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Abstract. In an effort to achieve an optimal availability time of induction motors via fault probabilities reduction and improved prediction or 
diagnostic tools responsiveness, a conditional probabilistic approach was used. So, a Bayesian network (BN) has been developed in this paper. 
The objective will be to prioritize predictive and corrective maintenance actions based on the definition of the most probable fault elements 
and to see how they serve as a foundation for the decision framework. We have explored the causes of faults for an induction motor. The influ-
ence of different power ranges and the criticality of the electric induction motor are also discussed. With regard to the problem of induction 
motor faults monitoring and diagnostics, each technique developed in the literature concerns one or two faults. The model developed, through 
its unique structure, is valid for all faults and all situations. Application of the proposed approach to some machines shows promising results 
on the practical side. The model developed uses factual information (causes and effects) that is easy to identify, since it is best known to the 
operator. After that comes an investigation into the causal links and the definition of the a priori probabilities. The presented application of 
Bayesian networks is the first of its kind to predict faults of induction motors. Following the results of the inference obtained, prioritizations 
of the actions can be carried out.
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leakage and its low-frequency resolution [3]. By analyzing the 
ultrasonic noise spectrum, it becomes possible to monitor and 
diagnose some faults, such as contact between rolling elements 
and air gap eccentricity. This technique also has some disad-
vantages, for example, the noisy background from the other 
machines and Maxwell’s stresses that act on the iron surfaces. 
The sensitivity of one of the three methods depends on the 
nature of the fault. The stator current method is sensitive to the 
broken rotor bar fault, while the vibration method is sensitive to 
bearing faults. The acoustic method is likewise very attractive 
since it contains less noise and interference within the analyzing 
frequency band [4, 5].

Other techniques also exist: temperature (infrared thermog-
raphy or/ and thermocouples) [6], magnetic flux [7], instan-
taneous angular speed [8], partial discharge [9] and air-gap 
torques [10]. Yet these techniques are specific to just a handful 
of faults, and the majority of them cannot, in any case, diag-
nose faults in electrical machines by themselves. Thus they are 
usually combined together to become exact and precise. Faced 
with this problem of uncertainty, most researchers have devel-
oped techniques that use artificial intelligence methods. The 
most widely used artificial intelligence methods for monitor-
ing and diagnosis of induction motors include: expert systems, 
artificial neural networks (ANN), fuzzy logic and fuzzy neural 
networks. The knowledge contained in the expert system comes 
from the designer and the users’ experience during maintenance 
operations. They have been used for online diagnosis of induc-
tion motors [11]. Electrical and vibration signals constitute, in 
most applications, elements of the knowledge base. And also 
the thresholds for the healthy and faulty case form the basis of 
the expert system.

ANNs have been one of the most used methods of artificial 
intelligence in recent years and have shown high performance, 

1. Introduction

For many facilities using induction motors, the machines play 
a critical role in the overall process flow. Unavailability of an 
induction motor often means a significant reduction in or loss 
of plant output. That lost production translates into very costly 
downtime. Thus, corrective maintenance costs are not the only 
driving factor that can help justify a monitoring system. Lost 
production costs also factor heavily into the economic benefits 
a monitoring system can deliver. To minimize these costs and 
optimize the availability of induction motors, several research 
projects have been carried out in recent years for early detection 
of faults. Each fault has one or more symptoms, and for each 
symptom the researchers tried to define precursors. Faults in the 
induction motor result in a change in current signature, vibra-
tion signature, or both signatures at the same time [1, 2]. Other 
effects may also appear, such as torque fluctuations, reduced 
efficiency or overheating at the winding level.

In vibration analysis, the FFT tool (fast Fourier transform) 
allows the diagnosis of faults due to electromagnetic anomalies 
on the stator as well as on the rotor. In case there is a random 
change in the signal or change in the speed, vibration analysis 
technique may fail to provide accurate information. This mask 
effect represents a weakness of this technique. The current sig-
nal analysis technique has the advantages of being non-invasive 
and easy to implement. However, under certain conditions, its 
application is not sensitive enough because it has a low signal-
to-noise ratio and its other disadvantages are related to spectral 
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especially in diagnostic automation. Bazan et al. have devel-
oped a pattern recognition model for the detection of stator 
winding short circuits [12]. The model uses current signals of 
two phases and allows detection with an accuracy of about 
93%. Another work, published by Verma et al. [13], presents 
a misalignment fault detection methodology by using an ANN 
whose inputs are vibration and current signals.

In yet another contribution, a fuzzy model was developed 
by [14] to diagnose two faults and their severity: broken bar 
and dynamic eccentricity. Vibration signals have also been used 
as input data in fuzzy algorithms. The fuzzy method has its 
insufficiencies if current or vibration signals are, separately, 
considered as input data; data hybridization shows promising 
results [15].

Fuzzy-neural approaches have been also used in fault diag-
nosis of induction motors. The purpose of these techniques is 
early fault detection and diagnosis. For example, a strategy for 
stator inter-turn faults detection from an adaptive neuro-fuzzy 
inference system is presented in [16]. Like other artificial intel-
ligence methods, the data, used for fuzzy-neural algorithms 
and other algorithms derived from a combination of artificial 
intelligence methods (support vector machines, genetic algo-
rithms), are mainly derived from current or/and vibration sig-
nals [17‒19].

