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Abstract 

Installations and the detection of their faults has become a major challenge. In order to develop a reliable 

approach for monitoring and diagnosis faults of these components, a test rig was mounted. In this article, a 

Multi Layer Perceptron (MLP) Artificial Neural Network (ANN) has been structured and optimized for 

online monitoring of induction motors. The input layer of our ANN used eight indicators calculated from the 

collected time signals and which represent the different states of the motor (Healthy, broken rotor bars, 

bearing fault and Misalignment) and the output layer used a codified matrix. However, based on L27 Taguchi 

design, the architecture for the hidden layers of our network is chosen, with the use of the Levenberg-

Marquardt learning algorithm. Garson's algorithm and connection weight approach showed that there's a great 

sensitivity of the crest factor, the kurtosis and the variance on the effectiveness of our diagnostic system. 

Consequently, the obtained results are capable of detecting faults in the induction motor under different 

operating conditions. 

 

Keywords: induction motor, vibration analysis, monitoring and diagnosis, optimized artificial neural network,  

sensitivity analysis. 

 
1. INTRODUCTION 
 

Induction motors represent the majority of the drive 

means in industrial installations. Despite their greater 

robustness and reliability, it's very necessary to monitor 

their state of health and identify their faults at an early 

stage to optimize their availability and avoid accidental 

and penalizing breakdowns. Consequently, induction 

motor health-condition-monitoring system is very crucial 

for maintenance engineers and the development of reliable 

instrumentation and robust diagnostic techniques are very 

useful for the success of a predictive maintenance plan for 

several industries. 

Among all the stages of monitoring induction motors, 

diagnosis is the most difficult stage. Model-based 

diagnosis and database-based diagnosis are the most used 

[1]. In the case of model-based methods the difficulty lies 

in the precision since an accurate numerical model is 

generally difficult to derive from complex 

electromechanical systems, in particular when the machine 

is operating in an uncertain noisy environment as is the 

case with the majority of industrial electric motors [2]. 

Data-driven algorithm requires a lot of historical data – 

especially faulted one – and often they are not available by 

the measurement in the industry. But,  in the case of the 

database models combined with Artificial Intelligence (AI) 

techniques used in the remainder of this study, when the 

training and testing data are available this method become 

simpler and more precise. Also, database models 

combined with AI methods gives a high rate of success 

and precision. It does not require any assumptions and 

complex mathematical models [3]. These methods are 

based on the recognition of fault signatures, obtained by 

measurement on test rigs. 

The techniques used for the induction motors 

monitoring are electromagnetic torque analysis, acoustic 

signals measurements, vibration monitoring and electrical 

signature analysis [4-7]. In the last decades the fault 

diagnosis of induction motor has moved from these 

traditional techniques to AI techniques [8]. Artificial 

intelligence techniques can help to accelerate the decision-

making process with reduced human intervention. 

Inference-based intelligent methods include various 

techniques which can be used independently or combined 

to improve their efficiency. Some of these techniques use 

expert systems [9], fuzzy logic [10], artificial neural 

networks (ANNs) [11], Bayesian inference [12], genetic 

algorithms (GA) [13], and SVM [14], etc. Other combined 

tools use Fuzzy Logic ANN [15], Recurrent Neural 

Networks and Dynamic Bayesian networks [16], and 

Neuro-Genetic Algorithm [17]. 

The literature shows that ANNs are very efficient in 

induction motor fault diagnosis. Also, it’s very rich in 

works that discuss the use of ANN in fault diagnosis of 
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induction motor. The problem here is to find the optimum 

ANN structure for a fast and accurate classification 

process. Unal et al. [18] used GA to optimizing ANN 

architecture. The optimized ANN is used to classify the 

features extracted from fault diagnosis of rolling bearings. 

