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Abstract. To achieve a conjugate gradient method which is strong in the-

ory and efficient in practice for solving unconstrained optimization problem,
we propose a hybridization of the Hager and Zhang (HZ) and Polak-Ribière

and Polyak (PRP) conjugate gradient methods which possesses an important

property of the well known PRP method: the tendency to turn towards the
steepest descent direction if a small step is generated away from the solution,

averting a sequence of tiny steps from happening, the new scalar βk is obtained

by convex combination of PRP and HZ under the wolfe line search we prove the
sufficient descent and the global convergence. Numerical results are reported

to show the effectiveness of our procedure.

1. Introduction. Let us consider the nonlinear unconstrained optimization prob-
lem:

min {f(x), x ∈ Rn} , (1)

where f : Rn → R is continuously differentiable function and its gradient g(x) =
Of(x) is available. The nonlinear conjugate gradient (CG) method is highly useful
for solving this kind of problems because of its simplicity and its very low memory
requirement [4]. The iterative formula of the CG methods is given by:

xk+1 = xk + sk, sk = αkdk, k = 0, 1, ..., n. (2)

where xk is the kth iterate point, αk is step length which is obtained by carrying out
some linear search, such as exact or inexact line search. In practical computation,
exact line search is consumption time and the workload is very large, so we usually
take the following inexact line search ([16], [17]) Usually, a major inexact line search
is the strong Wolfe line search. The strong Wolfe line search is to find the step-length
αk in (2) satisfying:

f(xk + αkdk)− f(xk) ≤ δαkg
T
k dk, (3)

|g(xk + αkdk)T dk| ≤ σ|gTk dk|, (4)

where parameters δ and σ satisfy 0 < δ < σ < 1.
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And dk is the search direction generated by the rule:

dk =

{
−gk for k = 0
−gk + βk−1dk−1 for k ≥ 1,

(5)

where gk := Of(xk) is the gradient of f at xk, and βk ∈ R is a parameter which
determines the different CGMs. One of the efficient methods which has possess an
approximate restart feature when jamming occurs has proposed by Polak, Ribière
and Polyak ([13], [14]) (PRP) with the following CG paremeter:

βPRP =
gTk+1yk

||gk||2
, (6)

where ||.|| stands for the Euclidean norm, yk = gk+1− gk. In spite of the numerical
efficiency of the PRP method, Powell [15] constructed a counter example demon-
strating the method can cycle infinitely. One of the conjugate gradient method
which is strong in theory is suggested by Hager and Zhan [10] with the following
formula of βk:

βHZ
k =

1

dTk yk
(yk − 2dk

||yk||2

dTk yk
)T gk+1. (7)

To achieve a method which is posses a good performance and strong convergence
we suggest a hybridization of PRP and HZ methods as a convex combination to
exploit the interesting features of each method.

Under the strong Wolfe line search with the parameter σ ≤ 1
2 , Al-Baali [1] proved

that the FR method satisfies the sufficient descent condition and converges globally
for general objective functions. Dai and Yuan [7] shown that the DY method is
descent and globally convergent if the Wolfe line search is used. In contrary, the
PRP method and the HS (Hestenes and Stiefel) method are generally regarded to
be two of the most efficient conjugate gradient methods in practical computation,
but their convergence properties are not so good.

Recently, Andrei [2] introduced a new hybrid conjugate gradient method (denoted
as HYBRID method) based on HS and DY methods for large-scaled unconstrained
optimization problems. In [12], Liu and al. discussed the global convergence of the
LS (Liu and Storey) and DY with inexact line search for nonconvex unconstrained
optimization. Snezana S. Djordjevic [8] analyzed the global convergence of a convex
combination of FR (Fletcher and Reeves) and PRP methods with sufficient descent
property.

The paper is organized as follows, in section 2 we obtain the parameter θk, dis-
cuss the sufficient descent property and give our specific algorithm of the proposed
method. In Section 3, the global convergence of the proposed method is estab-
lished. Preliminary numerical results are presented in Section 4. Finally, we make

conclusions.

