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Rolling bearings are widely used in a large variety of industrial applications. Therefore, it 

is necessary to provide an efficient fault detection and diagnosis mechanism to prevent 

component failure and poor performance during operation. This paper proposes a novel 

classification scheme based on the design of discrete wavelets best adapted to vibration 

signal analysis in order to identify and properly classify rolling bearing defects. Through 

polyphase representation of the wavelet filter bank, and using the particle swarm 

optimization (PSO) algorithm, the appropriate discrete wavelet associated filters are 

optimized to achieve the best fault classification accuracy. Simulation results show that 

the proposed wavelet design approach outperforms the well-known standard wavelets 

regardless the employed classifier and leads to an average fault classification improvement 

of about 2%. 
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1. INTRODUCTION

Industrial plants often contain rotating machinery including 

turbines, compressors, pumps, motors, etc. that should be 

permanently monitored to reduce possible faults and hence, 

improve their operational efficiency. Bearings, known for 

being among the most important parts of these rotating 

machines, are generally made up of an outer and inner ring, 

cage and rolling elements. These rolling bearings, whose 

failures are amongst the most common reasons for machines 

breakdown, often operate under extreme working conditions 

leading to defects and gradual decrease of performance [1]. 

Statistical studies have shown that many of the mechanical 

defects of rotating machinery are caused by rolling bearings, 

where inner and outer ring cracks are the most common faults 

representing about 90% of all the possible faults, while the 

rolling elements and cage cracking constitute nearly 10 % of 

all the defects [2]. To establish an efficient condition-based 

maintenance for bearing defects monitoring, various 

techniques such as vibration analysis, acoustic emission, 

temperature measurement, wear analysis, etc. have been 

proposed [3].  

Generally, these techniques apply signal processing tools, 

including data acquisition, feature extraction, feature selection, 

and fault classification. Feature extraction step is a key factor 

affecting greatly the fault classification performance [4, 5]. 

Thus, different methods based on time domain, frequency 

domain, and time-frequency domain feature extractions have 

been suggested. However, time and frequency domain features 

have been shown to be relatively inappropriate for non-

stationary signals which can be better processed using time-

frequency domain techniques able to provide simultaneously, 

both time-domain and frequency-domain information [6]. To 

deal with non-stationary signals, including mechanical and 

bearing faulty signals, many time-frequency domains 

techniques have been used, such as the short-time Fourier 

transform (STFT), the Wigner-Ville distribution (WVD), the 

empirical mode decomposition (EMD), and the wavelet 

transform (WT) [7-11]. More specifically, the WT based 

approach, due to its effectiveness, has been widely and 

successfully applied in monitoring mechanical diagnosis 

problems and bearing fault detection. Shan [12] adopted 

wavelet packet decomposition to extract energy features and 

used adaptive Fuzzy-SVM classifier to diagnose the faults of 

rolling bearings. Kumar et al. [13] examined the discrete 

wavelet transform (DWT) performance in diagnosing bearing 

defects using Neural Networks. Applying different wavelets 

such us Daubechies and Symlet wavelets (db8, db44, db4 and 

Sym10), they showed that de-noising the vibration raw signal 

using DWT, improves significantly the fault classification 

process. Mohammed et al. [14] verified the DWT 

effectiveness to quantify different non-stationary faulty 

signals and its ability to track the signal dynamics properly. To 

undertake the problem of bearing fault diagnosis using 

wavelets, Yan et al. [15] showed the advantages of the DWT 

with respect to the continuous wavelet transform (CWT) 

regarding computation time and early fault detection. A novel 

hybrid fault diagnostic method for roller bearing under multi-

speed is presented using impulse modelling continuous 

wavelet transform (IMCWT) model [16]. Patil et al. [17] used 

DWT with ANN to detect and classify bearing faults where 

they employed Daubechies and Symlet wavelets (db4, db8, 

sym5 and sym8) to extract statistical features such as RMS, 

Skewness, Crest, and Kurtosis. 

