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Abstract
Wind energy is getting more and more integrated into power grids, giving rise to some challenges because of its inherent

intermittent and irregular nature. Wind speed forecasting plays a fundamental role in overcoming such challenging issues

and, thus, assisting the power utility manager in optimizing the supply–demand balancing through wind energy generation.

This paper suggests a new hybrid scheme WNN, based on discrete wavelet transform (DWT) combined with artificial

neural network (ANN), for wind speed forecasting. More specifically, this work aims at designing the most appropriate

discrete wavelet filters, best adapted to a one day ahead wind speed forecasting. The optimized DWT filters are intended to

effectively preprocess the wind speed time series data in order to enhance the prediction accuracy. Using wind speed data

collected from three different locations in the Magherbian region, the obtained simulation results indicate that the proposed

approach outperforms other conventional wavelet-based forecasting structures regarding the wind speed prediction pre-

cision. Moreover, compared to the standard wavelet ‘db4’ based approach, the optimized wavelet filter-based structure

leads to a forecasting accuracy improvement, in terms of RMSE and MAPE index errors, that amounts to nearly 13% and

19%, respectively.

Keywords Wind power forecasting � Discrete wavelet transform � Genetic algorithm (GA) � Neural networks �
Artificial intelligence

1 Introduction

Today, most of the energy supplies are covered by con-

ventional electricity produced from fossil fuels, which are

polluting and harmful to the environment. Thus, faced with

growing needs for electrical energy, the global energy

sector has to meet several challenges, especially climate

change, inciting scientists to explore environmentally

friendly solutions. Nowadays, renewable energies, consid-

ered as eco-friendly and very promising alternative solu-

tion because of their cleanness, endless and universally

available energy sources, are occupying a more and more

important place in the production of electrical energy.

Among them, wind energy has experienced considerable

growth and is regarded as an attractive alternative to

conventional electric power [1]. Having numerous advan-

tages, such as climate change mitigation, energy depen-

dence reduction and contribution to sustainable

development of many countries, wind energy could be

considered as one of the cheapest forms of electricity in

many markets. According to the statistics reported by the

Global Wind Energy Council (GWEC), the cumulative

installed capacity of global wind energy amounts to nearly

591.1 GW at the end of 2018 and will probably reach a

capacity of about 817 GW by 2021 [2, 3]. However, due to

the intermittency and random nature of wind energy pro-

duction, many technical and economic challenges, such as

energy generation planning and managing, arise [4].

Therefore, forecasting wind energy is crucial for optimiz-

ing power production and reducing the associated uncer-

tainties. This will, effectively, facilitate and assist grid

scheduling and electricity trading, thus ensuring an effi-

cient supply/demand balance [5]. Wind speed forecasting

can be very short-term forecasting (few minutes to 1 h

ahead), short term (from 1 h to several hours ahead),

& Khaled Khelil

khaled.khelil@univ-soukahras.dz

1 Faculty of Science and Technology, LEER Lab, University of

Souk Ahras, 41000 Souk Ahras, Algeria

123

Neural Computing and Applications (2021) 33:4373–4386
https://doi.org/10.1007/s00521-020-05251-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-7237-2725
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05251-5&amp;domain=pdf
https://doi.org/10.1007/s00521-020-05251-5


medium term (from several hours to 1 week ahead) and

long term (from 1 week to 1 year ahead) [6]. Recently,

several wind forecasting techniques have been suggested

for different time-scales, including physical, statistical,

artificial intelligence and hybrids methods [6, 7]. The

physical forecasting approaches use numerical weather

prediction (NWP) to model the on-site conditions at the

location of interest. Even though these techniques are

efficient in wind prediction, they involve a large amount of

numerical weather prediction data such as temperature,

humidity, pressure and topological parameters [5]. There-

fore, these methods are more appropriate for medium- and

long-term forecasting horizons rather than for short-term

prediction horizons [6]. The statistical approaches, quite

simple compared to physical methods, employ historical

time series data, at a given location, to model the wind

speed signal for prediction purpose [6]. These approaches,

based on probability, random process theory and statistics,

use, generally, recursive linear models such as autore-

gressive (AR), autoregressive moving average (ARMA),

autoregressive integrated moving average (ARIMA) as

well as nonlinear models like NAR and NARMA,

etc.[5, 6, 8]. Although statistical techniques outperform the

physical approaches for very short and short time horizon

wind speed prediction, yet their goodness of fit of nonlinear

time series data could be further improved [9]. Artificial

intelligence (AI)-based techniques, such as artificial neural

networks (NNs), fuzzy logic, support vector machines

(SVM), wavelet transformation and evolutionary compu-

tation like genetic (GA) and particle swarm optimization

(PSO) algorithms, are commonly known for their effec-

tiveness and abilities to handle nonlinear problems

[6, 10–12]. Even though they are computationally costly,

these machine learning methods, practically independent

from the time series data, have recently gained much

attention in prediction problems and wind speed forecast-

ing issues [13].