2. A hybridization of the PRP and HZ methods. In this section, we deal
with the following convex combination of the CG parameters of the HZ and PRP
methods:

βhPRPHZ
k = (1− θk)βHZ

k + θkβ
PRP
k ,

= (1− θk) 1
dT
k yk

(yk − 2dk
||yk||2
dT
k yk

)T gk+1 + θk
gT
k+1yk

||gk||2 ,
(8)

in which θk ∈ [0, 1] is called the hybridization parameter. Note that if θk = 0 then
βhPRPHZ
k = βHZ

k , and if θk = 1, then βhPRPHZ
k = βPRP

k . On the other hand if
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0 < θk < 1 then the parameter θk is selected in such a way that at every iteration
the conjugacy condition (dTk+1yk = 0) is satisfied independently of the line search.
Clearly

dk+1 = −gk+1 + (1− θk)
1

dTk yk
(yTk gk+1 − 2

||yk||2

dTk yk
dTk gk+1)dk + θk

gTk+1yk

||gk||2
dk, (9)

multiply both sides of above equation by yk, implies

0 = −gTk+1yk + (1− θk)(yTk gk+1 − 2
||yk||2

dTk yk
dTk gk+1) + θk

gTk+1yk

||gk||2
dTk yk,

after some algebra we have:

θk =
2 ||yk||2

dT
k yk

dTk gk+1

gT
k+1yk

||gk||2 d
T
k yk − yTk gk+1 + 2 ||yk||2

dT
k yk

dTk gk+1

. (10)

It possible that θk, calculated as in (10) has the values outside the interval [0, 1].
So we fixe it:

θk =



0 if
2
||yk||

2

dT
k

yk
dT
k gk+1

gT
k+1

yk

||gk||2
dT
k yk−yT

k gk+1+2
||yk||2

dT
k

yk
dT
k gk+1

≤ 0,

1 if
2
||yk||

2

dT
k

yk
dT
k gk+1

gT
k+1

yk

||gk||2
dT
k yk−yT

k gk+1+2
||yk||2

dT
k

yk
dT
k gk+1

≥ 1,

2
||yk||

2

dT
k

yk
dT
k gk+1

gT
k+1

yk

||gk||2
dT
k yk−yT

k gk+1+2
||yk||2

dT
k

yk
dT
k gk+1

else.

(11)

Theorem 2.1. [8] If the relations (8) and (9) hold, then

dhPRPHZ
k+1 = (1− θk)dHZ

k+1 + θkd
PRP
k+1 . (12)

Proof. We have dhPRPHZ
k+1 = −gk+1 + βhPRPHZ

k dk. After adding and subtracting
(θkgk+1) we obtain

dhPRPHZ
k+1 = (1− θk)(−gk+1 + βHZ

k dk) + θk(−gk+1 + βPRP
k dk), (13)

implies

dhPRPHZ
k+1 = (1− θk)dHZ

k+1 + θkd
PRP
k+1 . (14)

Assumption 1. The level set S = {x ∈ Rn|f(x) ≤ f(x0)} is bounded, i.e. there
exists a constant B > 0, such that

||x|| ≤ B, for all x ∈ S. (15)

Assumption 2. In a neighborhood N of S the function f is continuously differ-
entiable and its gradient Of(x) is Lipschitz continuous, i.e. there exists a constant
0 < L <∞ such that

||Of(x)− Of(y)|| ≤ L||x− y|| for all x, y ∈ N. (16)
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Under these assumptions, there exists a constant Γ ≥ 0, such that

||Of(x)|| ≤ Γ, (17)

for all x ∈ S [3].
The next subsection prove the sufficient descent of our hybridation:

2.1. Sufficient descent condition. According to the theorem (2.1) we have:

• Firstly, if θk = 0 then dhPRPHZ
k+1 = dHZ

k+1,

the sufficient descent condition holds for the hybrid method, if it holds for HZ
method. William W. Hager and Hongchao Zhang prove in [10] that dHZ

k+1 satisfies
the sufficient descent condition for all k, and the details as follows:

Theorem 2.2. [10] If dTk yk 6= 0, and

dk+1 = −gk+1 + τdk, d0 = −g0 ∀τ ∈ [βHZ
k ,max

{
βHZ
k , 0

}
], (18)

then

gTk+1d
HZ
k+1 ≤ −

7

8
||gk+1||2. (19)