To the best of our knowledge, in all the reported research 

works relevant to fault detection and diagnosis (FDD), the 

issue of designing the wavelet filters for preprocessing the 

vibration signal, has not been examined. In this paper a new 

FDD approach, based on optimized wavelet filters using the 

PSO algorithm, is proposed. In other words, instead of using a 
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well-known standard wavelet such as Morlet, Daubechies, 

Symlet, or others for preprocessing the acquired vibration 

signals, we intend to design discrete wavelet filters that are the 

most suitable for rolling bearing diagnosis in terms of fault 

classification. Therefore, based on Mallat multiresolution 

analysis [18], this is accomplished by making use of Sherlock 

and Monro iterative algorithm [19] through the generation of 

two channel perfect reconstruction wavelet filter banks. The 

key idea of the procedure starts from the interesting 

Vaidyanathan factorization of the polyphase matrix [20], 

which consists of a parameterization of the space of the perfect 

reconstruction two-channel filter banks. Subsequently, a 

convenient reformulation [19] of such parameterization allows 

generating the 2M coefficients of the low-pass (LP) filter from 

M angular parameters 𝜃𝑖 taking values in the interval [0, 2𝜋[ 
[21]. In this work, the optimal wavelet design is formulated as 

an optimization problem within the ℝ𝑁 space of the angular 

parameters 𝜃𝑖. Hence, using the particle swarm optimization 

(PSO) algorithm, the discrete wavelet associated filters are 

optimized in terms of the bearing fault classification accuracy. 

Four Intelligent classifiers have been considered for the 

bearing defect classification viz., K Nearest neighbors (KNN), 

Fuzzy K-Nearest Neighbors (FKNN), Artificial Neural 

Networks (ANN) and Support Vector Machine (SVM). 

The remaining of this paper is organized as follows: Section 

2 provides a description of the experimental test rig employed 

in this work. Section 3 describes briefly the four employed 

classifiers. The discrete wavelet transforms principle and the 

polyphase representation of wavelet filter bank are presented 

in section 4, along with the Particle Swarm Optimization (PSO) 

algorithm and the wavelet filter design procedure. The 

obtained simulation results are discussed in section 5. Finally, 

the conclusions are drawn in section 6. 

 

 

2. EXPERIMENTAL TEST RIG DESCRIPTION 

 

In the present work, the experiments are carried out using 

the bearing test rig, shown in Figure 1, belonging to the Unit 

of Research in Advanced Materials (URMA) (Annaba, 

Algeria) of the Research Center in Industrial Technology 

(CRTI). Vibration signals are collected by considering five 

different states of the bearing: (i) healthy bearing; (ii) with 

inner race fault; (iii) with ball defect; (iv) with outer race fault; 

(v) combination of bearing elements defect.  

Three ICP industrial (CTC AC 140-2D) accelerometers are 

employed, one placed on the top of a 0.37 kW three-phase 

induction motor, while the two others are mounted on the 

bearing housings to collect signals from both healthy and 

defective bearings. 

 

 
 

Figure 1. Vibration analysis test rig of the Unit of Research 

in Advanced Materials URMA/CRTI (Annaba, Algeria) 

 

The characteristics of the used bearings are reported in 

Table 1. 
 

Table 1. Bearing technical specifications 

 
Bearing Model ER12K-0114 

Inner race diameter (mm) 29.31 

Outer race diameter (mm) 47.00 

Ball diameter (mm) 7.93 

Contact angle (degree) 0° 

 

The vibration signals are analyzed and stored using the 

Vibra Quest software (VQ-DT8) at a sampling frequency of 

25.6 kHz and an acquisition time of 10 seconds for each 

operating condition. Figure 2 represents the time domain 

vibration signals for the five considered conditions of the 

employed bearings. Through a variable speed drive Lenze 

ESV371N01SXB, and considering the five bearing states, all 

tests are conducted at three different rotational speeds: 1800, 

2100 and 2700 rpm, resulting in 15 temporal vibration signals 

of 262146 samples per signal. Therefore, for a purpose of 

classification, each signal is segmented into 50 non 

overlapping bins having 5240 samples each, giving rise to a 

database composed of 750 temporal vibration signals.
 

 
 

Figure 2. (a) Sampled vibration signal of normal bearing, (b) Inner race defect; (c) Outer race defect; (d) Ball defect; (e) 

Combined defect
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3. BRIEF REVIEW OF KNN, FKNN, ANN AND SVM 

CLASSIFIERS 

 

In the present study, to demonstrate the methodology 

proposed for bearing fault diagnosis and classification, four 

supervised machine learning techniques, i.e. KNN, FKNN, 

ANN and SVM are considered.  

 

3.1 K-Nearest Neighbors (KNN) 

 

The K-Nearest Neighbors (KNN) algorithm is one of the 

most important techniques for classification [22]. It’s a simple 

non-parametric procedure for the assignment of a class label 

to the new input sample based on the class labels represented 

by the majority of the K nearest neighbors of the training 

samples in the feature space. The parameter K which specifies 

the number of nearest neighbors of the input sample can be 

optimized by various heuristic techniques. For the particular 

case when K is one, the input sample is simply assigned to the 

class of that single nearest neighbor. In this work, K=3 has 

been found to be the optimal value after testing several values 

from 1 to 10. 

