IM) system. The advantage of the circle criterion 
approach is the direct handling the system nonlinearities by exploiting their properties. This approach is less 
restrictive compared to the other methods as linearization approach, high gain observer and variable structure 
design procedures witch attempt to eliminate them [5, 6]. The H∞ observer is used to guaranties the 



      ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 10, No. 3, Sep 2019 : 1229 – 1243 

1230

robustness against nonlinearities assumed to be equivalent to some uncertainties due to internal and extrernal 
disturbances and measurement noises [7-12]. 

To make a comparative study between the circle criterion based observer and H∞ observer design for 
induction motor derive, we use one of the standard model of an induction motor. This type of nonlinear 
model is generally used for performing nonlinear control strategies, conditions monitoring and faults 
diagnosis of electric induction machine systems. 

The paper is organized as follows: In the second and third section we present the theory of nonlinear 
observer and the nonlinear observer based circle criterion respectively. The robust H∞ observer is presented 
in the fourth section. In the fifth section we present the considered nonlinear induction motor model. Finlay, 
we present simulation results and comments. A conclusion ends the paper. 
 
 
2. THE NONLINEAR LUENBERGER OBSERVER DESIGN 

We recall that an observer is a dynamical system which uses the available input-output data to 
reconstruct the unmeasurable system state variables. It is a “soft sensor” that plays an important role not only 
in sensorless control techniques but also in conditions monitoring, fault diagnosis, predictive maintenance 
and fault tolerant control techniques [1, 2].  

In this paper, we consider a class of nonlinear systems that can be decomposed in linear and 
nonlinear parts as: 
 

))(),(()()( tutxFtAxtx 
 (1) 

 
)()( tCxty    (2) 

 

Where )(tx stand for the system state variable, )(tu  for system input and )(ty for the system output. 

The function ))(),(( tutxF  represents the system nonlinearities. For this type of nonlinear system, a general 
nonlinear observer (Luenberger) expression is as follows: 

 

))(ˆ)((),ˆ()(ˆ)(ˆ tytyLuxFtxAtx 
  (3) 

 
)(ˆ)(ˆ txCty    (4) 

 

Where )(ˆ tx  stands for the estimated state. We assume that the nonlinear function ))(),(( tutxF  is 

locally Lipschitz with respect to the state variable )(tx . 
)(ˆ)())(),(ˆ())(),((/),(ˆ),( txtxtutxFtutxFtxtx  

With 0 as the Lipschitz constant; 
 
Theorem 1 [13]: Consider Lipschitz nonlinear system (1)-(2) along with the observer (3)-(4). The observer 
error dynamics are asymptotically stable with maximum admissible Lipschitz constant if there exist scalers 

0  and 0  and matrices 0P and G  such that the following LMI optimization problem has a solution 
)min( . 
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Proof: Defining the observer error as )(ˆ)()( txtxte  , then the observer error dynamics are given by: 
 

))(),(ˆ())(),(()()( tutxFtutxFeLCAte 
  (7) 

 
 In the following we use notations: 

))(),(( tutxFF   and ))(),(ˆ(ˆ tutxFF   
 

The time derivative of the Lyapunov function PeeV T  can be expressed as: 
 

)ˆ(2)]()[()( FFPeeLCAPPLCAetV TTT 
  (8) 

  
By using the Lipschitz property we have: 

 

ePeFFPe
TT 2)ˆ(2 

  (9) 
 
 Then equation (8) becomes: 

 
0]2)()[()(  ePeLCAPPLCAetV TTT 

  (10) 
 
Those leads to:  

 

02)()( 1   PPPLCAPPLCA T    (11) 
 
By using the Schur complement theorem we therefore obtain the following linear matrix inequality (LMI): 
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The Lipschitz constant can be computed as follows: 

For any Lyapunov function PeeV T we have: 
2

max
2

min )()( ePPeeeP T  
   (13) 

 
2

min )(22 ePPeeT  
  (14) 

 

Let: QLCAPPLCA T  )()(  (15) 
 
Then the time derivative can be written as: 

02)(
2  ePQeetV T 

 (16) 
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In addition, since P is positive definite, suppose IQ  .From the equation (18) we can write:  
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0)(21 max  P
  (19) 

 

And 
)()( max PP  


 

So from (19): 
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Which is equivalent to: 
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Using Schur complement lemma 
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Defining 
 1


, (6) is achieved. 
 