Proof. According to (18) we have two case:
The first one if βHZ

k > 0 then τ = βHZ
k and

gTk+1dk+1 = −||gk+1||2 + βHZ
k gTk+1dk

= −||gk+1||2 + (
yTk gk+1

dTk yk
− 2||yk||2dTk gk+1

(dTk yk)2
)gTk+1dk

=
−||gk+1||2(dTk yk)2 + (yTk gk+1)(gTk+1dk)(dTk yk)− 2||yk||2(dTk gk+1)2

(dTk yk)2
,

(20)

we apply the inequality (vTu ≤ 1
2 (||v||2 + ||u||2)) to the second term in (20) we find

gTk+1dk+1 ≤
1

(dTk yk)2
(−||gk+1||2(dTk yk)2 +

1

8
(dTk yk)2||gk+1||2 + 2(gTk+1dk)2||yk||2

− 2||yk||2(dTk gk+1)2)

≤ −7

8
||gk+1||2.

(21)

The second case if βHZ
k ≤ 0 then τ ∈ [βHZ

k , 0] and

gTk+1dk+1 = −||gk+1||2 + τgTk+1dk,

if gTk+1dk < 0 then from (20) and (21) we obtain:

gTk+1dk+1 ≤ −||gk+1||2 + βHZ
k gTk+1dk

≤ −7

8
||gk+1||2.

(22)

Else the aim follows immediately because τ < 0.

• Secondly, if θk = 1 then dhPRPHZ
k+1 = dPRP

k+1 .

So, if the sufficient descent holds for PRP method, it holds for hPRPHZ method.
The following theorem [8] prove the sufficient descent for PRP method.

admi
Highlight
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Theorem 2.3. [6] Assume that (15), (16) hold, let η a non negative constant such
that:

||gk||2 ≥ η||sk||2, η ≥ L. (23)

Then dPRP
k+1 satisfies the sufficient descent condition for all k.

Proof. We have by using Cauchy-Bunyakovsky-Schwartz inequality:

gTK+1d
PRP
k+1 = −||gk+1||2 + βPRP

k gTk+1sk,

= −||gk+1||2 +
(gTK+1yk)

||gk||2
(gTK+1sk)

≤ −||gk+1||2 +
||gK+1||2||yk||||sk||

||gk||2
.

(24)

From (16) we have yk ≤ L||sk||, so:

gTK+1d
PRP
k+1 ≤ −||gk+1||2 +

||gK+1||2L||sk||2

||gk||2
, (25)

by (23):

gTK+1d
PRP
k+1 ≤ −(1− L

η
)||gk+1||2. (26)

• Finally,[8] for 0 < θk < 1 there exist λ1, λ2 in which that 0 < λ1 ≤ θk ≤ λ2 <
1, we get:

gTk+1d
hPRPHZ
k+1 ≤ η1gTk+1d

PRP
k+1 + (1− η2)gTk+1d

HZ
k+1.

We evidently can achieve that there exists a number k > 0, such that

gTk+1d
hPRPHZ
k+1 ≤ −k||gk+1||2. (27)

2.2. Algorithm (hPRPHZ). Initialization: Choose an initial point x0 ∈ Rn,
ε > 0. Compute f(x0) and g0 = Of(x0).

Set d0 = −g0, the initial guess α0 = 1
||g0||2 and k = 0.

Step 1: If ||gk|| < ε then Stop, else go to step 2.
Step 2: Compute αk by the strong Wolfe line search (3), (4).
Step 3: Generate the next iterate by xk+1 = xk + αkdk.

Compute gk+1 = Of(xk+1) and yk = gk+1 − gk.

Step 4: If
gT
k+1yk

||gk||2 d
T
k yk − yTk gk+1 + 2 ||yk||2

dT
k yk

dTk gk+1 = 0, then θk = 0, else compute θk

as in (11).
Step 5: Compute βk as in (8).
Step 6: Compute d = −gk+1 + βhPRPHZ

k dk. If the restart criterion of Powell
condition

|gTk+1gk| ≥ 0.2||gk+1||2, (28)

is satisfied, then dk+1 = −gk+1, else define dk+1 = d.

Step 7: Compute the initial guess αk = αk−1
||dk−1||
||dk|| .

Step 8: Put k = k + 1 and go to step 1.

admi
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3. Global convergence. The following lemma gives the Zoutendijk condition
[18],and a detailed proof can be found in [11].