To boost the forecasting efficiency, various hybrid

methods have been suggested in the literature [3]. Involv-

ing the combination of different intelligent approaches with

physical and statistical methods, the hybrid models tend to

mix the advantages and characteristics of different methods

with a view of achieving global optimum prediction per-

formances [3, 13]. More specifically, the wavelet-based

hybrid methods are among the most largely employed

techniques, which employ the wavelet transform as a pre-

processor for the time series data. It has been reported in

the literature that several hybrid approaches, based on

wavelet analysis, have been successfully implemented in

various research works relevant to time series and wind

energy forecasting. To predict hourly ozone concentra-

tions, Salazar et al. [8] propose a forecasting scheme using

the Haar discrete wavelet transform (HDWT) with ARIMA

models. It has been shown that combining HDWT with

ARIMA models leads to higher forecasting accuracies than

those obtained by the simple application of the ARIMA

models. In [14], a hybrid time series forecasting structure

(PCA-WCCNN), combining neural network, wavelet

transform (WT) and feature extraction based on principal

component analysis (PCA), is examined. Priyanka and

Ranjit [15] examine two wavelet-based neural network

approaches, viz. wavelet-ANN and wavelet neural model

(WNM) in order to forecast agricultural prices. Catalão

et al. [16] examined the issue of using the wavelet trans-

form in combination with artificial neural network for

short-term wind energy forecasting in Portugal. The

developed NNWT scheme, based on the db4 wavelet, has

been compared against ARIMA, persistence and NN

approaches and has exhibited relatively better perfor-

mances. A hybrid scheme (W-SVM-GA) combining

wavelet transform with SVM has been suggested in [17].

The underlined approach employed the genetic algorithm

(GA) to optimize the SVM parameters in order to enhance

the prediction accuracy. Compared with a persistent model

and a SVM-GA approach without DWT, the proposed

method shows relatively better results. Paras et al. [18]

presented a hybrid intelligent algorithm using meteoro-

logical information for short-term wind energy production

forecasting in the southern part of Alberta, Canada. The

proposed technique (WT ? NNPSO) employs DWT for

data filtering with a PSO-optimized neural network. Using

db4 as the mother wavelet, and compared with other soft

computing models, the suggested scheme exhibits good

performances in terms of wind power forecasts. In [9], the

authors proposed a hybrid forecasting model named as the

MOGWO–WPD-AdaBoost, where different discrete

wavelets, namely db1, db3, db5, db7, db9, have been

investigated according to their impact in preprocessing the

training data. In [6], Aasim et al. suggested a wavelet-

based technique called WT-ARIMA. The approach

decomposes the wind speed data using the db2 based

maximum overlap DWT. Compared to ARIMA and per-

sistence methods, the proposed scheme presents better

results in forecasting the wind speed. Berrezzek et al. [19]

combined the discrete wavelet transform (DWT) with ANN

for wind energy prediction in three different regions. Using

various wavelet families, it has been found that the db4

mother wavelet gives relatively the best performances

regarding the forecasting accuracy. In [20], the authors

proposed a hybrid intelligent approach for wind power

probabilistic forecasting using the krill herd optimization

algorithm. The technique involves the ‘db4’ wavelet

transform preprocessor combined with a single-hidden-

layer feedforward neural networks (SLFNs).