 
3. CIRCLE CRITERION BASED NONLINEAR OBSERVER DESIGN 

In contrast of the linearization-based and high-gain approaches which attempt to eliminate the 
system nonlinearities using a nonlinear state transformation or to dominate them by a high gain term of 
correction, circle-criterion exploits the properties of the system nonlinearities. In its basic form, introduced 
by Arcak and Kokotovic [14], the approach is applicable to a class of systems that can be decomposed in 
linear and nonlinear parts with a condition that the nonlinearities satisfy the sector property [14-16].  
. 
3.1. Basic sector properties 

A memoryless nonlinear function 
pp RRtzF  [0[:),(  is said to belong to the sector [0[   

if 0),( tzzF . Let 1v  and 2v  two real positive numbers, by setting 21 vvz   and
)],(),([),( 21 tvFtvFtzF  , the above sector property is equivalent to:  

 
 RvvtvFtvFvv 212121 ,0)],(),()[(   (23) 

 

Relation (23) states that the nonlinear function ),( tzF  is a nondecreasing function. On the other 

hand if ),( tzF  is a continuously differentiable function the above relation is equivalent to [7], [8]: 
 

RztzF
dz

d
 0),(

  (24) 
 

If the nonlinear function ),( tzF does not satisfy the positivity condition (24) we introduce a function 
),( tzF  such that: 

 

 
RztzF

dz

d
ztzFtzF  ,),(,),(),( 

   (25) 
 
And: 
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RztzF
dz

d
tzF

dz

d
 0),(),( 

   (26) 
 

In the multivariable case the sector property can be written as: 0),( tzFzT
. Where z and ),( tzF  

are respectively vectors of an appropriate dimension. 
 

3.2. Nonlinear Observer Design 
The circle criterion based nonlinear observer design can be performed for a class of nonlinear 

system that the model can be decomposed into linear part and nonlinear part as the following [14-16]: 
 

)](.[)](),([)()( txHGFtytutAxtx  
  (27) 

 
)()( tCxty    (28) 

 

Where A , C  and G  are known constant matrices with appropriate dimensions. The pair ),( CA  is 

assumed to be observable. The term )](),([ tuty  is an arbitrary real-valued vector that depends only on the 

system measured control inputs )(tu  and outputs )(ty . The nonlinear part of the system is included in the 

term )](.[ txHF  which is a time-varying vector function verifying the sector property. In the following we 
recall the main theorem and conditions that are used in this work to study the feasibility of nonlinear observer 
design for induction motor sensorless control with respect of circle criterion or sector property. A detailed 
proof of the theorem is presented in reference [17]. 
 
Theorem 2 [14, 15]: Consider a nonlinear system of the form (27)-(28) with the nonlinear part satisfying the 

circle criterion relations (23)-(26). If there exist a symmetric and positive definite matrix 
nxnRP   and a set 

of row vectors
pRK such that the following linear matrix inequalities (LMI) hold: 

 

0)()(  QLCAPPLCA T
  (29) 

 

0)(  TKCHPG   (30) 
 
The nonlinear observer design refers to the selection of the gain matrices L  and K  satisfying the LMI 

conditions (29)-(30). With nIQ   as a defined positive known matrix, nI  is an n-th order unity matrix and 
  is a small positive real number. 
 