After this introduction, it is possible to conclude that the 
performance of the induction motor can be affected by one 
of the faults that are given, for indicative purposes, above and 
that will be discussed extensively in the rest of this article. 
Furthermore, intervention by the expert, when formulating the 
conditional rules, is unavoidable. One more thing is to be men-
tioned: most of the works that exist in the literature only deal 
with a single fault, despite the fact that in everyday practical 
cases, combined faults can occur in the same motor and at 
the same time. In such case, uncertainty increases and only 
extensive experience of the operator and knowledge of the spe-
cific behavior of the machine can solve the problem and allow 
for decision making. So, to help predict faults that will affect 
availability of the machine and efficiency of its maintenance 
schedule, we present a strategic decision framework that will 
aid maintenance staff in the decision-making process. This deci-
sion framework is based on expert knowledge and practical 
experience in the field of diagnosis.

Probabilities will be defined from several sources of infor-
mation (measurement, expertise, feedback, tests). The proba-
bilities of calculated faults are the key elements that will allow 
establishing the predictive maintenance plan. Indeed, if we 
manage to estimate the probabilities of faults, by means of the 
proposed Bayesian approach, we can guarantee reliability of 
the machine, and optimize its availability by anticipating cor-
rective and predictive actions. It should be noticed, once again, 
that several faults can appear simultaneously on the induction 
machine, and in this case identification of the problem becomes 
difficult [20]. The effects of the combined faults may be the 
same, and again the diagnosis becomes more complicated.

In this paper, the causes and effects of various faults in 
induction motors are discussed qualitatively, via the structure of 
the Bayesian network (BN), and quantitatively, via the parame-

ters of the network. By ranking the faults, from most likely to 
the one with the lowest probability of occurrence, it is possible 
to prioritize maintenance interventions and make the induction 
machine park more reliable. Also, it is possible to make certain 
decisions regarding maintenance and spare parts replacement.

2. Bayesian networks

BNs, also called belief networks or causal networks, include 
graph theory and probability theory. BNs are causal graphi-
cal models that model links between a set of variables, where 
variables are represented by nodes and links by arcs. They are 
widely used, especially in the field of industrial diagnosis [21]. 
BNs have found other fields of application in recent years such 
as: reliability [22], fault prediction [23] and decision-making 
[24]. A network is called Bayesian if it checks for the Markov 
conditions. A BN can be described as a directed acyclic graph 
(DAG) that defines factorization of joint probability distribution 
on the variables that are represented by the nodes of the DAG, 
where factorization is given by the directed links of the DAG.

The objective of using the Bayesian approach is to model 
causality from the causes and their effects: we must, however, 
consider two cases:
● the causalities are strict, which implies acyclic graphs
● variables, which represent causes and their effects, are 

dependent (dependence on probabilities).
A BN, modeling a given problem, allows for qualitative 

analysis, via its structure (variables and causal relations between 
them), and for quantitative analysis, given by joint probability 
distribution that factorizes into a set of conditional probability 
distributions governed by the structure of the DAG (Fig. 1). 
Nodes without parents are defined by a priori probabilities, 
while the other nodes are defined from conditional probability 
tables (CPT).

Inference in the BN gives a posteriori probabilities. As BNs 
represent causal statements of the A → C type, where A is the 
cause of C, and C often takes the role of an observable effect of 
A, which typically cannot be observed itself; we need to derive 
the a posteriori probability distribution P(AjC = c), given the 
observation C = c, using the a priori distribution P(A) and the 
conditional probability distribution P(CjA) specified in the 
model. The Bayes’ theorem generates the following calculation:

 P(AjC = c) =  
P(C = cjA)P(A)

P(C = c)
 (1)

Fig. 1. Example of simple Bayesian network

 A 

D 

B 
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The CPT defines the causality links in Bayesian formalism. 
For example, Table 1 shows a CPT for variable D.

Table 1 
Conditional probability table for variable D

A True False

B True False True False

D True 1 1 1 0

False 0 0 0 1

The inference rules are given by the CPT. Some readings 
are as follows:
● If variable A is True, then variable D exists.
● If variable A is False, then variable D exists if and only if 

variable B is True.
After inference in the network of Fig. 1, the a posteriori 

probabilities for each variable can be found. An example is 
given as follows:

P(D = True) = P(D = True/A = True, B = True) £ 
£ P(A = True) £ P(B = True) + P(D = True/A = True, 
B = False) £ P(A = True) £ P(B = False) + P(D = True/A =
= False, B = True) £ P(A = False) £ P(B = True) + P(D = 
= True/A = False, B = False) £ P(A = False) £ P(B = False).

In a general context, a network is called a Bayesian network 
if it checks for the Markov factorization condition. So a BN is 
defined by:

 P(V1, V2, … , Vn) = ∏ n
i = 1 P(Vi/C(Vi)). (2)

The procedure to be followed is given as follows (Fig. 2).