 

3.2 Fuzzy K-Nearest Neighbors (FKNN) 

 

Compared to traditional classifiers which can only assign 

one class to the input sample, fuzzy classifiers assign a fuzzy 

vector that indicates the relative strength of each class. Based 

on the advantage of fuzzy set theory, an improved version of 

KNN method was proposed by Keller in 1985 and named as 

fuzzy KNN algorithm (FKNN) [23].  

It provides not only the simplicity and practicability of 

classical KNN, but also uses the advantages of fuzzy logic 

theory. The fuzzy KNN algorithm allocates class membership 

to a sample vector instead of allocating the vector to a given 

class.  

Let {𝑥1, … , 𝑥𝑛} be set of n sample vectors for which a fuzzy 

partition C defines the membership degree of each 𝑥𝑗 in each 

of the C classes. Denoted by  𝜇𝑖𝑗  for 𝑖 = 1,… , 𝐶  and 𝑗 =

1,… , 𝑛 , it represents the degree of membership of the 𝑗𝑡ℎ 

vector 𝑥𝑗 in the 𝑖𝑡ℎ class.  

The following properties must hold for  𝜇𝑖𝑗  to be a C 

partition: 

 

∑𝜇𝑖𝑗

𝐶

𝑖=1

= 1

0 <∑𝜇𝑖𝑗

𝑛

𝑗=1

< 𝑛

𝜇𝑖𝑗 ∈ [0,1]

 (1) 

 

In the classification step, for each new input sample x its K 

nearest neighbors are determined, and the assigned 

memberships i(x) of the vector x are calculated according to: 

 

𝜇𝑖(𝑥) =
∑ 𝜇𝑖𝑗 (1 ‖𝑥 − 𝑥𝑗‖

2
⁄ )𝐾

𝑗=1

∑ 1 ‖𝑥 − 𝑥𝑗‖
2

⁄𝐾
𝑗=1

 (2) 

 

‖𝑥 − 𝑥𝑗‖
2

 is the Euclidean distance between 𝑥  and its jth 

nearest neighbor xj. In this paper, the memberships ij are 

determined using the constrained fuzzy membership [24]: 

𝜇𝑖𝑗 = {
0.51 + (

𝑛𝑗

𝐾
) ∗ 0.49        𝑖𝑓 𝑖 = 𝑗

(
𝑛𝑗

𝐾
) ∗ 0.49                      𝑖𝑓 𝑖 ≠ 𝑗  

 (3) 

 

where, 𝑛𝑗 represents the number of neighbors belonging to the 

𝑗𝑡ℎ class.  

 

3.3 Artificial Neural Networks (ANN) 

 

Artificial neural networks (ANN) are among the popular 

supervised machine learning techniques widely used in several 

problems with nonlinearities such as fault diagnosis and 

classification [25]. In this paper, a feedforward multilayer 

perceptron (MLP) composed of two hidden layers having 10 

neurons each, is employed. The NN training is conducted using 

the Levenberg-Marquardt algorithm. 

 

3.4 Support Vector Machine (SVM) 

 

The Support vector machine (SVM) pioneered by Vapnik in 

the late 1960s is a powerful algorithm that has been 

successfully applied in several fields such as detection, 

recognition, prediction, machinery fault diagnosis, and so on 

[26]. SVM is a machine learning technique for small samples 

classification [25]. The SVM algorithm constructs an optimal 

separating hyperplane f(x) between data sets by resolving a 

constrained quadratic optimization problem based on the 

structural risk minimization (SRM) [27]. 

 

𝑦 = 𝑓(𝑥) = 𝑊𝑇𝑥 + 𝑏 =∑𝑊𝑖𝑥𝑖 + 𝑏  

𝑁

𝑖=1

 (4) 

 

where, W is a N-dimensional vector and b is a scalar. The 

optimal separating hyperplane is tending to create the largest 

distance between the plane and the nearest data, that is, the 

maximum margin as illustrated in Figure 3. Through the 

conversion of the optimization problem with Kuhn-Tucker 

condition into the equivalent Lagrangian dual quadratic 

optimization problem, the classifier based on the support 

vector may be achieved. 