Vilas and Sanjay [19] developed Multi Layer Perceptron 

(MLP) and self-organizing map neural network models. In 

this work simple statistical parameters are used as input 

feature space and Principal Component Analysis is used 

for reduction of input dimensionality. Yuan et al. [20] 

diagnosed faults in induction motor based on Radial basis 

function (RBF) combined Neural Network.  The proposed 

RBF neural network hidden layers are optimized by the 

immune genetic algorithm. The Authors successfully 

performed fault diagnosis of induction motor and results of 

immune genetic optimized RBF neural network are 

significantly better than the direct result of RBF neural 

network in the ability of reproduction and generalization. 

In vibration analysis technique, each fault in the 

induction motor causes a change in its vibratory behavior. 

By using signal processing techniques it's possible to 

determine this change in the behavior. Time domain 

analysis, frequency domain analysis, and time frequency 

domain analysis are the three domains used in vibration 

monitoring. In the objective to improve and make the 

induction motor fault diagnosis more reliable, statistical 

features extracting from time domain signal analysis of the 

induction motor must be integrated into the ANN. The 

principal features which can extract are: RMS value, 

kurtosis, standard deviation, higher statistical moments, 

etc [21]. In this paper, to step-by-step development of a 

reliable approach for monitoring and diagnosis faults of 

induction motor, the authors behind this study decided to 

set up an instrumented test rigs. Four machine states will 

be studied including healthy state and three faulty states. 

In other word, the variation in the raw time domain 

vibration signals are too small to be detected, therefore the  

comparison of raw time domain signals of faulty and 

healthy induction machine is not effective to decide on 

behavior change. To achieve the objectives of the study, a 

Multi Layer Perceptron (MLP) ANN will be structured 

and optimized by L27 Taguchi design for online 

monitoring of induction motors. The design of 

experiments (DOE) classical method considers only the 

mean values of the characteristics to be optimized. It is 

sometimes supplemented by an analysis of the variance of 

various tested factors. On the other hand, Taguchi 

experimental design is a multi-objective optimization 

method, which jointly deals with the mean and the 

variability of characteristics values, in our case 

characteristics are the constituents of our ANN hidden 

layer. In order to have an AI system usable on line, the 

DOE based on the L27 Taguchi design, were chosen to 

determine the best structure of the ANN at the level of the 

hidden layers, and the best combination of activation 

functions. However, based on their sensitivity to induction 

motors faults, the vibration indicators calculated from the 

signals measured in time domain were selected. 

The remaining of this paper is organized as follows: 

Section 2 is dedicated to describe a brief introduction to 

vibration analysis. In Section 3, the experimental part and 

the vibration signals systems acquisition are presented. 

Section 4 presents the optimization of the developed ANN. 

Section 5 is devoted to the sensitivity analysis. Finally, 

conclusions are presented at Section 6. 

 
2. VIBRATION BASED MONITORING  

OF INDUCTION MOTORS 

 
Vibration of electrical machines such as induction 

motors can be caused by mechanical problems, including 

bearing fault, imbalance, misalignment and mechanical 

loosening and by electrical faults which the main is broken 

rotor bar fault. Vibration based monitoring is the most 

reliable technique in condition based maintenance 

techniques. Vibration analysis allows the diagnosis of the 

most mechanical and electrical faults. The literature shows 

that vibration and current signals analysis are the most 

preferred techniques for the induction motor diagnosis. 

In this work the vibration analysis of three main faults 

which affect the induction motors are studied, the 

misalignment of the rotor, the broken rotor bar and the 

bearing fault. The misalignment of the rotor is 

characterized by a vibration at the frequency of rotation, 

the presence of the second harmonic of the network 

frequency modulated by the frequency of passage of poles 

as well as the presence of the second harmonic of the 

sliding frequency. The zoom analysis, envelope analysis 

and cepstrum are recommended for the detection of this 

type of rotors fault [22]. In the case of broken rotor bar 

faults, the vibration is characterized by the modulation of 

the frequency of bars passage by the second harmonic of 

the network frequency. The zoom or envelope analyses are 

recommended for broken bars [23]. However, the different 

faults produced of the bearing can be classified according 

to the damaged elements as: outer raceway fault, inner 

raceway fault, ball fault, and combination of bearing 

components fault. Each part of the bearing has an own 

frequency that depends of its geometry and dimensions. 