3. Development of  Bayesian network model

A BN is constructed through a combination of a manual and 
data-driven process, where partial knowledge about structure 
as well as parameters (conditional probabilities) blend with 
statistical information extracted from databases of cases (pre-
vious joint observations of values of the variables). Table 2 and 

Table 2 
Stator faults and their causes

Machine 
element Stator faults Cause Code

Stator S

Vibration SF1

Unbalanced magnetic pull C(SF1)1

Winding motion C(SF1)2

Unbalanced power supply C(SF1)3

Overloading C(SF1)4

Rotor strike C(SF1)5

Stator carcass 
fault SF2

Crushing of the turn by the 
carcass C(SF2)1

Thermal cycling C(SF2)2

Abrasion of insulation C(SF2)3

Laminations slack slot wedges C(SF2)4

Shock or vibration C(SF2)5

Insulation fault SF3

Damage to insulation during 
insertion of windings C(SF3)1

Frequent starting C(SF3)2

Extreme temperature C(SF3)3

Extreme humidity C(SF3)4

Stator turn-turn 
faults SF4

Extreme temperature C(SF3)3

Extreme humidity C(SF3)4

Shock or vibration C(SF2)5

Overvoltage C(SF4)1

Stator phase-
phase faults SF5

Extreme temperature C(SF3)3

Unbalanced power supply C(SF1)3

Slacking of coils C(SF5)1

Displacement  
of conductors SF6

Frequent starting C(SF3)2

Shock or vibration C(SF2)5

Connector failure SF7

Slack joints C(SF7)1

Shock or vibration C(SF2)5Fig. 2. Flowchart of Bayesian network based prediction methodology
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Table 3 present, respectively, a census of the causes of stator 
and rotor faults in induction motors. Also in the same tables, 
a codification is adopted, each code representing a variable in 
the BNs developed in the rest of this article. A wound rotor 
may be affected by the same faults as the stator. For a cage 
rotor, faults are limited to the breaking of rods or breakage of 
short-circuit rings.

Statistically, a review of the IEEE 493‒1997 standard [25] 
shows that 42% of faults are due mainly to bearing faults. 
Another more recent study conducted by [26] showed that bear-
ing faults account for more than 50% of faults. Again accord-
ing to the IEEE 493‒1997 standard, the rotor represents 8% of 

faults, while faults in the stator represent a percentage of 28%. 
In this study, bearings will be considered a part of the rotor, 
and therefore the definition of the faults, given in Table 2 and 
Table 3, will concern only the rotor and the stator of the induc-
tion machine. Several faults can affect the induction machine 
[27], they have internal sources, such as bearing faults and bro-
ken rotor bars, and external causes, such as unbalanced power 
supply and humidity. In the following, seven major faults have 
been defined for the stator part [27] (Table 2): Vibration of the 
support, a fault between the stator and the carcass, insulation 
fault, short circuit between turns, short circuit between phases, 
displacement of conductors, and failure of electrical connec-
tions. For each fault, an investigation of the causes, which may 
give rise to these faults, allowed to identify the causes C (SFi)j, 
where the index i represents the faults and the index j represents 
the causes associated with each fault.

Table 3 gives the probable causes of seven faults for the 
rotor: bearing fault, broken rotor bars, magnetic circuit fault, 
bearings misalignment, rotor misalignment, mechanical imbal-
ance and bearings’ loss of lubrication. In general, faults are 
mainly due to electrical, thermal, mechanical and environmental 
constraints.

Appropriate technical consultation with experts is a sim-
ple way to identify the causes and effects, and determine the 
links between them. All the faults (effects) that can appear on 
the induction machine are coded from F1 to Fi. In addition to 
this coding of faults, a coding of the causes C(Fi), specific 
to each Fi, must be established. Each fault Fi is connected to 
cause C(Fi). A priori probabilities have been defined from 
a computerized maintenance Management system (CMMS) 
database. Existing data, within the database, on causes C(Fi) 
allow to estimate that P(C(Fi)) and P(Fi) will be evaluated by 
the Bayes’ theorem:

 P(F/C(F )) =  
P(C(F )/F)P(F )

P(C(F ))
. (3)

If the a priori probabilities of faults P(F) and prior con-
ditional probabilities P(C(F)/F) that the fault F is generated 
by the causes C(F) are known, it is possible from equation 3 
to calculate the a posteriori probability P(F/C(F)) that cause 
C(F) generates fault F. Formally, a BN is defined by a DAG G, 
G = (V, E), where F is the set of nodes of G, and E is the set 
of edges of G. Furthermore, in a probabilistic space (Ω, Z, P), 
with a non-empty finite set, Z is a set of subspaces of Ω, and 
P is a probability measure within Z, with P(Ω) = 1.

With a combination of Fi and C(Fi), it is possible to obtain 
P(Fi) via the following equation:

 P(F1, F2, … , Fn) = ∏ n
i = 1 P(Fi/C(Fi)). (4)

where C(Fi) is the set of causes of Fi in graph G.
Even if the causes are of different origins (electrical, 

mechanical, thermal and environmental), the faults can still 
have the same origins. On the one hand, BNs of Fig. 3 and 
Fig. 4 will allow for understanding their genesis to predict their 

Table 3 
Rotor faults and their causes

Machine 
element Rotor faults Cause Code

Rotor R

Bearing fault RF1

Unbalanced magnetic pull C(RF1)1

Bearing loss of lubrication RF7

High temperature C(RF1)2

Unbalanced load C(RF1)3

Broken rowtor 
bars RF 2

Unbalanced magnetic pull C(RF1)1

Large transient C(RF2)1

Thermal fatigue C(RF2)2

Magnetic 
circuit fault RF3

Thermal fatigue C(RF2)2

Overloading C(RF3)1

Bearing 
misalignment RF4

Coupling error C(RF4)1

Overloading C(RF3)1

Excessive play in the 
bearings C(RF4)2

Rotor 
misalignment RF5

Unbalanced magnetic pull C(RF1)1

Bearing fault RF1

Mechanical 
imbalance RF6

Movement of short-circuit 
rings C(RF6)1

Alignment problem RF4

Bearing loss  
of lubrication RF7 

Overheating C(RF7)1

Oil contamination C(RF7)2
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severity and development. On the other hand, they will enable 
analyzing their impact on the behavior of the machine, and to 
deduce the probabilities allowing, a posteriori, to go up to the 
element of the machine.