 

 
 

Figure 3. Classification of data points by SVM 

 

After the training step, the SVM classifies a test sample 

using a decision function to determine on which side of the 

hyperplane the test sample lays. If those two classes are not 

linearly separable, it is possible to create an optimal separating 
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hyperplane that allows linear separation through a 

transformation that maps the data from input space to a high 

dimensional feature space by using a kernel function 𝐾(𝑥𝑖 , 𝑥𝑗). 

In this work, the mapping is based on the radial basis function 

(RBF) kernel given by: 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
)   (5) 

 

where, γ is a parameter that controls the width of the Gaussian 

kernel. Here, γ = 1, the Matlab default value, is selected. 

 

 

4. WAVELET FILTER DESIGN USING PARTICLE 

SWARM OPTIMIZATION (PSO) 

 

4.1 Discrete wavelet transform 

 

Over the last few decades, the wavelet transform has been 

widely and successfully applied to rotary machine fault 

diagnosis. Wavelets are functions constructed by translating 

and dilating a basic function called a mother wavelet 𝜓(𝑡): 
 

𝜓𝑎,𝑏(𝑡) = 𝜓 (
𝑡 − 𝑏

𝑎
) (6) 

 

where, the parameter a > 0 represents the scale index (or 

dilation) and b indicates the time shifting (or translation).  

The continuous wavelet transform (CWT) of a function 

𝑥(𝑡) ∈ 𝐿2(𝑅) at scale a and position b can be described as a 

convolution with a scaled and translated copy of the mother 

wavelet 𝜓(𝑡) as: 

 

𝐶𝑊𝑇(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)𝜓∗ (

𝑡 − 𝑏

𝑎
) 𝑑𝑡

+∞

−∞

 (7) 

The asterisk * denotes the complex conjugation. 

 

Since the scale and shift parameters are continuous, 

applying CWT on a signal generates information redundancy 

which results in an increased computation time. Thus, for 

applications requiring computational efficiency, the discrete 

wavelet transform (DWT) has been introduced: 

 

𝐷𝑊𝑇(𝑗, 𝑘) =
1

√2𝑗
∫ 𝑥(𝑡)𝜓 (

𝑡 − 2𝑗𝑘

2𝑗
)

+∞

−∞

 (8) 

 

where, 𝑎 = 2𝑗  and 𝑏 = 𝑘2𝑗  represent a dyadic sampling of 

the dilation and translation parameters respectively. (𝑗, 𝑘) ∈
ℤ2 are the decomposition level and the translation factor 

respectively. DWT is usually implemented using the iterative 

and efficient Mallat multiresolution algorithm through the use 

of a pair of a low-pass (LP) and high-pass (HP) digital filters, 

whose impulse response are respectively denoted by ℎ(𝑛) and 

𝑔(𝑛) = (−1)𝑛ℎ(1 − 𝑛). Known as quadrature mirror filters 

(QMF), these two wavelets filters are often designed using the 

mother wavelet  𝜓(𝑡)  and its corresponding scaling 

function 𝜙(𝑡) as [15, 18]: 
 

{
 
 

 
 𝜙(𝑡) = √2∑ℎ(𝑛)𝜙(2𝑡 − 𝑛)

𝑛

𝜓(𝑡) = √2∑𝑔(𝑛)𝜙(2𝑡 − 𝑛)

𝑛

    (9) 

Practically, the Nd -level DWT decomposition of a sampled 

vibration signal  𝑥(𝑡) = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁)  is computed by 

passing the signal through Nd low pass (LP) h(n) and high pass 

(HP) g(n) filters, resulting in one approximation coefficient 

vector 𝐶𝐴𝑁𝑑 and Nd detail coefficient vectors 𝐶𝐷𝑗  respectively 

(j: decomposition level;  1 ≤ 𝑗 ≤ 𝑁𝑑) . This multiresolution 

analysis, illustrated in Figure 4 for three-level decomposition, 

may be expressed by:  

 

 
 

Figure 4. Three-level DWT decomposition tree 

 

𝑥(𝑡) = 𝐶𝐴𝑁𝑑(𝑡) +∑𝐶𝐷𝑗(𝑡)

𝑁𝑑

𝑗=1

= ∑𝑎𝑁𝑑 ,𝑛
𝑛

(𝑡 − 𝑛) +∑∑𝑑𝑗,𝑛𝜓(2
𝑗𝑡 − 𝑛)

𝑛

𝑁𝑑

𝑗=1

 (10) 

 

Using the two wavelet filters h(n) and g(n), it can be shown 

that the signal may be recursively decomposed into low and 

high-frequency components [18, 28]: 

 

{
 
 