Lemma 3.1. [12]. Suppose that Assumption 1, Assumption 2 holds. If dk is a
descent direction and the step size αk satisfies

gTk+1dk ≥ σgTk dk, σ < 1, (29)

then

αk ≥
1− σ
L

|dTk gk|
||dk||2

. (30)

Proof. Through (29), the Cauchy-Bunyakovsky-Schwartz inequality and (16), it
holds that

−(1− σ)gTk dk ≤ dTk (gk+1 − gk) ≤ Lαk||dk||2.

Since dk is a descent direction and σ < 1, then the assertion (30) holds.
Obviously, from the strong Wolfe condition and (27), the step length αk satisfies
(30). According to the assumptions (1) and (2) and (27), it is easy to obtain that
gTk dk 6= 0 for all k ≥ 0. Thus, αk = 0 does not satisfy (4). This indicates that
αk = 0 obtained in the hPRPHZ method is not equal to zero, i.e., there exists a
constant λ > 0 such that

αk ≥ λ, ∀k ≥ 0. (31)

Lemma 3.2. Suppose that Assumptions (1) and (2) holds. Consider common it-
erate (2), where dk is a descent direction and αk satisfies the Wolfe line search (3).
Then the zoutendijk condition

∞∑
k=1

(gTk dk)2

||dk||2
<∞, (32)

holds.

The following theorem gives the global convergence of hPRPHZ method.

Theorem 3.3. Suppose that Assumption (1) and (2) hold, Let {xk} be generated
by Algrithme hPRPHZ. Then

limk→∞inf||gk|| = 0. (33)

Proof. Suppose by contradiction that (33) is false. Then there exists a constant
c > 0 in which

||gk||2 ≥ c , ∀k sufficiently large. (34)

According to (16), we get

||yk|| = ||gk+1 − gk|| ≤ LD, (35)

where D = max {||x− y||, x, y ∈ N} is the diameter of N. By using (4) and (27),
we have

dTk yk ≥ σdTk gk − dTk gk ≥ (1− σ)k||gk||2 ≥ (1− σ)kc. (36)
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From (9), (17), (34) (35) and (36) we obtain

|βhPRPHZ
k | ≤ |βHZ

k |+ |βPRP
k |

≤ 1

dTk yk
(||yk||||gk+1||+

2||yk||2||dk||||gk+1||
dTk yk

) +
||gk+1||||yk||
||gk||2

,

≤ LDΓ

(1− σ)kc
(1 +

2LD2

λ(1− σ)kc
) +

ΓLD

c
= Q.

Also, from (8) and (31), we have

||dk+1|| ≤ ||gk+1||+ |βhPRPHZ
k |.||dk|| = ||gk+1||+

|βhPRPHZ
k |.||sk||

αk

≤ Γ +
QD

λ
= W.

So:

||dk+1|| ≤W =⇒
∑
k≥0

1

||dk||2
= +∞

=⇒
∑
k≥0

(dTk gk)2

||dk||2
= +∞.

Which contradicts Lemma (3.2), therefore the claim (33) is proved.

4. Numerical results. In this section, we report some numerical experiments. We
test the PRP and HZ methods on problems in the CUTE [5] library and compare
their performance to that of the hPRPHZ method. For the numerical tests, the
parameters in the strong Wolfe line searches are chosen to be σ =0.9; δ = 0.0001.
We stop the iteration if the inequality ‖g (xk)‖ ≤ 10−6 is satisfied. In this paper, all
codes were written in MATLAB and run on PC with Intel(r) Core(tm) i7-2670QM
CPU @ 2.20GHz 2.20GHz processor and 4GB RAM memory and windows 10 Pr
system.

Convenient for comparison, all tests are done under a variant of generalized Wolfe
line Search as follows:

Table 1 list numerical results. The meaning of each column is as follows:
“problem” the name of the test problem
“n” the dimension of the test problem
“iter” the number of iterations
“time” the CPU time in seconds.

Figs. 1 and 2 show the performance of these methods relative to Iter and time
(CPU time), which were evaluated using the profiles of Dolan and Moré [9]. Bench-
mark results are generated by running a solver on a set P of problems and recording
information of interest Itr and Tcpu. Let S be the set of solvers in comparison. As-
sume that S consists of ns solvers, P consists of np problems. For each problem p ∈
P and solver s ∈ S, denote tp,s be the computing time (or the number of iterations)
required to solve problem p ∈ P by solver s ∈ S, and the comparison between
different solvers is based on the performance ratio defined by

rp,s =
tp,s

min {tp,s : s ∈ S}
.