In Fig. 3, we notice four common causes; unbalanced power 
supply can cause vibration and short circuit between phases. 
The shock or vibration cause can provoke fault between the 
stator and the carcass, short circuit between turns, displace-
ment of conductors and connectors failure. Frequent startup can 
cause insulation faults and displacement of conductors. Finally, 
extreme temperature can cause insulation faults, short circuit 
between turns and short circuit between phases.

In Fig. 4, the unbalanced magnetic pull cause represents 
a common cause of bearing faults, broken rotor bars and rotor 

misalignment. Thermal fatigue can cause broken rotor bars and 
magnetic circuit fault. Finally, overloading can cause magnetic 
circuit fault and bearings misalignment.

4. Validation of the model by case study

Most operators and maintenance managers refer to real-time 
and non-real-time measurements to assess the machine state 
and predict faults. In order to do this, a variety of standards 
are developed and published by international organizations. For 
example, according to vibration severity, these standards define 
four (04) classes of machines in terms of power [28]. The stan-
dard alone remains insufficient to predict faults. Another classi-
fication is based on the operating characteristics [29]. Induction 
motors are classified as:
● Class A:  normal starting torque, high starting current and 

low operating slip,
● Class B:  normal starting torque, low starting current and 

low operating slip,
● Class C: high starting torque and low starting current,
● Class D:  high starting torque, low starting current and high 

operating slip.
The work presented in this paper is the continuation of the 

works done previously on elements of the induction machine 
separately [30–32]. In this contribution, real practical industrial 
application for indicating all stator and rotor faults together 
with their causes at the same time is presented. The novelty 
of this work is the definition of priorities in terms of interven-
tion regarding six vital induction motors. Which is the motor 
that must be programmed in the first place for maintenance? 
Answers backed by numbers in the form of probabilities are 
given.

The six induction motors studied in the following part of 
this paper are three-phase motors. They are of different power 
ranges and are used in a petrochemical plant. Table 4 provides 
a description of these machines. It is important to mention that 
the choice of these 6 motors for the case study was mainly 
based on their high number of breakdowns and their importance 
and criticality.

Table 4 
Description of 6 induction motors studied

Motor Power 
(kW)

Current 
(AMPS)

Voltage 
(VOLTS)

Speed 
(R.P.M)

M1 4 7.8 380 2900

M2 11 20.4 380 2920

M3 37 69 380 1465

M4 55 102 380 1477

M5 132 252 380 991

M6 500 63 5500 1487

It should be noted here that only field practice and experi-
ence represent a reliable and effective alternative for induction 

Fig. 3. Bayesian model for predicting stator faults
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Appropriate technical consultation with experts is a simple 

way to identify the causes and effects, and determine the links 
between them. All the faults (effects) that can appear on the 
induction machine are coded from F1 to Fi. In addition to this 
coding of faults, a coding of the causes C (Fi), and specific to 
each Fi, must be established. At each fault Fi are connected 
the causes C (Fi). A priori probabilities have been defined 
from a Computerized Maintenance Management 
System (CMMS) database. Existing data, within the database, 
on the causes C(Fi) allow to estimate P(C(Fi)) and the P(Fi) 
will be evaluated by the theorem of Bayes: 

𝑃𝑃 𝐹𝐹 𝐶𝐶 𝐹𝐹  𝑃𝑃 𝐶𝐶 𝐹𝐹 𝐹𝐹 𝑃𝑃 𝐹𝐹 
𝑃𝑃 𝐶𝐶 𝐹𝐹                 (3) 

If the a priori probabilities of faults P(F) and prior 
conditional probabilities P(C(F)/F ) that the fault F is 
generated by the causes C(F) are known It is possible from 
equation 3 to calculate the a posteriori probability P(F/C(F)) 
that the causes C(F) generates the fault F. Formally, a BN is 
defined by a DAG G, G = (V, E), where F is the set of nodes 
of G, and E is the set of edges of G. Furthermore, a 
probabilistic space (, Z, P), with a non-empty finite set, Z a 
set of subspaces of , and P a probability measure within Z, 
with P () = 1. 

With combination of Fi and C(Fi), it is possible to obtain 
P(Fi) via the following equation: 

𝑃𝑃 𝐹𝐹 𝐹𝐹 … 𝐹𝐹𝑛𝑛  𝑃𝑃 𝐹𝐹𝑖𝑖 𝐶𝐶 𝐹𝐹𝑖𝑖  𝑛𝑛
𝑖𝑖                 (4) 

Where C(Fi) is the set of causes of Fi in the graph G. 

If the causes are of different origins (electrical, mechanical, 
thermal, and environmental), then faults can have the same 
origins. On one hand, BNs of Fig. 3 and Fig. 4 will allow 
understanding their genesis to predict their severity and 
development. On the other hand, they will enable analyzing 
their impact on the behavior of the machine and to deduce the 
probabilities allowing, a posteriori, to go up to the element of 
the machine.  

From Fig. 3 we notice four common causes; unbalanced 
power supply can cause vibration and short circuit between 
phases. The shock or vibration cause can provoke fault 
between the stator and the carcass, short circuit between turns, 
displacement of conductors and connectors failure. Frequent 
startup can cause insulation fault and displacement of 
conductors. Finally, extreme temperature can cause insulation 
fault, short circuit between turns and short circuit between 
phases. 