Then a nonlinear observer can be designed as: 
 

))](ˆ)(()(ˆ[)](ˆ)([)](),([)(ˆ)(ˆ tytyKtxHFGtytyLtytutxAtx  
  (31) 

 
)(ˆ)(ˆ txCty    (32) 

 

And 0)(ˆ)()(lim  txtxtet , where )(ˆ tx is the estimate of the state vector )(tx  of the 
nonlinear system. One can see that the structure of the nonlinear observer is composed of a linear part that is 
similar to linear Luenberger observer and a nonlinear part that is an additional term that represents the time-
varying nonlinearities satisfying the sector property. 
 

Proof: The dynamics of the state estimation error )(ˆ)()( txtxte  are given by: 
))](ˆ)(()(ˆ.())(.([)()()( tytyKtxHFtxHfGteLCAte 

  (33) 
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Let )(.1 txHv   and ))(ˆ)(()(ˆ.2 tytyKtxHv  , by setting )()(21 teKCHvvz  , the term between 

brackets in (33) can be seen as a function of the variable z  then: ),()]()([ 21 tzfvfvf  . 

The expression ),()]()()[( 2121 tzzFvFvFvv   satisfies the property of the sector. 
Taking into account the above result, the error dynamics in (33) can be rewritten as: 
 

),(.)()()( tzFGteLCAte 
  (34) 

 
)()( teKCHz    (35) 

 
Relations (34)-(35) show, once again, that the error dynamics can then be considered as a linear 

system controlled by a time-varying nonlinearity function ),( tzF  satisfying the sector property. Circle 
criterion establishes that the feedback interconnection of a linear system and a time-varying nonlinearity 
satisfying the sector property is globally uniformly asymptotically stable [14, 15]. 

Based upon the error dynamics, relation (34)-(35), the nonlinear observer design problem is then 
equivalent to stabilization of the error dynamics problem. To this end a candidate Lyapunov function 

PeeV T  is considered. In order to ensure asymptotic stability of the observer, the derivative of the 
candidate Lyapunov function must be negative. With the help of relation (34) and (35) the derivative of the 
Lyapunov function becomes: 

 

   ),(),()()( tzPGFePeGtzFeLCAPPLCAeV TTTTT    (36) 
 
By setting: 

QLCAPPLCA T  )()(   (37) 
 
And 

TKCHPG )(    (38) 
 

With nIQ   and 0 , the derivative of the Lyapunov function can be rewritten as: 
 

),(..2 tzFzQeeV TT    (39) 
 
Thus ends the proof. 
Note that the existence of observer (31)-(32) is conditioned by the solution of LMI conditions (29)-(30). By 
solving LMI constraints, observer gain matrices L  and K  that guarantee observer convergence are then 
computed. In Ibrir [16], the author has investigated the study of globally Lipschitz systems and bounded-state 
nonlinear systems. Bounded-state nonlinear systems constitute a large class of system that includes electric 
machine systems. Electric machine models involve the magnetic flux as a key and bounded state variable that 
combined with other state variable of the machine, such as rotor angular velocity, leads to the nonlinear part 
of the machine model. This is due to the effect of the magnetic material saturation property that is similar to 
the sector nonlinearity. 
 
 
4. NONLINEAR H∞ OBSERVER SYNTHESIS  

In this section, we propose to study the robust H∞ observer. This observer is used in the case of 
systems involving uncertainties in the model measurements [7, 9, 10, 11, 12, 18]. 
A literature review shows that many useful H∞ filtering approaches have been developed for several kinds of 
systems. One can cite the H∞ observers for one-sided Lipschitz nonlinear systems, the H∞ observer for 
singular Lipschitz nonlinear systems and the H∞ control and filtering for uncertain Markovian jump systems 
with time-varying delay [9, 10, 11, 19]. 