 
 𝑎𝑚,𝑛 =∑ℎ[𝑘 − 2𝑛]𝑎𝑚−1,𝑛

𝑘

𝑑𝑚,𝑛 =∑𝑔[𝑘 − 2𝑛]

𝑘

𝑎𝑚−1,𝑛

  (11) 

 

where, 𝑎𝑚,𝑛 and 𝑑𝑚,𝑛 are respectively the approximation and 

detail coefficients of the multiresolution decomposition, 

obtained by convolving the previous level approximation 

coefficients  𝑎𝑚−1,𝑛  with the LP and HP digital filter 

coefficients, respectively. For a Nd-level DWT decomposition, 

the total energy of the signal x(t), based on Parseval's theorem, 

is the energy 𝐸𝐴𝑁𝑑 = ∑ |𝑎𝐾,𝑛|
2

𝑛 of the approximation 

coefficient CAND plus the energies 𝐸𝐷𝑗 = ∑ |𝑑𝑗,𝑛|
2

𝑛  of the Nd 

detail coefficients 𝐶𝐷𝑗: 
 

𝐸𝑡𝑜𝑡 = 𝐸𝐴𝑁𝑑 +∑𝐸𝐷𝑗

𝑁𝑑

𝑗=1

 (12) 

 

Note that, in this work, the energies 𝐸𝐴𝑁𝑑  and 𝐸𝐷𝑗  as well 

as the kurtosis values of the approximation and detail 

coefficients are employed as input features in the bearing fault 

classification process [17]. 
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4.2 Wavelet filter bank and polyphase representation 

 

The discrete wavelet transform can be successfully 

implemented using a pair of low-pass and high-pass finite 

impulse response (FIR) filters [18, 29]. The authors [19] 

proposed a recursive and interesting procedure to generate the 

coefficients of such filters. Based on polyphase matrix 

representation, this iterative algorithm allows the generation 

of orthonormal perfect reconstruction FIR filters of any given 

length. Let the transfer function, in the ℤ domain, of a low-

pass FIR filter of order 2𝑁𝑜 given by: 

 

𝐻0(𝑧) = ∑ ℎ𝑖

2𝑁𝑜−1

𝑖=0

𝑧−𝑖   (13) 

 

Separating the even and odd index coefficients gives: 

 

𝐻0(𝑧) = ∑ ℎ2𝑖𝑧
−2𝑖

𝑁𝑜−1

𝑖=0

+ 𝑧−1 ∑ ℎ2𝑖+1

𝑁𝑜−1

𝑖=0

𝑧−2𝑖

= 𝐻00(𝑧
2) + 𝑧−1𝐻01(𝑧

2)

 (14) 

 

where,  H00(z) = ∑ h2iz
−iN−1

i=0  and H01(z) = ∑ h2i+1z
−iN−1

i=0  

 

Thus, the polyphase matrix of a two-channel filter bank is: 

 

𝐻𝑝𝑜𝑙𝑦(𝑧) = (
𝐻00(𝑧) 𝐻01(𝑧)

𝐻10(𝑧) 𝐻11(𝑧)
) (15) 

 

where, 𝐻00(𝑧) and 𝐻01(𝑧) are the polyphase components of 

the low-pass filter, whereas 𝐻10(𝑧) and 𝐻11(𝑧) are those of 

the high-pass filter. Vaidyanathan proposed the following 

polyphase matrix factorization [20]: 

 

𝐻𝑝𝑜𝑙𝑦(𝑧) = (
𝑐0 𝑠0
−𝑠0 𝑐0

) ∏ (
1 0
0 𝑧−1

)

𝑁𝑜−1

𝑖=1

(
𝑐𝑖 𝑠𝑖
−𝑠𝑖 𝑐𝑖

) (16) 

 

where,  𝑐𝑖 = 𝑐𝑜𝑠(𝜃𝑖) and 𝑠𝑖 = 𝑠𝑖𝑛(𝜃𝑖).  
 

Sherlock et al. [19] developed a new reformulation of the 

factorization which leads to a recursive computation of the LP 

filter coefficients. Hence, the even numbered filter 

coefficients {ℎ2𝑖} are given by: 

 

{

ℎ0
(𝑘+1)

= 𝑐𝑘ℎ0
𝑘

ℎ2𝑖
(𝑘+1)

= 𝑐𝑘ℎ2𝑖
(𝑘)
− 𝑠𝑘ℎ2𝑖−1

(𝑘)   

ℎ2𝑘
(𝑘+1)

= −𝑠𝑘ℎ2𝑘−1
(𝑘)

𝑖 = 1,2, … , 𝑘 − 1 (17) 