 
Fig. 3.  Bayesian model for predicting the stator faults 

In Fig. 4, unbalanced magnetic pull cause represents a 
common cause of bearings fault, rotor broken bars and rotor 
misalignment. Thermal fatigue can cause rotor broken bars 
and magnetic circuit fault. Finally overloading can cause 
magnetic circuit fault and bearings misalignment. 

Fig. 4. Bayesian model for predicting rotor faults
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Fig. 4. Bayesian model for predicting the rotor faults 

4. Validation of the Model by Case Study 
Most operators and maintenance managers refer to real-

time and non-real-time measurements to assess the machine 
state and predict faults. To do this, there are a variety of 
standards that are developed and published by international 
organizations. For example and according to vibration 
severity, these standards define four (04) classes of machines 
in terms of power [28]. The standard itself alone remains 
insufficient to predict faults. Another classification is based on 
the operating characteristics [29]. Induction motors are 
classified as:  

 Class A: Normal starting torque, high starting current 
and low operating slip, 

 Class B: Normal starting torque, low starting current 
and low operating slip, 

 Class C: High starting torque and low starting 
current,  

 Class D: High starting torque, low starting current 
and high operating slip.  

The work presented in this paper is the continuation of the 
works done previously on the elements of the induction 

machine separately [30-32]. In this contribution, real practical 
industrial application for indicating all stator and rotor faults 
together with their causes at the same time is presented. The 
novelty of this work is the definition of priorities in terms of 
intervention regarding six vital induction motors. Which is the 
motor that must be programmed in the first place for 
maintenance? Answers argued by numbers in the form of 
probabilities are given. 

The six induction motors studied, in the following of this 
paper, are three-phase motors. They are of different power 
ranges and are used in a petrochemical plant. Table 4 gives a 
description of these machines. It is important to mention that 
the choice of these 6 motors, for the case study, was mainly 
based on their high number of breakdowns and their 
importance and criticality. 

Table 4 
Description of the 6 studied induction motors 

Motor Power 
(kW) 

Current 
(AMPS) 

Voltage 
(VOLTS) 

Speed 
(R.P.M) 

M1 4 7.8 380 2900 

M2 11 20.4 380 2920 

M3 37 69 380 1465 

M4 55 102 380 1477 

M5 132 252 380 991 

M6 500 63 5500 1487 

It should be noted here that only field practice and 
experience represent a reliable and effective alternative for 
induction motors monitoring and diagnosis. In this context and 
in order to obtain a permanent update of the predictive 
maintenance plan of the induction motors, priorities will be 
defined based on the determination of the most probable faults 
on each machine. 

To ensuring fault prediction reliability, the starting 
information (model inputs) must be accurate and defined with 
maximum precision. The a priori probabilities, given by Table 
5 and Table 6, are defined on the basis of the factual 
information, on one hand, and the more or less complex 
measures recorded in the historical files, on the other hand. 

 
Table 5 

A priori probabilities of causes for stator fault
Causes Code A priori probabilities 

Motor 1 Motor 2 Motor 3 Motor 4 Motor 5 Motor 6 
Unbalanced magnetic pull C(RF1)1 0.052 0.095 0.001 0.001 0.001 0.001 
Winding motion C(SF1)2 0.001 0.001 0.001 0.001 0.001 0.0001 
Unbalanced power supply C(SF1)3 0.090 0.089 0.001 0.001 0.001 0.024 
Over loading C(SF1)4 0.001 0.001 0.001 0.001 0.001 0.050 
Rotor strike C(SF1)5 0.001 0.001 0.001 0.001 0.001 0.041 
Crushing of the turn by the carcass C(SF2)1 0.075 0.001 0.065 0.001 0.001 0.001 
Thermal cycling C(SF2)2 0.001 0.001 0.001 0.001 0.001 0.001 
An abrasion of the insulation C(SF2)3 0.064 0.056 0.001 0.001 0.001 0.001 
Laminations slack slot wedges C(SF2)4 0.001 0.001 0.001 0.001 0.001 0.012 
Shock or vibration C(SF2)5 0.050 0.075 0.001 0.002 0.001 0.091 
Damage to insulation during insertion of windings C(SF3)1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
Frequent starting C(SF3)2 0.052 0.065 0.001 0.001 0.001 0.001 
Extreme temperature C(SF3)3 0.001 0.001 0.001 0.001 0.001 0.089 
Extreme Humidity C(SF3)4 0.052 0.052 0.001 0.001 0.002 0.005 
Overvoltage C(SF4)1 0.001 0.001 0.001 0.001 0.001 0.001 
Slacking of coils C(SF5)1 0.052 0.001 0.001 0.031 0.001 0.002 
Slack joints C(SF7)1 0.001 0.001 0.021 0.001 0.001 0.004 
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motors monitoring and diagnosis. In this context and in order to 
obtain a permanent update of the predictive maintenance plan 
of induction motors, priorities will be defined based on the 
determination of the most probable faults on each machine.