It is believed that the design of optimal wavelets for a

specific application could significantly boost the
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performances. Sherlock and Monro have successfully used

this approach to obtain optimal wavelets for the compres-

sion of fingerprint [21]. Daamouche et al., using the PSO

algorithm, optimized wavelet filters for classification of

hyperspectral images [22] and ECG signals [23]. To the

best of our knowledge, all the reported research works have

not examined the issue of designing specific wavelets

adapted to wind speed time series forecasting. The present

work suggests a novel hybrid forecasting scheme, where

the question of the design of the most suitable wavelet

filters combined with ANN for wind speed prediction is

addressed. Using the genetic algorithm, the wavelet filter

design optimization is accomplished based on the Sherlock

and Monro [24] iterative algorithm that allows parameter-

izing the space of orthonormal wavelet filters, which is

adapted from the Vaidyanathan parameterization of perfect

reconstruction two-channel filter banks [25]. The rest of

this paper is structured as follows. Section 2 introduces the

basic concepts of the wavelet transform, the polyphase

representation of wavelet filter, the genetic algorithm and

the neural networks. In Section 3, the proposed forecasting

scheme along with the wavelet filter design process is

presented. Section 4 gives and discusses the forecasting

results with a comparative analysis. Finally, the conclusion

remarks are provided in Sect. 5.

2 Methodology

2.1 DWT and wavelet design

The wavelet transform (WT) is an efficient signal pro-

cessing tool that can be divided into two types: continuous

wavelet transform (CWT) and discrete wavelet transform

(DWT). Adopting a mother wavelet w tð Þ, the CWT of a

function x tð Þ may be expressed as [26]:

CWT a; bð Þ ¼ 1
ffiffiffi

a
p

Z

þ1

�1

x tð Þw� t � b

a

� �

dt ð1Þ

where * denotes the complex conjugate and a and b are the

scale and translation coefficients, respectively. A more

computationally efficient form of the CWT is the DWT

given by [26]:

DWT j; kð Þ ¼ 1
ffiffiffiffiffi

2 j
p

Z

x tð Þw� t � k2 j

2 j

� �

dt ð2Þ

where a ¼ 2 j and b ¼ k2 j are the dyadic sampling of the

dilation and translation coefficients, respectively, and

j; kð Þ 2 Z2 represent the decomposition level and the

translation factor, respectively. Generally, DWT is per-

formed by employing the recursive Mallat multiresolution

algorithm [27] through the use a pair of a low-pass (LP)

and high-pass (HP) quadrature mirror filters (QMF), with

impulse responses given by h nð Þ and

g nð Þ ¼ �1ð Þnh 1� nð Þ, respectively [26]. The design of

these two wavelet filters is usually conducted using the

mother wavelet w tð Þ and its corresponding scaling function

/ tð Þ [26]:

/ðtÞÞ ¼
ffiffiffi

2
p

P

n
h nð Þ 2t � nð Þ

wðtÞ ¼
ffiffiffi

2
p

P

n
g nð Þ 2t � nð Þ

8

<

:

ð3Þ

Practically, the DWT decomposition, at level M, of a

time series sequence x tð Þ ¼ x1; x2; x3; . . .; xKð Þ is imple-

mented by letting the signal go through M LP and HP

wavelet filters h nð Þ and g nð Þ, giving rise to one approxi-

mation AM coefficient vector and M detail coefficient

vectors Dj 1� j�Mð Þ expressed by Eq. (4) [28], and

depicted in Fig. 1, for the case of M ¼ 3.

x tð Þ ¼AM tð Þ þ
X

M

j¼1

Dj tð Þ

¼
X

n

aM;n t� nð Þ þ
X

M

j¼1

X

n

dj;nw 2jt� n
� �

ð4Þ

It can be shown that the approximation and detail

coefficients can be recursively calculated by [26]:

am;n ¼
P

k

h k� 2n½ �am�1;n

dm;n ¼
P

k

g k� 2n½ �am�1;n

8

<

:

ð5Þ

Generally, the design of optimum wavelet depends on

the problem under consideration and can be tackled in

various ways. In this regard, Sherlock and Monro [24],

based on Vaidyanathan factorization [25], devised an

attractive polyphase method [29] allowing the determina-

tion of the coefficients of a filter bank. This algorithm

enables the generation of any orthonormal perfect recon-

struction FIR filters of any specific length. A brief expla-

nation of the method is described. Let H0 zð Þ be the Z

transform, written in terms of even and odd powers of z, of

Fig. 1 DWT decomposition at level three
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a low-pass analysis FIR filter with 2N coefficients hif g,
expressed by [24]:

H0 zð Þ ¼
X

2N�1

i¼0

hiz
�i

¼
X

N�1

i¼0

h2iz
�2i þ z�1

X

N�1

i¼0

h2iþ1z
�2i

¼H00 z2
� �

þ z�1H01 z2
� �

ð6Þ

where H00 zð ÞandH01 zð Þ are the polyphase components of

H0 zð Þ. The polyphase matrix of a two-channel filter bank

may be formulated as [24]:

Hpoly zð Þ ¼ H00 zð Þ H01 zð Þ
H10 zð Þ H11 zð Þ

� �

ð7Þ

With H10 zð Þ and H11 zð Þ representing the polyphase

components of the high-pass analysis filter. Vaidyanathan

suggested the following polyphase matrix factorization

[25]:

Hpoly zð Þ ¼ c0 s0

�s0 c0

� �

Y

N�1

i¼1

1 0

0 z�1

� �

ci si
�si ci

� �

ð8Þ

where ci ¼ cos hið Þ and si ¼ sin hið Þ. Sherlock et al. [24]

reformulated the factorization leading to a recursive cal-

culation of the low-pass filter coefficients:

h
kþ1ð Þ

0 ¼ ckh
k
0

h
kþ1ð Þ

2i ¼ ckh
kð Þ

2i � skh
kð Þ

2i�1

h
kþ1ð Þ

2k ¼ �skh kð Þ
2k�1

8

>

>

<

>

>

:

i ¼ 1; 2; . . .; k � 1

where h
1ð Þ

0 ¼ c0 and h
1ð Þ

1 ¼ s0, and the odd filter coeffi-

cients h2iþ1f g are defined by:

h
kþ1ð Þ

1 ¼ skh
kð Þ

0

h
kþ1ð Þ

2iþ1 ¼ skh
kð Þ

2i þ ckh
kð Þ

2i�1

h
kþ1ð Þ

2kþ1 ¼ ckh
kð Þ

2k�1

8

>

>

<

>

>

:

i ¼ 1; 2; . . .; k � 1 ð10Þ

For a filter of length 2N, the LP coefficients

h0; h1; . . .; h2N�1f g are determined using Eqs. (9) and (10)

in terms of N random angular parameters

h0; h1; . . .; hN�1f g chosen in the interval 0; 2p½ ½. The coef-

ficients of the HP filter are found by flipping and sign-

alternating as [24]:

gi ¼ �1ð Þiþ1h2N�1�i ð11Þ

2.2 Genetic algorithm

Genetic algorithm (GA), suggested by John Holland et al.

at the end of 1960s, is a powerful stochastic algorithm of

nonlinear global optimization that is inspired by natural

selection mechanism, and based on the principles of evo-

lution and natural selection mechanisms: survival of the

fittest. It is very appropriate for optimizing complex

problems due to its simplicity and robustness, and it has

been largely used in various optimization fields such as

forecasting [3, 17]. Initially, GA begins with a set of ran-

dom solutions (chromosomes or individuals) called initial

population. The fitness of each chromosome is evaluated

with respect to a predefined cost function. After specific

operations, including selection, crossover, and mutation,

chromosomes with lower fitness are discarded and a new

population is obtained. These operations are iterated until

the solution satisfies certain stopping criteria. In other

words, GA begins searching from several points and pro-

gresses toward an optimal solution. In this paper, the

genetic optimization algorithm is utilized to look for the

appropriate angular parameters h
0

is relevant to the poly-

phase representation of the wavelet filters to enhance the

neural network based wind speed prediction accuracy.

2.3 Neural networks

Artificial neural networks (ANN), based on biological

neurons, are complex intelligent structures known to be a

powerful tool providing good solutions to problems that

cannot be solved analytically and represent an attractive

technique in handling nonlinear problems such as time

series forecasting [3, 30]. It is made up of a number of

interconnected simple processing elements, called neurons,

designed in a manner to model the human brain way of

thinking to perform a specific task. Each of those elements

constitutes a weighted sum of its inputs, to which a con-

stant bias is added. This sum is then fed to an activation

function, and output data are transferred to other neurons.

Generally, ANN is composed of an input layer, hidden

layers and an output layer, where each layer is fully con-

nected to the adjacent layer via interconnection weights wij:

Figure 2 depicts the adopted architecture of the ANN

Fig. 2 Structure of the neural network
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having n inputs, two hidden layers with N neurons each and

one output layer. Multilayer perceptrons (MLP) feedfor-

ward back propagation neural network (BPNN) are among

the most widely used types of ANN having a relatively

simple structure making it easily realizable. In this work,

dealing with wind speed forecasting, all the weights wij

among the network layers are properly adjusted with

respect to the prediction accuracy. A MLP feedforward

network, trained using Levenberg–Marquardt algorithm, is

adopted, where the transfer functions used for the hidden

and output layers are tangent sigmoid ‘tansig’ and Log

sigmoid ‘logsig’, respectively.