 

with ℎ0
(1)
= 𝑐0 and ℎ1

(1)
= 𝑠0, while the odd filter coefficients 

{ℎ2𝑖+1} are defined by: 

 

{

ℎ1
(𝑘+1) = 𝑠𝑘ℎ0

(𝑘)

ℎ2𝑖+1
(𝑘+1) = 𝑠𝑘ℎ2𝑖

(𝑘) + 𝑐𝑘ℎ2𝑖−1
(𝑘)   𝑖 = 1,2, … , 𝑘 − 1

ℎ2𝑘+1
(𝑘+1) = 𝑐𝑘ℎ2𝑘−1

(𝑘)

  (18) 

 

For the filters of length  2𝑁𝑜 , Eq. (17) and Eq. (18) 

determine the low-pass coefficients {ℎ0, ℎ1, … , ℎ2𝑁𝑜−1}  in 

terms of 𝑁𝑜 randomly selected angular parameters 

{𝜃0, 𝜃1, … , 𝜃𝑁𝑜−1} taking values in the interval [0, 2𝜋[.   

By flipping and sign-alternating, the HP filter coefficients 

are found by: 

 

 𝑔𝑖 = (−1)𝑖+1ℎ2𝑁𝑜−1−𝑖   (19) 

 

4.3 Particle Swarm Optimization 

 

Particle Swarm Optimization (PSO) algorithm, introduced 

in 1995 by Kennedy and Eberhart [30], is a stochastic search 

technique inspired from the collective intelligent behavior of 

animal societies such as ant colonies, bird flocks, or fish 

schools. PSO aims at finding the optimal solution for a given 

multidimensional problem, where each candidate solution, 

called a particle, representing a point in the N- dimensional 

search space, where N is number of variables of the function 

to be optimized. PSO performs search starting from a random 

swarm of particles, called initial population, that emulate the 

success of neighboring members to achieve their own 

successes. Alternatively, using shared information amongst 

the swarm of individuals, each particle updates its velocity and 

position based on its current and past trajectories. Therefore, 

for a problem of N real variables to be optimized, and a 

population of size S, each particle 𝑝𝑖(𝑖 = 1,2, … , 𝑆) , at 

iteration t, has its own: 

▪ Position 𝑝𝑖(𝑡)  ∈  ℛ
𝑁 . 

▪ Velocity 𝑣𝑖(𝑡)  ∈  ℛ
𝑁. 

▪ Personnel best position 𝑃𝑏𝑖(𝑡)  ∈  ℛ
𝑁, found during 

past search. 

 

Consider  𝑃𝑔(𝑡)  ∈  ℛ
𝑁  being the best global position 

reached among the past trajectories explored by all the swarm 

members. During the search process, the particle movement 

may be described by [29]: 

 
𝑣𝑖(𝑡 +  1) = 𝑤 𝑣𝑖(𝑡) + 𝑐1. 𝑟1[𝑃𝑏𝑖(𝑡) −  𝑝𝑖(𝑡)]

  + 𝑐2. 𝑟2[𝑃𝑔(𝑡) −  𝑝𝑖(𝑡)]

𝑝𝑖(𝑡 +  1) = 𝑝𝑖(𝑡) + 𝑣𝑖(𝑡)

  (20) 

 

where, w is the inertia weight, used to provide a fine 

adjustment between local and global swarm searching 

capabilities, such that a greater value of w  allows wider 

research area exploration. The constants c1 and c2 represent the 

cognition and the social learning factors regulating the relative 

velocities with respect to the best local and global positions, 

respectively. r1 and r2 are random variables taking values from 

a uniform distribution in the interval [0,1]. Eq. (20) is iterated 

until convergence is achieved. The PSO implementation is so 

simple that it is widely applied in many optimization problems. 

In this work, the particle swarm optimization algorithm is 

employed to search for the suitable angular parameters 

𝜃𝑖
′𝑠 related to the polyphase representation of wavelet filters in 

order to improve the wavelet-based bearing fault classification 

performance. 

 

4.4 Wavelet filter optimization procedure 

 

Wavelets, principally developed for general signal 

processing purpose, have been extensively and effectively 

applied in various vibration signal analysis problems, 

including faulty bearing diagnosis. Also, it has been shown 

that a better fault classification is achieved when using features 

extracted from wavelet transform. It is thought that the 
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classification performance could be boosted further if the 

wavelets are designed according to the classification accuracy. 