To ensure fault prediction reliability, the starting informa-
tion (model inputs) must be accurate and defined with maxi-
mum precision. The a priori probabilities, given by Table 5 and 
Table 6, are defined on the basis of the factual information, on 

Table 5 
A priori probabilities of causes for stator fault

Causes Code
A priori probabilities

Motor 1 Motor 2 Motor 3 Motor 4 Motor 5 Motor 6

Unbalanced magnetic pull C(RF1)1 0.052 0.095 0.001 0.001 0.001 0.001

Winding motion C(SF1)2 0.001 0.001 0.001 0.001 0.001 0.0001

Unbalanced power supply C(SF1)3 0.090 0.089 0.001 0.001 0.001 0.024

Overloading C(SF1)4 0.001 0.001 0.001 0.001 0.001 0.050

Rotor strike C(SF1)5 0.001 0.001 0.001 0.001 0.001 0.041

Crushing of the turn by the carcass C(SF2)1 0.075 0.001 0.065 0.001 0.001 0.001

Thermal cycling C(SF2)2 0.001 0.001 0.001 0.001 0.001 0.001

Abrasion of insulation C(SF2)3 0.064 0.056 0.001 0.001 0.001 0.001

Laminations slack slot wedges C(SF2)4 0.001 0.001 0.001 0.001 0.001 0.012

Shock or vibration C(SF2)5 0.050 0.075 0.001 0.002 0.001 0.091

Damage to insulation during insertion of windings C(SF3)1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Frequent starting C(SF3)2 0.052 0.065 0.001 0.001 0.001 0.001

Extreme temperature C(SF3)3 0.001 0.001 0.001 0.001 0.001 0.089

Extreme humidity C(SF3)4 0.052 0.052 0.001 0.001 0.002 0.005

Overvoltage C(SF4)1 0.001 0.001 0.001 0.001 0.001 0.001

Slacking of coils C(SF5)1 0.052 0.001 0.001 0.031 0.001 0.002

Slack joints C(SF7)1 0.001 0.001 0.021 0.001 0.001 0.004

Table 6 
A priori probabilities of causes for rotor fault

Causes Code
A priori probabilities

Motor 1 Motor 2 Motor 3 Motor 4 Motor 5 Motor 6

Unbalanced magnetic pull C(RF1)1 0.065 0.032 0.001 0.001 0.001 0.019

High temperature C(RF1)2 0.052 0.001 0.030 0.022 0.001 0.004

Unbalanced load C(RF1)3 0.001 0.003 0.001 0.001 0.050 0.005

Large transient C(RF2)1 0.042 0.056 0.001 0.001 0.001 0.001

Thermal fatigue C(RF2)2 0.045 0.008 0.010 0.001 0.050 0.002

Overloading C(RF3)1 0.001 0.001 0.030 0.003 0.001 0.001

Coupling error C(RF4)1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Excessive play in the bearings C(RF4)2 0.062 0.062 0.045 0.050 0.100 0.002

Movement of short-circuit rings C(RF6)1 0.032 0.001 0.001 0.001 0.001 0.001

Overheating C(RF7)1 0.006 0.040 0.045 0.054 0.001 0.001

Oil contamination C(RF7)2 0.048 0.002 0.001 0.032 0.052 0.001
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the one hand, and the more or less complex measures recorded 
in the historical files on the other.

If we define action on the nature of the fault as the first 
stage of prediction, then, at this level, we will study the influ-
ence of different power ranges of machines. In this context and 
in order to obtain a permanent update of the predictive mainte-
nance plan of the six (6) induction motors, priorities, based on 

the determination of the most probable faults on each machine, 
have been defined. Fig. 5 and Fig. 6 present the distribution of 
probability of faults for the rotor and stator of each motor as 
well as the associated priorities.

An example of calculation for the stator element of  motor 
M2 is given for the “Displacement of conductors” variable as 
follows:

Fig. 5. A posteriori probabilities for stator fault types
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Fig. 6. A posteriori probabilities for rotor fault types

 
 
 
 
 
 Motor 1 Motor 2 Motor 5 Motor 6

A
 p

os
te

rio
ri 

pr
ob

ab
ili

tie
s

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

RF1
RF2
RF3
RF4
RF5
RF6
RF7

Motor 3 Motor 4

Fault type  

 
 
 
 
 
 Motor 1 Motor 2 Motor 5 Motor 6

A
 p

os
te

rio
ri 

pr
ob

ab
ili

tie
s

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

RF1
RF2
RF3
RF4
RF5
RF6
RF7

Motor 3 Motor 4

Fault type  

 
 
 
 
 
 Motor 1 Motor 2 Motor 5 Motor 6

A
 p

os
te

rio
ri 

pr
ob

ab
ili

tie
s

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

RF1
RF2
RF3
RF4
RF5
RF6
RF7

Motor 3 Motor 4

Fault type  

 
 
 
 
 
 Motor 1 Motor 2 Motor 5 Motor 6

A
 p

os
te

rio
ri 

pr
ob

ab
ili

tie
s

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

RF1
RF2
RF3
RF4
RF5
RF6
RF7

Motor 3 Motor 4

Fault type  

 
 
 
 
 
 Motor 1 Motor 2 Motor 5 Motor 6

A
 p

os
te

rio
ri 

pr
ob

ab
ili

tie
s

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

RF1
RF2
RF3
RF4
RF5
RF6
RF7

Motor 3 Motor 4

Fault type  

 
 
 
 
 
 Motor 1 Motor 2 Motor 5 Motor 6

A
 p

os
te

rio
ri 

pr
ob

ab
ili

tie
s

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

RF1
RF2
RF3
RF4
RF5
RF6
RF7

Motor 3 Motor 4

Fault type  

 
 
 
 
 
 Motor 1 Motor 2 Motor 5 Motor 6

A
 p

os
te

rio
ri 

pr
ob

ab
ili

tie
s

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

RF1
RF2
RF3
RF4
RF5
RF6
RF7

Motor 3 Motor 4

Fault type  

 
 