3 The proposed intelligent hybrid
forecasting scheme

3.1 Overview of the prediction scheme

This work suggests the use of discrete wavelet transform

(DWT) and neural network for wind speed forecasting. In

order to assess the proposed wind speed forecasting

scheme, daily wind speed data from 2007 to 2018 for three

Magherbian regions, namely Annaba, Sidi Bouzid and

Tetouan, have been collected and employed [31]. Gener-

ally, data preprocessing plays a crucial role in improving

the wind speed prediction accuracy [17]. In this study, the

preprocessing phase is mostly based on wavelet analysis.

To underline the importance of using the DWT, Figs. 3 and

4 show, respectively, the average daily wind speed and the

DWT decomposition at level L ¼ 5 for the region of

Annaba. It is noteworthy that the approximation coefficient

A5 (Fig. 4), representing about 91% of the total energy of

the wind speed signal, shows a smooth and slowly varying

curve that could lead to a prediction with noticeable error

reduction.

The proposed forecasting structure (WNN) based on

DWT and ANN is shown in Fig. 5, where the wind speed

signal undergoes the following preprocessing steps:

– The collected wind speed signal outliers are detected

and discarded for appropriate NN training.

– Wind speed data are averaged to obtain daily mean

speeds.

– DWT is applied on the time series data to diminish the

wind speed inherent fluctuations and boost further the

forecasting accuracy.

Using the genetic algorithm, the wavelet filters are

optimized and an L-level DWT decomposition is applied to

the preprocessed wind speed sequence to generate L detail

coefficients D1;D2; . . .;DLf g and an approximation coef-

ficient AL. Note that each DWT transformed coefficient has

its own neural network for prediction. Thus, for a decom-

position level equal to L, the number of NNs to use as

predictors is Lþ 1.

The adopted hybrid forecasting approach uses w previ-

ous daily average wind speeds, corresponding to days

d; d � 1; . . .; d � wþ 1, to predict day dþ 1Þ average wind

speed. Thus, the number of inputs for each NN is dictated

by the number of previous days employed to forecast the

average wind speed of the next day. In other words, this

proposed hybrid WNN forecasting scheme accomplishes a

one-step prediction with a lag equal to w.

Using the Lþ 1ð Þ NNs, estimates of the approximation

coefficient ÂL and the L detail coefficients

D̂1; D̂2; . . .; D̂L

� �

are computed, and then the wind speed

sequence x̂ ¼ x̂1; x̂2; . . .; x̂Kð Þ is reconstructed:

x̂ ¼ D̂1 þ D̂2 þ . . .þ D̂L þ ÂL ð12Þ

Fig. 3 Average daily wind speed data for the region of Annaba, year 2018
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3.2 Wavelet filter design process

Wavelets, essentially developed for general-purpose signal

processing algorithms, have been widely and successfully

utilized in different signal analysis problems, including

wind energy forecasting. Furthermore, it has been revealed

that a higher wind speed prediction precision could be

obtained when wavelet transform is employed in the pre-

processing phase. It is believed that the wavelet perfor-

mances could be enhanced further if the wavelet filters are

designed with respect to the prediction accuracy. Thus,

based on the polyphase representation described in

Sect. 2.1, we suggest to design the wavelet filters using the

GA algorithm, where the chromosomes are represented by

the free parameters hi, and the wind speed forecasting

accuracy is considered as the objective function. The

flowchart of Fig. 6 outlines, for a fixed pair of filter order

and decomposition level N; Lð Þ, the wavelet filter opti-

mization process. Thus, the WNN scheme design steps are

carried out as follows:

1. Initialize the wavelet filter order Nmin:

2. Initialize the DWT decomposition level Lmin.

3. Generate an initial random population of 25 chro-

mosomes, where each chromosome is made up of an

angular position vector h0; h1; . . .; hN�1f g randomly

chosen within 0; 2p½ ½.
4. For each chromosome calculate the corresponding

fitness function as follows:

Fig. 4 DWT decomposition at level 5 of wind speed signal, Annaba, year 2018

Fig. 5 The WNN hybrid forecasting scheme
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a. Determine the HP filter coefficients

g1; g2; . . .; g2Nf g using Eq. (11):

gi ¼ �1ð Þiþ1h2N�1�i:
b. Using the derived LP and HP analysis filters

apply the L-level DWT decomposition to the

wind speed sequence x ¼ x1; x2; . . .; xKð Þ to gen-

erate the detail and approximation coefficients

D1;D2; . . .;DL;ALf g.
c. Train the (L ? 1) NNs, and apply each generated

coefficient to its corresponding NN to obtain the

(L ? 1) estimated coefficients

D̂1; D̂2; . . .; D̂L; ÂL

� �

.

d. Estimate the wind speed time series sequence

x̂ ¼ x̂1; x̂2; . . .; x̂Kð Þ using Eq. (12).

e. Evaluate the cost function given by the mean

square error (MSE):

mse ¼
PN

i¼1 xi � x̂ið Þ2

N

5. Create the next generation: Using the roulette wheel

mechanism, a proportion of individuals in the current

population are selected according to their objective

function. Then, the next generation is created using

genetic operators, namely crossover, mutation and

reproduction. Scattered crossover with a crossover

fraction set to 0.8 is employed. A Gaussian mutation

and an elitism mechanism are also considered. The

iteration procedure is repeated until one of the

stopping criteria is achieved.

6. The above steps 4 and 5 are repeated until a certain

termination condition is satisfied. Note that when

there is no more significant enhancement in the

forecasting accuracy, during 20 consecutive itera-

tions, convergence is considered.

7. Update the decomposition level:

Lmin  Lmin þ 1:

8. Repeat steps 3–6.

9. Update the filter order Nmin  Nmin þ 1

10. Iterate steps 3–6.

Finally, the pair of values N; Lð Þ belonging to the

intervals Nmin;Nmax½ � and Lmin; Lmax½ � leading to the best

forecasting accuracy is considered.

4 Simulations Results and discussion

To assess the performances of a given forecasting model,

numerous error measures are employed. In this study, the

predicting accuracy of the proposed WNN scheme is

evaluated using the root mean square error (RMSE) and the

mean absolute percentage error (MAPE) whose expres-

sions are, respectively, given by Eqs. (13) and (14):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 xi � x̂ið Þ2

N

s

ð13Þ

MAPE ¼ 100%

N

X

N

i¼1

xi � x̂i
xi

	

	

	

	

	

	

	

	

ð14Þ

where xi and x̂i represent the measured and estimated wind

speed data, respectively. Note that, in all the executed

simulations, and in order to avoid the effect of random

initialization, the neural network training process is repe-

ated 20 times and the best results are considered.

Fig. 6 Wavelet filter design flowchart
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4.1 Dataset setup

In this work, using the collected data (years 2007–2018) of

the three regions (Annaba, Sidi Bouzid and Tetouane) [31],

where years 2007–2017 data (4015 samples) are used for

training the neural network, and the remaining 365 samples

of year 2018 are employed for testing the NN. For training

and testing the neural network predictor, the dataset

selection technique is explained in the following. If the

forecasting is based on a lag of wdays, then the NN has w

inputs. Let Ei; i ¼ 1; 2; . . .;Nf g be the entries of every L-

level DWT transformed coefficient D1;D2; . . .;DL;ALf g of

size N, where N1 samples are used for training and the

remaining samples for testing. Figure 7 illustrates the

adopted strategy to create the training and testing subseries

of the Lþ 1ð Þ NNs.

4.2 Parameter selection and forecast results

Firstly, for the one-step-ahead forecasts, we have con-

ducted a thorough investigation using a variable length lag

of w days, practically all the standard orthogonal wavelets

with different DWT decomposition levels. It has been

found that the Daubechies wavelet ‘db4’ with a

decomposition level L ¼ 5 and a sliding window w = 5

outperforms all the other schemes in terms of forecasting

accuracy [19]. Reporting only certain wavelets who exhibit

good performances, Table 1 and Figs. 8 and 9 show clearly

that ‘db4’ with L;wð Þ ¼ 5; 5ð Þ surpasses mostly all the

other wavelets in terms of RMSE and MAPE errors.

Moreover, the prediction performances using ‘db4’ is

confirmed as shown in Fig. 10 for the region of Annaba,

where the predicted wind speed is in a good agreement

with the actual wind speed.