For this reason, based on the polyphase representation 

described in section 4.2 wavelet filters are designed using the 

PSO algorithm, where the positions of the swarm individuals 

encode the free parameters  𝜃𝑖 , and the bearing fault 

classification error rate is adopted as a cost function. Thus, the 

suggested optimization procedure, depicted in Figure 5 for a 

fixed filter order and a given decomposition level, is 

implemented as follows: 

(1) Set the wavelet filter order 𝑁𝑜 = 𝑜𝑟𝑑𝑒𝑟_𝑚𝑖𝑛. 

(2) Set the decomposition level 𝑁𝑑 = 𝑑𝑒𝑐𝑜𝑚𝑝_𝑚𝑖𝑛. 

(3) Generate an initial population of particles, where each 

particle is an angular position vector {𝜃0, 𝜃1, … , 𝜃𝑁0} randomly 

selected in the range [0, 2𝜋[ . 
(4) For each particle evaluate the fitness function: 

a. Insert the 𝜃𝑖′𝑠 vector into the iterative algorithm to 

produce the 2𝑁𝑜 + 2 coefficients {ℎ𝑖} of the low-

pass filter; 

b. Determine the high-pass filter coefficients {𝑔𝑖} 
using the alternating flip algorithm given by Eq. 

(19). 

c. Using the obtained low-pass and high-pass filters 

apply the 𝑁𝑑 − 𝑙𝑒𝑣𝑒𝑙 DWT to the vibration signal 

to extract the fault feature vector made up of the 

energies and the kurtosis: 

d. [𝐸1, 𝐸2, … , 𝐸𝑁𝑑+1, 𝐾1, 𝐾2, … , 𝐾𝑁𝑑+1] Insert the 

feature input vector into the classifier and evaluate 

the error rate percentage of the classification.  

(5) Update the velocity and position of each particle using 

Eq. (20). 

(6) Repeat steps 4-5 until convergence conditions are 

satisfied. Note that when there is no more improvement in the 

classification error rate percentage during 20 consecutive 

iterations, convergence is considered.   

(7) Increment the decomposition level 𝑁𝑑 ← 𝑁𝑑 + 1, and 

repeat steps 3-6. 

(8) Increment the filter order 𝑁𝑜 ← 𝑁𝑜 + 2, and repeat steps 

2-7. 

 

 

5. RESULTS AND DISCUSSIONS 

 

To evaluate the performance of the considered wavelet filter 

optimization method and to assess the effectiveness of the 

extracted wavelet features with respect to the classification 

accuracy, several simulation tests employing the database 

described in section 2 have been carried out using the four 

previously presented classifiers, namely K-Nearest Neighbors 

(KNN), Fuzzy K-Nearest Neighbors (FKNN), Artificial 

Neural Network (ANN), and Support Vector Machine (SVM). 

Note that, the database, composed of 750 vibration signals, has 

been randomly partitioned into training data (70%) and testing 

data (30%). Generally, the particle swarm size is a 

compromise between algorithm performance and consuming 

time [31]. Also, the maximum number of iterations is an 

important parameter that can affect the PSO algorithm 

performances, where a value between 50 and 200 is an 

appropriate suggestion that may lead to good results [32]. In 

this paper, the particle swarm size is taken to be 25 and the 

maximum number of generations is set to 100. To obtain good 

results, a linear decreasing inertia weight is adopted, and the 

cognitive and social parameters are set to 𝑐1 = 1.5 and 𝑐2 =
2.0 respectively [32]. To avoid the effect of initial population 

choice, 20 simulations are executed, each time, and the best 

results are saved. For a purpose of comparison, a thorough 

research, using the four classifiers, has shown that the 

Daubechies wavelet with the 3rd level decomposition performs 

relatively better compared to other wavelet families as shown 

in Table 2 and Figure 6.  

Using the design steps described in section 4.4 with the 3-

level decomposition and the four adopted classifiers, the 

obtained results, given in Table 3 and Figure 7, show that the 

designed wavelet filters give the best classification 

performance at filter orders greater or equal to 6. Hence, a 

wavelet filter order of 6 would represent an optimal choice. 

It is noteworthy that the obtained FDD system is a scheme 

based on 3-level DWT decomposition, whose PSO-optimized 

filters of order 6 are reported in Table 4 for the four classifiers. 

Also, the percentage values reported in Table 5 and 

represented in Figure 8, show clearly that the optimized 

wavelet filters enhance the classification accuracy with an 

average percentage gain of about 2%. 