 
 
 
 Motor 1 Motor 2 Motor 5 Motor 6

A
 p

os
te

rio
ri 

pr
ob

ab
ili

tie
s

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

RF1
RF2
RF3
RF4
RF5
RF6
RF7

Motor 3 Motor 4

Fault type  

 
 
 
 
 
 
 Motor 1 Motor 2 Motor 5 Motor 6

A
 p

os
te

rio
ri 

pr
ob

ab
ili

tie
s

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

  SF1
SF2
SF3
SF4
SF5
SF6
SF7Motor 3 Motor 4

Fault type  

 
 
 
 
 
 
 Motor 1 Motor 2 Motor 5 Motor 6

A
 p

os
te

rio
ri 

pr
ob

ab
ili

tie
s

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

  SF1
SF2
SF3
SF4
SF5
SF6
SF7Motor 3 Motor 4

Fault type  

 
 
 
 
 
 
 Motor 1 Motor 2 Motor 5 Motor 6

A
 p

os
te

rio
ri 

pr
ob

ab
ili

tie
s

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

  SF1
SF2
SF3
SF4
SF5
SF6
SF7Motor 3 Motor 4

Fault type  

 
 
 
 
 
 
 Motor 1 Motor 2 Motor 5 Motor 6

A
 p

os
te

rio
ri 

pr
ob

ab
ili

tie
s

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

  SF1
SF2
SF3
SF4
SF5
SF6
SF7Motor 3 Motor 4

Fault type  

 
 
 
 
 
 
 Motor 1 Motor 2 Motor 5 Motor 6

A
 p

os
te

rio
ri 

pr
ob

ab
ili

tie
s

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

  SF1
SF2
SF3
SF4
SF5
SF6
SF7Motor 3 Motor 4

Fault type  

 
 
 
 
 
 
 Motor 1 Motor 2 Motor 5 Motor 6

A
 p

os
te

rio
ri 

pr
ob

ab
ili

tie
s

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

  SF1
SF2
SF3
SF4
SF5
SF6
SF7Motor 3 Motor 4

Fault type  

 
 
 
 
 
 
 Motor 1 Motor 2 Motor 5 Motor 6

A
 p

os
te

rio
ri 

pr
ob

ab
ili

tie
s

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

  SF1
SF2
SF3
SF4
SF5
SF6
SF7Motor 3 Motor 4

Fault type  

 
 
 
 
 
 
 Motor 1 Motor 2 Motor 5 Motor 6

A
 p

os
te

rio
ri 

pr
ob

ab
ili

tie
s

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

  SF1
SF2
SF3
SF4
SF5
SF6
SF7Motor 3 Motor 4

Fault type  



474

A. Lakehal

Bull.  Pol.  Ac.:  Tech.  68(3)  2020

P(SF6 = True) = 
= P(SF6 = True/C(SF3)2 = True, C(SF2)5 = True) £  
+ P(C(SF3)2 = True) £ P(C(SF2)5 = True) +
+ P(SF6 = True/C(SF3)2 = True, C(SF2)5 = False) £  
+ P(C(SF3)2 = True) £ P(C(SF2)5 = False) +
+ P(SF6 = True/C(SF3)2 = False, C(SF2)5 = True) £  
+ P(C(SF3)2 = False) £ P(C(SF2)5 = True) +
+ P(SF6 = True/C(SF3)2 = False, C(SF2)5 = False) £  
+ P(C(SF3)2 = False) £ P(C(SF2)5 = False)

P(SF6 = True) = (1£0.065£0.075) + (1£0.065£0.925) +
+ (1£0.935£0.075) + (0£0.935£0.925)

P(SF6 = True) = 0.004875 + 0.060125 + 0.070125 + 0

P(SF6 = True) = 0.135125.

The conditional probability table of the “Displacement of 
conductors” variable is provided by Table 7.

Table 7 
Conditional probability table for “Displacement of conductors” 

variable

Frequent starting C(SF3)2 True False

Shock or vibration C(SF2)5 True False True False

SF6 True 1 1 1 0

False 0 0 0 1

Another example of calculation for the rotor element of 
motor M4 is given for the “Bearing loss of lubrication” variable 
as follows:

P(RF7 = True) = 
= P(RF7 = True/C(RF7)1 = True, C(RF7)2 = True) £  
+ P(C(RF7)1 = True) £ P(C(RF7)2 = True)
+ P(RF7 = True/C(RF7)1 = True, C(RF7)2 = False) £  
+ P(C(RF7)1 = True £ C(RF7)2 = False)
+ P(RF7 = True/C(RF7)1 = False, C(RF7)2 = True) £  
+ P(C(RF7)1 = False) £ P(C(RF7)2 = True)
+ P(RF7 = True/C(RF7)1 = False, C(RF7)2 = False) £  
+ P(C(RF7)1 = False) £ P(C(RF7)2 = False)

P(RF7 = True) = (1£0.054£0.032) + (1£0.054£0.968) +
+ (1£0.946£0.032) + (0£0.946£0.968)

P(RF7 = True) = 0.001728 + 0.052272 + 0.030272 + 0

P(RF7 = True) = 0.084272.

The conditional probability table of the “Bearing loss of 
lubrication” variable is provided by Table 8.

It is natural that the size of the machine and its power justify 
the nature of the fault. Priorities in terms of maintenance action 
are given in Table 9.