The aim of the H∞ approach is to design a full-order filter such that the corresponding filtering error 
system is asymptotically stable and satisfies a prescribed H∞ level disturbance attenuation. By using a 
Lyapunov function, sufficient conditions are formulated in terms of linear matrix inequalities (LMIs). 
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To do this, we extend the result of the previous section to nonlinear robust H∞ observer design method. We 
consider the system (1)-(2) with an additional disturbance term as follows: 
 

)())(),(()()( twBtutxFtAxtx d
  (40) 

 
)()( tCxty    (41) 

 

Where ),0[2  lw  is an unknown exogenous disturbance. 

The goal is to rebuild the state )(tx  of the system (40)-(41) with some accuracy despite the presence of 

disturbance term )(tw .  

We suppose that: )(tHez  , with H  a known constant matrix such that 
wz 

 , with 0 . 
 The corresponding observer for the system (40)-(41) is given by: 

)](ˆ)([))(),(ˆ()(ˆ)(ˆ tytyLtutxFtxAtx 
  (42) 

 
)(ˆ)(ˆ txCty    (43) 

 
Our purpose is to design the observer parameter L such that the observer error dynamics are asymptotically 

stable and the following specified norm H  upper bound is simultaneously guaranteed. 
 

Lemma 1: For any
nRyx ,

and any positive definite matrix
nnRP  , we have: 

yPyPxxyx TTT 12 
 

 
Theorem 3 [13]: Consider stochastic Lipschitz nonlinear system (40)-(41), and the corresponding observer 

(42)-(43). The observer error dynamics are asymptotically stable with the minimum of the norm 2l  and  , if 

there exist scalers s > 1, 0 and 0 and matrices 0P and G  such that the following LMI 
optimization problem has a solution. 
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With GPL 1  and 
  )min(ˆ*

  
Proof: The observer error dynamics are:  
 

)()ˆ()()()( twBFFteLCAte d   (46) 
 

The time derivative of the Lyapunov function )()( tPeetV T is given by: 
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Using Lemma 1 and the Rayleigh leads to the following: 
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  (48) 
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Replacing (51)-(52) in equation (49), leads to: 
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In the stochastic and general case of 0w  and 
IQ s

 the above equation of Lyapunov derivative 
becomes:  
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)(tHez  , H is a known constant with 
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2

1
[ 2

  (66) 
 

So a sufficient condition for 0J is that the following be negative definite: 

0
])1(

2

1
[ 2






















IPB

PBIHH

T
d

ds
T






  (67) 
 

According to the Schur’s complement lemma, (67) is equivalent to: 0 I . 

  0
1

)(2 max  PBPBIPHH T
ds

T
d




  (68) 
 
For equation (68) to be negative, the sum of the first and second terms must be negative because the third 
term is always positive: 

  0)(2 max  IPHH s
T 

  (69) 

  0)(,,0  tVwwzzt TT  
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But as for any other symmetric matrix, for HH T
, we have: 

)()( maxmin HHHHHH TTT  
  (70) 

 

IHHHIH T )()( 2
min

2
max  

  (71) 
Or according to the definition of singular values 

0)(2)( max
2  sPH 

  (72) 
 
Or: 





2

)(
)(

2

max
H

P s 
  (73) 

This is equivalent to (45). 
 
 
5. SIMULATION RESULTS AND COMMENTS 

To perform the comparative study between the two nonlinear observers previously view, we use the 
model of an induction motor. Described by the following nonlinear differential equations with, the stator 
current, rotor flux and rotor angular velocity as selected state variables of the machine [1, 20, 21]. 
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lT
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dt
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m
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  (74) 
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r T
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dt
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llrfsrsrr Tkkii
dt

d
   )(

 
 

Where: p

r
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


, r

p

Jl

mn 2


 , rsll

m

m 
 111



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 


, rsll
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1
, J

f
k r
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l 
, r

r
r R
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T 

. 