8 S. DELLADJI, M. BELLOUFI AND B. SELLAMI

Table 1
Problems n hPRPHZ PRP HZ

time iter time iter time iter
FLETCHCR 5000 95.6800 34677 123.9500 456454 84.2000 40000
CURLY30 1000 8.8600 15122 8.8700 15401 NaN NaN
CURLY20 1000 10.9100 15084 6.9600 15797 NaN NaN
DIXMAANI 6000 9.4300 2661 9.0600 2261 13.9800 4720
EIGENBLS 420 3.5500 4978 10.1100 5440 14.9300 9714
TRIDIA 10 000 7.3200 1116 3.1900 1116 3.8900 2231
NONDQUAR 5000 4.2400 5099 7.5000 5058 9.4700 10058
CURLY10 1000 4.2700 14406 4.0600 13659 NaN NaN
EIGENCLS 462 4.2500 1802 4.1000 1883 5.9900 3312
SPARSINE 1000 2.5700 4516 4.3200 4483 6.5900 8793
EIGENALS 420 3.9700 1344 2.4900 1306 4.7400 2998
FLETCHCR 1000 6.0300 7479 4.9300 9139 3.5700 8986
GENHUMPS 1000 2.2400 3555 5.8400 3435 7.5500 5807
FMINSURF 5625 1.0000 492 3.4700 669 3.3900 949
TRIDIA 5000 1.0900 783 1.0700 783 1.3100 1565
DIXMAANE 6000 1.2200 303 1.2600 306 2.1300 620
DIXMAANJ 6000 23.8000 296 1.1800 275 2.1700 557
BDQRTIC 5000 1.3500 8726 7.6400 2428 NaN NaN
DIXMAANK 6000 1.8100 264 1.1100 248 1.8000 587
NONCVXU2 1000 1.5600 2055 1.9200 2015 3.6400 3919
DIXMAANL 6000 0.9700 245 1.3200 215 3.0100 702
SENSORS 100 1.0700 44 0.9700 45 1.3600 66
DIXMAANF 6000 1.0400 230 1.1200 230 1.6200 437
DIXMAANG 6000 1.3400 227 1.0800 227 1.4500 420
DIXMAANH 6000 0.9900 224 1.1600 224 2.6400 825
FLETCBV2 1000 1.4000 1055 1.0000 1044 1.2900 1886
SCHMVETT 10 000 2.3800 60 1.5000 64 2.5900 105
GENHUMPS 500 1.0100 2258 2.1500 2531 2.7000 4147
CRAGGLVY 5000 0.7400 143 0.9900 138 NaN NaN
MOREBV 10 000 1.1900 97 0.8900 97 1.2800 201
WOODS 10 000 0.8400 257 1.1700 230 2.1400 487
NONDQUAR 1000 0.3800 3147 1.4500 4900 1.6300 8128
SPARSQUR 10 000 0.3500 23 0.3800 23 1.1300 131
POWER 5000 0.6500 259 0.6100 408 0.4000 514
MANCINO 100 0.3500 12 0.6000 11 1.1500 27
CRAGGLVY 2000 0.3300 132 0.3700 142 NaN NaN
CURLY30 200 0.4800 2819 0.3600 3066 NaN NaN
LIARWHD 10 000 0.5700 41 0.4600 39 0.4800 46
BDQRTIC 1000 0.4600 1025 0.4900 798 NaN NaN
GENROSE 500 0.2900 1309 0.4900 1624 0.4600 2278
VARDIM 10 000 0.2700 62 0.2900 57 NaN NaN
CURLY20 200 0.7100 2951 0.3000 2835 NaN NaN
FREUROTH 5000 0.4000 96 0.5900 76 NaN NaN
ENGVAL1 10 000 0.2800 35 0.4100 34 NaN NaN
POWELLSG 10 000 0.2500 77 0.2300 49 0.7200 362
DIXON3DQ 1000 0.3100 1002 0.2700 1002 0.3300 2005
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Table 1 (Continued)
Problems n hPRPHZ PRP HZ