The fault frequency of the bearing operating at a given 

rotor speed is the product of multipliers with the speed of 

rotating shaft [24]. 

 

3. EXPERIMENTAL STUDY 

 

In this work, in order to perform four cases of signal 

acquisition in Table 1, four induction motors used at our 

test rig with which the experiments were carried out. 

However, a healthy motor is mounted on a test rig to 

collect signals without faults. For the case of the forth state 

in the Table, the broken rotor bar motor consists of a 

motor fitted with broken rotor bars as seen in the Fig. 1(a). 

Enough material has been removed to expose three rotor 

bars. In order to create the misalignment case, two jack 

bolts which rest directly on the outer ring of the motor 

bearings, as shown in Fig. 1(b), when they have been 

removed or are backed away from the bearing, the rotor is 

in the aligned state, and when they are tightened against 

the bearings, a misalignment is then created. The case of 

bearing faults, intentionally faulted bearings mounted at 
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the motor, one bearing with an inner race fault and one 

bearing with an outer race fault, shown in Fig. 1(c). 

 

Table I: Different cases of signal acquisition 

Cases Induction motor state Faults location 

1 Healthy - 

2 Misalignment Misalignment of the rotor 

3 With bearing fault Combined bearing fault 

4 With broken rotor 

bars 

Three intentionally 

broken bars 

 

 

 

 

Fig. 1. Different faults of the induction motor 

 

3.1. Vibration signals acquisition 

Experiments were carried out on a test rig designed for 

the creation of several types of mechanical faults; the 

faults of the induction motors were maintained for the 

realization of several tests of the healthy motor, with 

broken rotor bars, with bearing faults and with rotor 

misalignment. Four speeds, low, high and two 

intermediate speeds were selected for the vibration 

measurements of induction motors. A triaxial piezoelectric 

sensor (ICP 3 Axes), with a sensitivity of 100 mV/g and a 

frequency range of 0,5 à 5 kHz, was used for the 

measurement. 

However, the measurements in Fig. 2(a) show the 

signals of the healthy motor, with the different speeds (600 

rpm, 900 rpm, 1200 rpm and 1500 rpm). Note that the  

 

 

 
 

 
 

 

 
Fig. 2. Acquired signals for different speeds and states 

 

signal amplitudes are small but increase with increasing 

speed. With a time of acquisition of eight seconds, 

measurements taken on the healthy motor, Fig. 2(a), show 

that signals are random with low amplitudes. The 

amplitudes of these signals increase with varying rotor 

speed and their random nature is keeping. For the states of 

motors with faults, we notice that the signals become 

pulsed. Fig. 2(b) shows the signals of the motor with three 
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broken bars, the amplitude of the acceleration increases to 

0.03919 mm/s2 at the rotational speed of 1500 rpm. 

However, for the case of the motor with defective bearing 

shown in Fig. 2(c), the pulses of these signals are caused 

by repetitive impacts of the rolling elements on the 

chipping of the outer ring and the inner ring. For the fourth 

case, the rotor misalignment is represented by the pulse 

signals of Fig. 2(d). The maximum acceleration of the 

signals has the value of 0.0104 mm/s2 at the rotor speed of 

600 rpm and the value of 0.02387 mm/s2 at the rotor speed 

of 1500 rpm. 

 

3.1. Time domain features 

Time domain signal features are effective to reflect the 

different operating states of the induction motor. In order 

to establish the matrix of the input layer of the ANN, Eight 

vibration indicators, presented in Table 2, are calculated 

from time domain signal [25, 26]. 

Based on measured signals according to the design of 

control factors with Taguchi L27 (35) established later, the 

eight indicators were calculated. 