The indexes s  and r  refer to the stator and the rotor components respectively. 
i

,  and u  respectively 

denote the stator current, the rotor fluxes, the supplied stator voltage, 
R

 is the resistance, l  is the 

inductance, m  is the mutual inductance. sT  and rT  are the stator and the rotor time constant respectively. 

r  is the rotor angular velocity, rf  is the friction coefficient, J  is the moment of inertia coefficient, pn
 is 

the number of pair poles, r  is the mechanical speed of the rotor and finally lT  is the mechanical load 
torque.  

This type of nonlinear model is generally used for performing nonlinear control, conditions 
monitoring and faults diagnosis of electric induction machine systems. Performing these techniques requires 
estimating unmeasured rotor flux linkage and rotor angular velocity state variables based on the stator current 
and voltage measurements [21].  

To carry out the comparative study between the two observers previously view, we use the induction 
motor with the following characteristics details on Table 1. 
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Note that the starting conditions X0= [4 0 0 0 0] for the initial state vector of the machine are taken 
into account in simulations of the two observers. 

In the application of the nonlinear observer based on the criterion of circle approach, we must write 
the model of induction motor (74) in the form (27)-(28), taking into account the properties (29) and (30). 
 
 
 

Table 1 Characteristics of the induction motor 
Symbol Quantity Numerical value 

P Power 1.5 KW 
f Supply frequency 50 Hz 
U Supply voltage 220 V 

pn
 

Number of pair poles 2 

sR Stator resistance 
4.850   

rR Rotor resistance 
3.805  

sl  
Stator inductance 0.274 H 

rl  
Rotor inductance 0.274 H 

m Mutual inductance 0.258 H 

r Rotor angular speed 297.25 rd/s 

J  
Inertia coefficient 

0.031
skg /2

 

rf Fiction coefficient 0.00114 N.s/rd 

lT
 

Load torque 5 N.m 

 
 
The nonlinearities of the machine system are function of the flux state variable that is a bounded state 

variable. The nonlinearities of the model are of the form rdr
that can be expressed as: 

 

rrrdrrdr   )(   (75) 
 
One can verify that:  
 

0)( 




 rdrrdr

r   (76) 
 

With
2rd

, then one can choose 2 . 
 

The first step of the simulation consists of resolving the LMI conditions, relation (29)-(30), using an 
adequate LMI tools such as the LMI tool-box of the Matlab software. The obtained nonlinear observer gain 

matrices L  and K  are the following: 
 
































6201.16201.1

7172.01075.0

1075.07172.0

6749.11188.0

1188.06749.1

L

 
 

 7381.06037.11 K ,  6037.17381.02 K ,  9193.03948.03 K ,  3948.09193.04 K  
 

The corresponding Lyapunov matrix for this LMI feasibility test is: 
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



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



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









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



0173.00505.00505.00274.00274.0

0505.06010.54659.00514.01486.0

0505.04659.06010.51486.00514.0

0274.00514.01486.01550.00710.0

0274.01486.00514.00710.01550.0

P

 
 

With: 04.0 . 
The second step of simulation consists of injecting the obtained numerical values of the gain matrix 

and the vectors in an S-function-based Matlab program that interacts with the Matlab Simulink software to 
simulate the nonlinear system and the nonlinear observer. 

The simulation results of the designed nonlinear observer based circle criterion are presented in the 
following. Figure 1 and Figure 2 show the measured and estimated stator current and rotor flux components 
respectively. The Figure 3 and Figure 4 show the measured and estimated rotor angular velocity and the 
corresponding load torque respectively with corresponding estimation error. One can see that the estimated 
state variables of the machine follow the desired trajectories. 

To highlight these results a load torque is introduced in the simulation at time of sec5.0 , the 
simulation results show that all the state variables of the machine are modified accordingly. Thus 
demonstrate the effectiveness of the circle criterion based nonlinear observer design for the induction 
machine system state estimation. 