time iter time iter time iter
BRYBND 5000 0.4500 39 0.3200 40 0.3800 66
HILBERTA 200 0.7100 50 0.3700 25 0.3800 38
TQUARTIC 10 000 0.1900 61 0.6500 52 0.5800 38
CURLY10 200 0.2100 3100 0.2000 3182 NaN NaN
FLETCBV2 500 0.2600 480 0.2200 482 0.3600 962
FMINSURF 1024 0.1200 238 0.2400 300 0.2800 455
VARDIM 5000 0.2000 44 0.1300 47 NaN NaN
FMINSRF2 1024 0.1400 282 0.2600 355 0.2900 517
SPMSRTLS 1000 0.2400 151 0.1500 151 0.2000 281
LIARWHD 5000 0.2600 32 0.3000 48 0.2500 46
NONDIA 10 000 0.2600 16 0.2300 10 0.3100 26
POWELLSG 5000 0.5500 187 0.1100 53 0.3200 346
ARWHEAD 10 000 0.1600 15 0.5300 12 NaN NaN
SROSENBR 10 000 0.1900 17 0.1700 19 0.1700 26
TQUARTIC 5000 0.1700 38 0.2100 54 0.1700 32
PENALTY1 5000 0.2500 62 0.2200 80 0.3400 152
DQDRTIC 10 000 0.1300 8 0.2600 8 0.2700 15
NONDIA 5000 0.2200 22 0.1400 26 0.1300 26
ARGLINB 300 0.1300 23 0.2000 17 NaN NaN
DIXMAAND 6000 0.2500 13 0.1300 12 0.1600 25
ARGLINC 300 0.0800 19 0.2700 25 NaN NaN
DQRTIC 5000 0.0900 34 0.1000 34 0.1000 66
QUARTC 5000 0.0900 34 0.0900 34 0.1000 66
EIGENALS 110 0.0400 389 0.0800 359 0.1600 806
SINQUAD 500 0.0800 111 0.0400 93 NaN NaN
SPARSINE 200 0.0600 445 0.0800 445 0.1300 917
DIXON3DQ 500 0.2400 500 0.0600 500 0.0800 1003
DIXMAANC 6000 0.2200 11 0.2400 11 0.2600 23
HILBERTB 200 0.2100 6 0.2200 6 0.2500 13
BROWNAL 400 0.0700 13 0.2000 7 0.2700 37
EIGENCLS 90 0.2500 360 0.0700 350 0.1100 743
ARGLINA 300 0.2300 2 0.2500 2 0.2600 5
EXTROSNB 50 0.1300 5819 0.1900 5294 0.2400 7808
PENALTY2 200 0.1800 365 0.1400 417 NaN NaN
FREUROTH 1000 0.0700 187 0.1600 137 NaN NaN
BRYBND 1000 0.0600 52 0.0600 35 0.0800 73
DIXMAANB 3000 0.0400 10 0.0600 10 0.0700 23
NONCVXU2 100 0.0600 396 0.0300 414 0.0500 801
DIXMAANA 3000 0.2100 10 0.0500 9 0.0700 20
TOINTGSS 10 000 0.0300 5 0.2100 5 0.3800 20
POWER 1000 0.0600 117 0.0600 222 0.0400 236
DECONVU 61 0.0200 462 0.0600 460 0.0700 581
GENROSE 100 0.0200 347 0.0200 392 0.0300 626
COSINE 1000 0.0300 24 0.0200 24 0.0300 29
DIXMAANB 1500 0.0100 10 0.0300 10 0.0400 24
CHNROSNB 50 0.0300 273 0.0200 285 0.0100 500
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Table 1 (Continued)
Problems n hPRPHZ PRP HZ