 

4. ANN OPTIMIZATION 

 

4.1. Empirical optimization of the ANN 

The empirical optimization method makes it possible to 

determine the structure of the best ANN, this method has 

been adopted by several researchers among them Wang et 

al. [27]. 
At the input of the ANN, there are eight indicators 

represented by eight neurons, and at the output there are 

thirty-two neurons which represent the different states of 

the motor. The number of neurons at the input and output 

layer is invariable, only the hidden layer is varied. In order 

to choose the optimal architecture of our ANN, we use a 

single hidden layer, and then we varied the number of 

neurons in this layer. After several learning of each ANN 

structure, the model (8-8-32) gave us the best results, 

which are the lowest MSE with the value of 0.001187 and 

the highest values of correlations coefficient, Learning 

(RL), test (RT), validation (RV) and global (Ra), as shown 

in the Fig. 3. 

The second criterion to choose, is the activation 

functions (logsig, tansig and purelin), for a single hidden 

layer, and eight neurons in this layer, we have combined 

these main activation functions at the input layer, the 

hidden layer and output layer. However, according to the 

learning results of our ANN, the most powerful 

combination is (tansig, tansig and purelin) with the highest 

percentage values of the correlation coefficients (learning, 

global, testing and validation). 

Another criterion varied is the number of hidden 

layers. The results showed that with a single hidden layer 

of eight neurons and the activation functions (tansig, 

tansig, and purelin), the ANN gave the best correlation 

coefficients and a very low MSE. According to the 

empirical method, with the configuration of an error back 

propagation network and the activation functions tansig, 

tansig and purelin which are respectively at the input layer, 

the hidden layer and the output layer, the most efficient 

architecture is (8-8-32). We used Levenberg-Marquardt as 

a learning algorithm because it converges quickly to 

targets compared to other algorithms [28]. 

However, results shown on the regression curves in the 

Fig. 4 are given by the learning of the ANN (8-8-32) with 

the selected activation functions and the Levenberg -

Marquardt algorithm. 

 

4.2. Optimization with DOE method 

In order to optimise the architecture of the ANN, a 

method based on the design of experiment (DOE) is 

chosen. 

 

4.2.1. Orthogonal array of Taguchi 

A Taguchi design provides a strong approach to 

identifying the optimum factors in hidden layer of our 

architecture of the ANN [29]. 

However, as for the previous network, for training of 

the neural network, 70% of the samples are used, and from 

the same samples, 15% are used for test and 15% for the 

validation. 

Table II: Features from the time domain signal 

Feature Equation Definition 

Maximum value  ixmax  Max value of the signal 

RMS value 
2

1

2

1
x

1








  i

N

iN

 
Root mean square of the signal 

Mean square 

value  


N

i ix
N 1

21
MSV  

Mean square of the signal 

Variance 
  




N

iN 1

2

i MSVx
1

1  Variance of the signal 

Kurtosis factor       


N

i i

N

i i xxxxN
1

2

1

4
/  Fourth normalized moment of the signal 

Crest factor RMSxi /max  Ratio of maximum amplitude to RMS 

Clearance factor 

  
2

1
2

11
/max 








 

N

i ii x
N

x
 

Ratio of maximum amplitude to the mean 

value 

Peak to peak 
ii xx minmax   Difference between max and min value 
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Fig. 3. Acquired signals for different speeds and states 

 
 

 
 

 

Fig. 4. Correlation coefficients of the ANN optimised  

with empirical method 

 

In order to calculate the deviation between the 

experimental values and the desired values, the Taguchi 

method uses a function called a loss function converted to 

a signal to noise ratio (S/N) [30]. Taguchi quality 

characteristic is such as a smaller is the better, the higher is 

the better or the nominal is the best [31], the cases with 

respective equation are presented as following: 

Higher is the better calculating as follows: 





n

1i
2

ijyn

1
10

N

S
)

1
log(ratio

 

(1) 

Where yij =ith replicate of jth response, n = number of 

repetitions = 1, 2,…, n; j = 1,2,…,k. Eq. (1) is used to 

where maximization of the quality characteristic of interest 

is desired. 

Smaller is the better: 





n

1i

2

ijy
n

1
10

N

S
)(log ratio  (2) 

Eq. (2) is applied where minimization of the quality 

characteristic is desired. 