The reliability of the entire motor is the product of all the 
elementary reliabilities of the rotor and stator. However, to 
improve this reliability, maintenance actions can be applied 
to the less reliable elements, which have a strong probability 
of breaking down. Fig. 7 gives the probabilities of detecting 
a fault in the rotor and stator of each motor. It is clear that the 
low probability of fault for the 6 motors is justified, given 
the importance of these machines and the level of monitor-
ing applied, but we still have to look for improvements. The 
practical work done in this last section (through quantitative 
analysis) serves as a gateway to give a forecast vision on the 
availability of all the induction motors of the company. The 
6 motors studied represent samples of the machine park that 
we want to apprehend.

Induction motors have the particularity that certain faults 
can affect the rotor and others can affect the stator separately. 
Also, the action may concern one of these two elements or the 
other. Now, for the establishment of  maintenance plans, the 
inference results given by Table 5 and Table 6 and summarized 
in Table 9 can be used. In the case of the stator, priority in 

Table 8 
Conditional probability table for “Bearing loss of lubrication” 

variable

Overheating C(RF7)1 True False

Oil contamination C(RF7)2 True False True False

RF7 True 1 1 1 0

False 0 0 0 1

Table 9 
Most likely fault for each motor

Motor Element Most likely fault Probability

Motor 1
Stator Stator carcass fault 0.1791342

Rotor Bearing fault and rotor 
misalignment 0.16206801

Motor 2
Stator Vibration 0.17801589

Rotor Broken rotor bars 0.093518336

Motor 3
Stator Stator carcass fault 0.068734394

Rotor Bearing fault and rotor 
misalignment 0.076426272

Motor 4
Stator Stator phase-phase 

faults 0.032937031

Rotor Bearing fault and rotor 
misalignment 0.10620828

Motor 5
Stator Stator turn-turn faults 0.004991007

Rotor Bearing fault and rotor 
misalignment 0.1020991

Motor 6
Stator Stator turn-turn faults 0.17686545

Rotor Bearing fault and rotor 
misalignment 0.029752789
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intervention must be given to M1, M2, M6, M3, M4 and M5, 
respectively. For the rotor, priority in intervention must be given 
to M1, M5, M2, M4, M3 and M6, respectively. The results of 
this study can also be used to help the maintenance engineer 
draw up a prediction strategy oriented to the most likely faults 
and common symptoms. From Tables 5, Table 6 and Table 9, 
priority is given to bearing fault and rotor misalignment for 
motors M1, M3, M4, M5, and M6. For the stator element: stator 
carcass fault for motors M1 and M3, and stator turn-turn faults 
for motors M5 and M6.

Now, if the network structure is defined as causality links 
and the parameters are calculated based on the fault history, 
then it can be concluded that there is no difference between 
the different motors and the structure remains unchanged, but 
the parameters vary from one motor to another and the results 
do, too. This conclusion is motivated by the a posteriori prob-
abilities, according to which most of the faults on the rotors of 
the 6 motors (Table 9) are related to the bearing fault and rotor 
misalignment. For the stator of the machine, most of the faults 
of the 6 motors are related to the stator carcass fault and short 
circuit between turns. Care must be taken in extrapolating the 
conclusions of this study to smaller motor sizes, to those with 
lower power or those working under specific environmental con-
ditions. There are special motors whose windings can withstand 
temperatures higher than those used in the petrochemical field.

The prediction is based on the interpretation of the causes 
that represent the input variables, and the accuracy of the a pos-
teriori probabilities depends on the richness of this interpreta-
tion. Moreover, in most cases of faults, these inputs are only 
partially defined, which increases uncertainty.

5. Conclusions

The proposed Bayesian approach does not replace the artificial 
intelligence techniques that exist in the literature, but makes 
a strong contribution towards decision-making. Throughout our 

long introduction, we attempted to discuss the main contribution 
in this research field. Also, and through the developed BN, 
we have been able to analyze information coming from var-
ious sources (sensor, behavior, yield, torque, expertise). Also, 
we were able to define the probabilities of each fault, and, 
consequently, the fault that represents potential danger for the 
machine. The case study presented focused on the power of the 
machine. Bearing faults and stator faults are most probable for 
large size motors. For low power motors, the highest probability 
is related to the stator. The strength contribution of the proposed 
method is to make decisions, on repair and maintenance, based 
on forecast data, and to also analyze the most favorable path 
of fault.

In addition to the prediction of faults and prioritization of 
maintenance actions, the Bayesian approach, presented in this 
paper, provides the possibility to perform quantitative analysis 
of faults and makes contributions for:
● Experience feedback: according to the criticality of the 

machine, the periods of update of the probabilities will be 
defined. The highest probabilities P(Fi) must be analyzed, 
then either eliminated or minimized, where appropriate. By 
selecting the highest probability, i.e. the one that penalizes 
the machine’s availability the most, it is possible to plot 
the Pareto graphs in a manner that diagnoses the causes of 
unavailability.

● Preparation and validation of the actions: the preceding 
analysis allows targeting the correction and improvement 
actions that must be prepared, implemented and then val-
idated. Measuring P(Fi), over the next period, will enable 
measuring the effectiveness of the actions performed.

● The consequences: application of this Bayesian approach 
leads to constant search for progress; each problem solved 
will reveal new sources of information. Also, the results 
obtained streamline the preparation and planning of actions.
The BN developed in this paper is truly useful and is easily 

personalized. With this tool, operators are able to reflect their 
specific operating and maintenance practices.

Fig. 7. Probability of failure of each induction motor element
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