Output
E1 E2 … Ew Ew+1

E2 E3 … Ew+1 Ew+2

… … … …

EN1-w EN1-w+1 … EN1-1 EN1

EN1-w+1 EN1-w+2 … EN1 EN1+1

EN1-w+2 EN1-w+3 … EN1+1 EN1+2

… … … …

EN-w EN-w+1 … EN-1 EN
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ai
ni

ng
 su

bs
er

ie
s

Te
st

in
g 

su
bs

er
ie

s

Fig. 7 Training and testing data format

Table 1 RMSE and MAPE values using the 5-level DWT decomposition for various wavelets

db4 db7 sym4 coif3 coif5

RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)

Annaba 0.1612 3.71 0.1891 4.44 0.1763 4.24 0.1819 4.41 0.1454 3.39

Sidi Bouzid 0.1265 4.71 0.1946 7.05 0.1494 5.35 0.1569 5.55 0.1317 4.50

Tetouane 0.2576 4.51 0.3616 6.15 0.2859 4.81 0.3113 5.35 0.2804 4.88

Fig. 8 RMSE values for various wavelets

Fig. 9 MAPE values for various wavelets
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Knowing that, in our proposed WNN predicting struc-

ture, the DWT decomposition level L not only imposes the

number of NNs (equal to Lþ 1Þ to be employed, but also

does affect the forecasting accuracy. The RMSE and

MAPE values versus the decomposition level L, reported in

Table 2 and Figs. 11, 12, indicate that a decomposition

level L = 5, is indeed an optimal choice for our suggested

scheme.

Using ‘db4’ DWT decomposition with L = 5, several

experimental simulations have been carried out with dif-

ferent prediction lags. Consequently, from the obtained

results shown in Table 3 and Figs. 13, 14, it can be

Fig. 10 Measured and estimated

wind speed using the ‘db4’

wavelet with 5-level

decomposition for Annaba

region

Table 2 RMSE and MAPE

versus decomposition level
Decomposition level Annaba Sidi Bouzid Tetouane

RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)

1 0.3144 7.27 0.2460 8.64 0.5124 8.02

2 0.1814 4.42 0.1460 5.64 0.3535 6.16

3 0.1706 4.01 0.1331 4.81 0.4537 5.83

4 0.1909 4.51 0.1493 5.39 0.3055 5.15

5 0.1612 3.71 0.1265 4.71 0.2576 4.51

6 0.1760 4.31 0.1393 4.85 0.2814 4.84

7 0.1848 4.23 0.1263 4.46 0.2678 4.93

8 0.1832 4.30 0.1395 5.04 0.3007 5.34

9 0.1760 4.00 0.1259 4.81 0.2484 4.66

10 0.2074 4.80 0.1311 4.64 0.2710 4.68

Fig. 11 RMSE versus decomposition level Fig. 12 MAPE versus decomposition level
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concluded that, effectively, a lag of w = 5 seems to be an

appropriate choice for our proposed prediction approach.

4.3 Wavelet design forecasting results

Recall that the obtained optimal WNN predicting structure

uses ‘db4’, a decomposition level L ¼ 5 and a lag of w = 5

days. This work aims at improving the forecasting accuracy

by designing wavelet filters appropriate to wind speed

signals. Thus, using the design process explained in Sect.

3.2 and illustrated by the flowchart of Fig. 6, the obtained

simulation results show that wavelet filters of order 8,

whose obtained coefficients are reported in Table 4, with a

decomposition level L ¼ 5 and a predicting lag of

w ¼ 5 days lead to the highest forecasting accuracy with

respect to other WNN schemes (with different decompo-

sition level L and lag w).

The performances of the designed WNN scheme are

compared to the ‘db4’-based WNN system in terms of the

RMSE and MAPE error values. To compute the error

difference edif between the two schemes, we have proposed

to use the following formula:

edif ¼
edw � edb4

edw
� 100% ð15Þ

where edw and edb4 denote the RMSE or the MAPE error

value of the ‘designed wavelets’ and the ’db4’ based

Table 3 RMSE values in terms

of the prediction lag
Lag w Annaba Sidi Bouzid Tetouane

RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)