Nominal is the best: 

)
s

y
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s

y
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S
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n
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
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

n
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s

i2

y
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The nominal is the best type where minimization of the 

mean squared error around a specific objective value [32]. 

Number of hidden layers (A), number of neurons in 

each hidden layer(B), activation functionsat the input layer 

(C), activation functions at the hidden layer (D) and 

activation functions at the output layer (E) were chosen as 

control factors, levels of these factors were determined in 

Table 3. 

Table III: Control factors of the ANN and their levels 

Levels A B C D E 

N
u
m

b
er
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f 

h
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d
en
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y
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N
u
m
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f 

n
eu
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n
s 
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h
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d
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y
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Activation functions 

Input 

layer 

Hidden 

layer 

Output 

layer 

1 1 3 tansig tansig tansig 

2 2 9 logsig logsig logsig 

3 4 18 purelin purelin purelin 

 

The adapted design of Taguchi L27(35) was chosen to 

determine the optimal control factors of the neural network 

structure [33]. Table 4 showed the selected mixed 

orthogonal array of control factors and correlation 

coefficients of the conducted learning, test and validation 

of each ANN combination. Mean square error (MSE) and 

number of iterations are also taken as additional 

parameters in Table 4. 

 



DIAGNOSTYKA, Vol. 22, No. 1 (2021)  

Khoualdia T, Lakehal A, Chelli Z, Khoualdia K, Nessaib K.: Optimized multi layer perceptron artificial neural network…  

 

70 

Table IV: Taguchi orthogonal array L27 (35): Simulation using a neural network with Levenberg-Marquardt training algorithm 

Run 

No 
A B C D E R test (RT) 

R validation 

(RV) 
R all (Ra) MSE 

No of iteration 

(It) 
SN of R 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

3 

3 

3 

1 

1 

1 

2 

2 

2 

3 

3 

3 

1 

1 

1 

2 

2 

2 

3 

3 

3 

1 

1 

1 

2 

2 

2 

3 

3 

3 

1 

1 

1 

2 

2 

2 

3 

3 

3 

2 

2 

2 

3 

3 

3 

1 

1 

1 

3 

3 

3 

1 

1 

1 

2 

2 

2 

1 

1 

1 

2 

2 

2 

3 

3 

3 

3 

3 

3 

1 

1 

1 

2 

2 

2 

2 

2 

2 

3 

3 

3 

1 

1 

1 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

0,808 

0,064 

0,944 

0,989 

0,958 

0,999 

0,999 

0,239 

0,690 

0,978 

0,237 

0,920 

0,931 

0,714 

0,958 

0,999 

0,364 

0,701 

0,120 

0,030 

0,437 

0,975 

0,095 

0,833 

0,951 

0,397 

0,964 

0,616 

0,567 

0,789 

0,911 

0,900 

0,998 

0,783 

0,523 

0,384 

0,960 

0,070 

0,560 

0,924 

0,756 

0,719 

0,663 

0,232 

0,453 

0,365 

0,447 

0,596 

0,776 

0,009 

0,426 

0,624 

0,246 

0,583 

0,768 

0,168 

0,913 

0,971 

0,880 

0,999 

0,956 

0,290 

0,638 

0,974 

0,212 

0,856 

0,868 

0,723 

0,906 

0,929 

0,322 

0,653 

0,017 

0,071 

0,474 

0,932 

0,077 

0,755 

0,886 

0,349 

0,886 

2,44E-01 

1,36E+00 

8,12E-02 

2,18E-06 

9,55E-01 

2,66E-06 

1,31E-08 

9,08E-01 

3,03E-01 

3,33E-02 

9,94E-01 

2,16E-02 

1,70E-04 

9,20E-01 

1,30E-04 

2,20E-07 

9,44E-01 

1,34E-01 

6,65E-01 

1,07E+00 

5,42E-01 

2,50E-02 

1,76E+00 

1,70E-03 

9,60E-04 

9,43E-01 

5,06E-04 

37 

15 

100 

17 

9 

21 

19 

8 

10 

35 

19 

18 

19 

100 

19 

32 

14 

9 

15 

8 

10 

28 

11 

12 

25 

14 

14 

-2,908 

-19,720 

-1,171 

-0,399 

-0,810 

-0,012 

-0,942 

-10,407 

-5,779 

-0,261 

-19,138 

-2,816 

-0,854 

-2,729 

-1,507 

-1,693 

-10,759 

-4,897 

-30,970 

-26,473 

-6,196 

-1,099 

-36,055 

-4,625 

-2,172 

-10,153 

-2,468 

      
      