 
 

 

 
Figure 1. Measured (blue line) and observed(green 

line) d-stator current components and the 
corresponding estimation error 

 
Figure 2. Measured (blue line) and observed (green 
line) d-rotor flux components and the corresponding 

estimation error 
 

 
Figure 3. Measured (blue line) and observed (green 

line ) rotor angular velocity of the (IM) and the 
corresponding estimation error 

 
Figure 4. Measured (blue line) and estimated (green 

line) electromechanical torque of the 
(IM) and the corresponding estimation error 
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In simulation experiments of nonlinear H  observer we must write the model of induction motor 
(74) in the form (40) - (41).  

As in the first observer approach, the simulation of the nonlinear H  approach is performed in two 
steps, the first simulation step consists of resolving the LMI conditions, relation (44)-(45), using an adequate 
LMI tools such as the LMI tool-box of the Matlab software.  
To ensure robustness against nonlinear uncertainty, we use the theorem 1 to maximize the admissible 

Lipschitz constant  and then the theorem 3, to minimize   for the maximized  . 
7,0*  , 112,0*  , 04,0 . 

Subsequently, from Theorem 3 and solving the LMI, (40), (41) and (42), then we calculate the nonlinear 

observer gain matrices L  and G . 
In this observer, we apply a disturbance in the power supplyu  in order to see these performances. 

IH 10 , 05.0s , 55IQ  , 20dB  
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The second step of simulation consists of injecting the obtained numerical values of the gain matrix 

and the vectors in an S-function-based Matlab program that interacts with the Matlab Simulink software to 

simulate the nonlinear system and the nonlinear H observer. 

The simulation results of the designed and nonlinear H  observer are presented in the following. 
Figure 5 and Figure 6 show the measured and estimated stator current and rotor flux components 
respectively. The Figure 7 and Figure 8 show the measured and estimated rotor angular velocity and the 
corresponding load torque respectively with corresponding estimation error. One can see that the estimated 
state variables of the machine follow the desired trajectories. 

 
 

 
Figure 5. Measured (red line) and observed (blue 

line) d-stator current components and the 
corresponding estimation error

 
Figure 6. Measured (red line) and observed (blue 

line) d-rotor flux components and the corresponding 
estimation error 

 
 

The simulation results of the designed and nonlinear H  observer are presented in the following. 

Figure 5 and Figure 6 show the measured and estimated stator current and rotor flux components 
respectively. The Figure 7 and Figure 8 show the measured and estimated rotor angular velocity and the 
corresponding load torque respectively with corresponding estimation error. One can see that the estimated 
state variables of the machine follow the desired trajectories. 
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Figure 7. Measured (blue line) and observed(red 
line) rotor angular velocity of the (IM) and the 

corresponding estimation error 

 
Figure 8. Measured (red line) and estimated (blue 
line) electromechanical torque of the (IM) and the 

corresponding estimation error 
 

 
According to the Figure 7, we note a good trajectory tracking of the speed in the presence of 

disturbances and show the high performance of the observer H . The simulation results demonstrate that, 

despite the partly unknown transition probabilities, the designed H filters are feasible and effective, 
ensuring the error systems are stochastically stable. 
 
 
6. CONCLUSION 

This paper gives a comparative study between the nonlinear observer based on circle criterion and 

nonlinear H  observer. 
The performance of the nonlinear observers is evaluated in terms of their ability to cope with model 
imperfections and process uncertainties such as measurement errors and uncertain initial conditions. 

The advantages of the circle-criterion approach are the global Lipschitz restrictions removing and 
high gain avoiding. However it introduces linear matrix inequality (LMI) conditions.  

From the simulation results, the proposed H observer has proved to be more robust than the observer based 
circle criterion when load variations of the IM occur, in the presence of disturbances.  

On the other hand, the results obtained using the nonlinear H  observer show that three 
characteristics can be obtained simultaneously. Asymptotic stability, robustness against nonlinear uncertainty 

and minimized guaranteed H  cost. 
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