1 0.7666 18.03 0.7222 24.87 1.3913 24.68

2 0.4938 11.57 0.453 16.37 0.883 14.82

3 0.3128 7.02 0.2789 9.96 0.5394 9.35

4 0.2199 5.32 0.1899 6.9 0.3529 6.31

5 0.1612 3.71 0.1265 4.71 0.2576 4.51

6 0.1672 3.85 0.1349 4.71 0.2857 4.36

7 0.188 4.68 0.1382 5.21 0.2821 4.62

8 0.1651 3.85 0.1326 4.35 0.2400 4.03

Table 4 Designed Low-pass wavelet filter coefficients for the three regions

Designed wavelet filter coefficients

Annaba - 0.06283 - 0.02158 0.67564 0.72742 0.09842 - 0.01075 - 0.00413 0.01201

Sidi Bouzid 0.00044 0.00212 - 0.02418 - 0.07734 0.48112 0.83477 0.24972 - 0.05245

Tetouane 0.00768 0.00159 - 0.10575 0.17525 0.79779 0.56591 0.00739 - 0.03565

0.00
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0.20
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Prediction lag w

Annaba Sidi Bouzid Tetouane

Fig. 14 MAPE versus prediction lag w
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Fig. 13 RMSE versus prediction lag w
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forecasting structures, respectively. From the obtained

results, presented in Table 5 and depicted in Figs. 15, 16,

the superiority of the designed wavelets can be easily

observed, where an average error difference in RMSE and

MAPE of nearly 13% and 19% respectively, is achieved.

Furthermore, to illustrate the efficiency of the proposed

forecasting scheme, the estimated and the measured wind

speeds, using the designed wavelets, for the three regions

are depicted in Fig. 17. It can be easily noticed that the

forecasted and the actual speed data curves show a high

degree of similarity for the entire year 2018. In addition, to

further verify the effectiveness of the suggested method

over the ‘db4’ based approach, Figs. 18, 19, 20 present a

closer look, for one month forecasting period, for the three

considered regions, where a noticeable improvement in the

forecasting accuracy, with respect to the ‘db4’ based

structure, can be easily observed.

5 Conclusion

A novel hybrid approach based on discrete wavelet trans-

form and artificial neural networks has been presented for

wind speed forecasting. More particularly, this work

examines the issue of optimizing the DWT filters combined

with ANN in order to boost further the wind speed pre-

dicting accuracy. Using wind speed data collected from

three different Magherbian regions during 2007–2018, the

assessment of the proposed forecasting model is conducted

in terms of wind speed predicting precision through error

indices, namely the RMSE and MAPE. Some conclusions

and contributions of this research are summarized as

follows.

(1) The new proposed scheme is based on the design of

wavelet filters, best adapted to wind speed signal,

using the polyphase wavelet filter representation.

(2) The DWT filters, intended to preprocess the wind

speed signal, are optimized using the genetic algo-

rithm with respect to the wind speed forecasting

accuracy.

(3) A deep investigation has clearly shown that the ‘db4’

wavelet with a decomposition level L ¼ 5, practi-

cally, outperforms almost all the other standard

discrete wavelets.

(4) It has been confirmed that the neural network

predictor could lead to higher predicting accuracy

if the signal is effectively preprocessed.

Fig. 15 Comparison between RMSE values for the ‘db4’ and

‘designed wavelets’ based WNN schemes

Fig. 16 Comparison between MAPE values for the ‘db4’ and

‘designed wavelets’ based WNN schemes

Table 5 RMSE and MAPE

values for the ‘db4’ and

‘designed wavelets’-based

WNN schemes for the three

regions

RMSE MAPE (%)

db4 Designed wavelets db4 Designed wavelets

Annaba 0.1612 0.149 3.71 3.16

Sidi Bouzid 0.1265 0.097 4.71 3.53

Tetouane 0.2576 0.2385 4.51 3.79
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(5) Using the PSO optimized wavelet filters for prepro-

cessing the wind speed signal, the developed WNN

scheme is compared to the ‘db4’ based predicting

system. The obtained simulation results show that

the new suggested forecasting approach surpasses

the ‘db4’ based structure, where an enhancement, in

terms of the error metrics RMSE and MAPE of about

13% and 19%, respectively, is achieved.

(a)

(b)

(c)

Fig. 17 Wind speed forecasting using designed wavelets for the year 2018, a Annaba, b Sidi Bouzid, c Tetouane

Fig. 18 Wind speed forecasting

using designed wavelets for the

region Annaba during one

month
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11. Esener İI, Yüksel T, Kurban M (2015) Short-term load fore-

casting without meteorological data using AI-based structures.

Turkish J Electr Eng Comput Sci 23:370–380
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