4.2.2. Signal to noise and the maintained ANN 

After the creation of Taguchi's design L27 (35), the test 

correlation (RT), validation correlation (RV) and global 

correlation (Ra) coefficients are used as response data. 

However, the analysis of Taguchi’s orthogonal array by 

the signal to noise ratio larger is the better is used to 

maximize the correlation coefficients RT, RV and Ra, 

according to formula (1).  

As shown in Fig. 5, graphs generated of the main 

effects of correlation coefficients and their interactions in 

the model for the signal to noise ratio reveal that the 

structure A1B2C3D1E3 is the best, which means that the 

architecture of the ANN is as follows: a single hidden 

layer with nine neurons and the activation functions, 

logsig at the input layer, tansig at the hidden layer and 

purelin at the output layer. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Main effects plot for signal to noise ratio. 

 

However, according to the combination A1B2C3D1E3 

given by signal to noise, The learning results of the ANN 

with back propagation of the error gradient associated with 

the Levenberg-Marquardt algorithm are as follows: the 

correlation between the experimental values and the 

prediction values of learning is (RA) = 0.9996, the 

validation correlation rate is (RV) = 0.9955 and the overall 

correlation rate is (RG) = 0.9987, as illustrated in Fig. 6. 

The optimized ANN performance curve illustrated in 

Fig. 7, quickly reaches the desired convergence with the 

Levenberg-Marquardt algorithm. This convergence is 

reached with only 20 iterations with a very short total 

learning time. 

Based on the correlation coefficients values, it can be 

seen that the ANN optimized by the Taguchi method is 

more efficient compared to the ANN optimized by the 

empirical method. However, at the output layer of the 

ANN, the results consist of a matrix of detection rates for 

different types of faults in electric motors, which represent 

the success rates of the vibration indicators for four 

rotation speeds. The matrix is composed of 16 lines and 32 

columns. 

 

5. SENSITIVITY TEST 

 

In this section, to determine the most influential 

vibration indicators, we have performed a sensitivity 

analysis for our ANN inputs. Two methods were chosen to 

determine the most influential parameters on the output of 

the ANN, the Garson algorithm and the connection weight 

approach [34, 35]. Table 5 shows the weights of the input-
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hidden layer of our optimized neural network which were 

used for the two sensitivity tests. 

 

 

 
 

 
 

Fig. 6. Correlation coefficients of the optimised  

ANN with Taguchi method 

 
Fig. 7. Best validation performance of the optimised ANN 

with Taguchi method 

Garson’s method makes it possible to determine the 

most sensitive input parameters; the classification of these 

parameters is carried out by the absolute magnitudes of the 

weights in the hidden layer. The connection weight 

method classifies the input parameters of the ANN and 

determines their influences on its output [36]. 

Garson’s method and the connection weight method 

are expressed in the Equations (4) and (5) respectively. 







9

1
8

1

 
n

z

zn

xn

x

Hidden

Hidden
Input

                    (4) 





9

1

 
n

xnx HiddenInput                          (5) 

Where, 
xnHidden are the absolute magnitudes of the 

connection weights between the input-hidden and hidden-

output node, 
znHidden is the absolute magnitudes of the 

product of the connection weight. 

According to the results of Garson method and the 

connection weight method, the sensitivity of input 

parameters is established in Table 6 and Table 7 

respectively. 