 

Table 2. Average classification accuracy (%) using the “db” 

wavelets in terms of the decomposition level for the four 

classifiers  

 

Decomposition level Nd KNN FKNN ANN SVM 

1 93.77 93.77 92.89 95.11 

2 92.36 94.22 90.67 95.55 

3 95.55 95.11 96 96.95 

4 95.11 94.22 91.11 92.88 

5 89.98 95.11 91.11 91.11 

6 92.44 96.33 89.78 93.44 

7 90.67 95.89 87.56 95.1 

8 88.67 94.44 90.67 95.23 

  

Table 3. Average classification accuracy (%) using the PSO-

optimized wavelets versus the filter order for the four 

classifiers 

 
 Designed wavelet Accuracy (%) 

Filter order KNN FKNN ANN SVM 

4 97.33 98.22 96.89 97.33 

6 97.47 98.87 97.78 98.40 

8 97.47 98.87 97.78 98.40 

10 97.47 98.87 97.78 98.40 

12 97.47 98.87 97.78 98.40 

Table 4. Designed wavelet filter coefficients of order 6 
 

 Filter coefficients 

KNN 0.3828 0.1919 0.6180 -0.0707 -0.2937 0.5859 

FKNN 0.6097 0.3238 -0.0462 0.6537 0.1436 -0.2704 

ANN 0.8507 0.4723 -0.1191 0.1907 -0.0244 0.0440 

SVM 0.4407 0.0038 0.2650 0.8456 0.0012 0.1424 
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Figure 5. Flowchart of PSO based design of the optimal wavelet filters 

 

 
 

Figure 6. Classification rates using the “db” wavelets in 

terms of the decomposition level for the four classifiers 

 

 
 

Figure 7. Classification rates using the designed wavelets in 

terms of the filter order for the four classifiers 

Table 5. Bearing fault classification accuracy percentages 

 
 KNN FKNN ANN SVM 

db wavelets 95.55 95.11 96 96.95 

PSO-optimized wavelets 97.47 97.87 97.78 98.4 

 

 
 

Figure 8. Comparison in terms of classification percentage 

between db and designed wavelets using the four classifiers 

 

 

6. CONCLUSIONS 

 

In this paper, a novel ball bearing fault diagnosis scheme 

based on the optimal design of discrete wavelet filters through 

the use of the polyphase representation of the wavelet filter 

bank is proposed. In order to assess the performance of the 

considered diagnosis technique, four popular classifiers with a 
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database consisting of 750 vibration signals representing five 

different states of the bearing, are employed. Some 

conclusions and contributions of this research are summarized 

as below.  

(1) The new suggested technique is based on the design of 

wavelet filters, best adapted to bearing fault diagnosis, 

using the polyphase wavelet filter representation, and 

optimized using the PSO algorithm with respect to the 

bearing fault classification accuracy. 
(2) By applying the PSO-designed wavelet filters to the 

vibration signal, two statistical features, the energy and 

kurtosis, are extracted and fed to four popular 

classifiers namely KNN, Fuzzy-KNN, ANN and SVM. 

(3) Through a thorough investigation, it has been shown 

that the Daubechies ‘db’ wavelets with a 

decomposition level 𝑁𝑑 = 3 , outperforms almost all 

the other standard discrete wavelets. 

(4) Using the PSO optimized wavelet filters of order 6 for 

preprocessing the vibration signal, the developed 

approach is compared against the ‘db’ based diagnosis 

system. The obtained simulation results show that the 

proposed design procedure results in optimal filters that 

surpasses the standard wavelet filters regardless the 

employed classifier, with an average classification 

percentage gain that amount to nearly 2%. 
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NOMENCLATURE 

 

𝑎𝑚,𝑛 Approximation coefficients of the 

multiresolution decomposition 

ℎ𝑖 Low pass filter coefficients 

𝐶𝐴𝑁𝑑 DWT approximation coefficient at 

decomposition level Nd  

𝐸𝐴𝑁𝑑 Energy of the approximation coefficient  

𝐸𝐷𝑗  Energy of the detail coefficient 

𝑁𝑑 DWT decomposition level  

𝑁𝑜 Filter order 

𝑑𝑚,𝑛 Detail coefficients of the multiresolution 

decomposition 

𝑔𝑖 High pass filter coefficients 

𝑝𝑖  The PSO swarm particle 

𝑥𝑗 Sample vector 

K Number of nearest neighbors 

𝐶 fuzzy partition of C classes 

𝐶𝐷𝑗  DWT detail coefficient at decomposition 

level j 

𝜃𝑖 Angular parameters 

𝜇𝑖 Membership degree of 𝑥𝑖 
𝛾 Gaussian kernel control parameter 
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