time iter time iter time iter
DIXMAANA 1500 0.0100 10 0.0300 9 0.0300 22
FMINSRF2 121 0.0300 115 0.0100 124 0.0100 250
ARWHEAD 1000 0.0100 16 0.0300 19 NaN NaN
COSINE 500 0.0200 23 0 22 0.0100 26
DQDRTIC 1000 0.0600 8 0.0200 8 0.0300 15
ERRINROS 50 0.0200 1444 0.0900 2416 NaN NaN
EG2 1000 0.0100 6 0.0100 6 NaN NaN
TESTQUAD 100 0.0100 321 0.0100 303 0.0100 925
TOINTGOR 50 0.8800 151 0.0100 155 0.0100 250
SPARSINE 5000 0.1300 370 1.5700 544 1.1200 719
FMINSRF2 10 000 0.2800 26 0.1200 23 0.1300 27
FMINSRF2 15 625 1.1300 28 0.2600 23 0.2800 28
FMINSRF2 5625 3.0500 227 1.3100 214 1.8900 430
NONDQUAR 10 000 1.3200 234 2.4200 225 3.5200 440
POWER 10 000 43.7500 142 0.7100 62 NaN NaN
ARWHEAD 5000 0.2100 7298 36.8400 6398 NaN NaN
COSINE 5000 59.1900 37 0.2000 35 NaN NaN
COSINE 10 000 3.6600 8476 31.5200 4721 53.2500 8965
FMINSURF 10 000 0.6400 8771 2.1400 5022 2.4100 6779
FMINSURF 15 625 0.3600 108 0.4700 62 NaN NaN
BROYDN7D 1000 5.3900 498 0.2700 371 NaN NaN
SPMSRTLS 4999 0.0010 2232 5.4700 2183 6.4500 4093
SPMSRTLS 10 000 0.0010 NaN NaN NaN 0.2800 NaN
FREUROTH 10 000 0.0010 NaN NaN NaN 1.8900 NaN
FLETCBV2 500 0.0010 NaN NaN NaN 3.5200 NaN
BDQRTIC 10 000 0.0010 1 NaN NaN 0.2800 NaN
VAREIGVL 10 000 0.0010 1 NaN NaN 1.8900 NaN
ENGVAL1 5000 NaN 1 NaN NaN 3.5200 NaN
BRYBND 10 000 0.1000 34677 0.5000 456454 0.9000 40000
EIGENBLS 930 0.1000 15122 0.0500 15401 0.9000 NaN
NONCVXUN 500 0.1000 15084 0.0500 15797 0.9000 NaN
GENROSE 1000 0.1000 2661 0.5000 2261 0.9000 4720
GENROSE 5000 0.1000 4978 0.0500 5440 0.9000 9714
EIGENALS 930 0.1000 1116 0.0500 1116 0.9000 2231
SINQUAD 5000 0.1000 5099 0.5000 5058 0.9000 10058
SINQUAD 10 000 0.1000 14406 0.0500 13659 0.9000 NaN
GENHUMPS 5000 0.1000 1802 0.0500 1883 0.9000 3312
CHAINWOO 1000 0.1000 4516 0.5000 4483 0.9000 8793
TESTQUAD 1000 0.1000 1344 0.0500 1306 0.9000 2998
TESTQUAD 10 000 0.1000 7479 0.0500 9139 0.9000 8986
TESTQUAD 5000 0.1000 3555 0.5000 3435 0.9000 5807
FLETCHCR 5000 0.1000 492 0.0500 669 0.9000 949
CURLY30 1000 0.1000 783 0.0500 783 0.9000 1565
CURLY20 1000 0.1000 303 NaN 306 0.9000 620
DIXMAANI 6000 0.1000 296 NaN 275 0.9000 557
EIGENBLS 420 0.1000 8726 NaN 2428 0.9000 NaN
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Assume that a large enough parameter rM ≥ rp,s for all p, s is chosen, and
rp,s = rM if and only if solvers s does not solver problem p. Define

ρs (τ) =
1

np
size {p ∈ P : log rp,s ≤ τ} ,

where size A means the number of elements in set A, then ρs (τ) is the probability
for solver s ∈ S that a performance ratio rp,s is within a factor τ ∈ Rn. The ρs
is the (cumulative) distribution function for the performance ratio. The value of
ρs (1) is the probability that the solver will win over the rest of the solvers.

That is, for each method, we plot the fraction P of problems for which the
method is within a factor of the best time. The left side of the figure gives the
percentage of the test problems for which a method is the fastest; the right side
gives the percentage of the test problems that are successfully solved by each of the
methods. The top curve is the method that solved the most problems in a time
that was within a factor of the best time.

Based on the theory of the performance profile above, four performance figures,
i.e., Figs. 1–2 can be generated according to Table 1.

From the four figures, we can see that the hPRPHZ is superior to the other
conjugate gradient methods on the testing problems.

Figure 1.

5. Conclusion. In this work, we proposed a new conjugate gradient method for
unconstrained optimization, where the parameter βk computed as a convex combi-
nation of HZ and PRP. The sufficient descent and global convergence was proved
and numerical performance support the effectiveness and robustness of our proce-
dure.
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Figure 2.
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