 

 

 

Table V: Product of the input–hidden and hidden–output connection weights 

x n 

Hidden 

x1 

Hidden 

x2 

Hidden 

x3 

Hidden 

x4 

Hidden 

x5 

Hidden 

x6 

Hidden 

x7 

Hidden 

x8 

Hidden 

x9 

maximum value 2,437 1,170 1,632 0,338 0,667 -1,433 0,252 -0,452 -0,027 

RMS value -0,268 1,015 2,049 1,655 -3,047 0,245 3,796 -3,512 -0,752 

Mean square 

value 

-3,067 -1,274 -1,827 1,826 -5,054 6,029 -0,388 1,657 -0,245 

Variance -3,159 -0,811 -1,305 -1,364 -5,345 5,743 0,106 2,839 -3,521 

Kurtosis factor 1,048 -2,628 0,916 2,557 -3,176 7,501 2,606 1,218 -2,268 

Crest factor 1,384 2,372 5,239 4,788 8,787 0,941 -4,750 -4,981 2,878 

Clearance factor -3,274 -5,856 -4,248 -3,989 -0,179 -5,370 4,051 14,346 1,078 

Peak to peak 4,257 0,763 -0,818 -1,236 0,663 -2,605 -2,125 -6,006 1,553 
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Table VI: Relative importance with Garson’s algorithm 

Input Relative 

importance 

Relative 

importance(%) 

Rank 

maximum 

value 0,414 4,60 

8 

RMS value 0,778 8,64 7 

Mean square 

value 0,925 10,28 

5 

Variance 1,131 12,57 4 

Kurtosis factor 1,148 12,75 3 

Crest factor 1,779 19,77 2 

Clearance 

factor 1,910 21,22 

1 

Peak to peak 0,915 10,17 6 

Table VII: Relative importance with connection weights 

Input Relative 

importance 

Relative 

importance (%) 

Rank 

maximum 

value 4,585 9,48 

5 

RMS value 1,182 2,44 8 

Mean square 

value -2,342 4,84 

7 

Variance -6,816 14,10 3 

Kurtosis factor 7,774 16,08 2 

Crest factor 16,658 34,45 1 

Clearance 

factor -3,441 7,12 

6 

Peak to peak -5,553 11,49 4 

 

As represented in Fig. 8, Clearance factor and 

crest factor are the most important input parameters 

according to the Garson’s method; they represent 

21% and 20%, respectively. The connection weight 

method classifies crest factor, Kurtosis and 

Variance as the most input parameter, they 

represent 34%, 16% and 14%, respectively. Hence, 

according to the two methods crest factor is the 

most sensitive parameter. 
 

 

Fig.8. Relative importance of the parameters, (a) 

Garson’s algorithm and (b) connection weights algorithm 

6. CONCLUSIONS 

 

In this work, a monitoring and diagnostic 

approach was developed. The method is based on 

an artificial intelligence system optimized with 

Taguchi's design. The signals collected from the 

different measurement conditions were used to 

calculate eight time descriptors, which are then 

used for the input layer of our neuron network. 

However, the optimization of the architecture of the 

ANN was carried out using the Taguchi 

experimental design method. In our case, five 

factors and three levels, the L27 orthogonal array 

was the most suitable.  

In order to calculate the difference between the 

experimental values and the desired values, the loss 

function converted into an S/N ratio was used to 

determine A1B2C3D1E3 as the optimal structure of 

the ANN. The learning of ANN with A1B2C3D1E3 

structure and learning algorithm Levenberg-

Marquardt, gave correlation coefficients values that 

approximates one hundred percent, the correlation 

rate of learning is (RA) = 0.9996, the validation 

correlation rate is (RV) = 0.9955 and the overall 

correlation rate is (RG) = 0.9987. The optimized 

ANN converges quickly to the desired output, with 

an MSE close to zero and only 20 iterations. 

Garson's method and the connection weight 

method used to determine the most sensitive 

indicators at the input layer of the ANN revealed 

that crest factor has been found to be the most 

important input parameter followed by kurtosis, 

Clearance factor and Variance. The results obtained 

with this proposed system are efficient and accurate 

to detect different induction motor faults. 
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