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NEW ITERATIVE CONJUGATE GRADIENT METHOD FOR NONLINEAR
UNCONSTRAINED OPTIMIZATION

Sabrina Ben Hanachi*, Badreddine Sellami and Mohammed Belloufi

Abstract. Conjugate gradient methods (CG) are an important class of methods for solving uncon-
strained optimization problems, especially for large-scale problems. Recently, they have been much
studied. In this paper, we propose a new conjugate gradient method for unconstrained optimization.
This method is a convex combination of Fletcher and Reeves (abbreviated FR), Polak–Ribiere–Polyak
(abbreviated PRP) and Dai and Yuan (abbreviated DY) methods. The new conjugate gradient meth-
ods with the Wolfe line search is shown to ensure the descent property of each search direction. Some
general convergence results are also established for this method. The numerical experiments are done
to test the efficiency of the proposed method, which confirms its promising potentials.
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1. Introduction

Optimization problem is the process of obtaining the minimization or maximization of an objective function.
Unconstrained optimization is a branch of optimization in which we minimize an objective function that depends
on real variables with the total absence of restrictions on their values of those variables. Consider the nonlinear
following unconstrained optimization problem

min{𝑓(𝑥), 𝑥 ∈ R𝑛}, (1.1)

where 𝑓 is a smooth function and its gradient is available [16]. Over the years the mathematicians have developed
several numerical methods for solving this kind of problem (1.1), which include the Steepest Descent (SD)
method; Newton method; CG and Quasi-Newton (QN) methods, In this paper, we will focus on the CG method
because of its simplicity, lowest memory requirements [6], and especially its usability when the dimension is
large.

In 1952, Hestenes and Stiefel [15] suggested a CG method for solving the unconstrained linear optimization
problem as it is applied to quadratic functions. Then, in 1964, Fletcher and Reeves [13] extended the CG
method for solving nonlinear unconstrained minimization problems. The basis of all CG methods is to generate
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Table 1. Some well known conjugate gradient parameters.

No Formula Authors

1 𝛽HS
𝐾 =

𝑔𝑇
𝑘+1𝑦𝑘

𝑦𝑇
𝑘

𝑠𝑘
Hestenes and Stiefel (HS) [15]

2 𝛽HZ
𝐾 = 1

𝑑𝑇
𝑘

𝑦𝑘

(︁
𝑦𝑘 − 2𝑑𝑘

‖𝑦𝑘‖2

𝑑𝑇
𝑘

𝑦𝑘

)︁𝑇

𝑔𝑘+1 Hager and Zhan (HZ) [14]

3 𝛽CD
𝐾 =

‖𝑔𝑘+1‖2

−𝑔𝑇
𝑘

𝑠𝑘
Conjugate Descent (CD) [12]

4 𝛽LS
𝐾 =

𝑔𝑇
𝑘+1𝑦𝑘

−𝑔𝑇
𝑘

𝑠𝑘
Liu and Storey (LS) [17]

5 𝛽BA
𝐾 = ‖𝑦𝑘‖2

𝑑𝑇
𝑘

𝑦𝑘
Al-Bayati and Al-Assady (BA) [2]

a sequence 𝑥𝑘 starting from an initial estimate 𝑥0 ∈ R𝑛, using the following recurrence

𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘, 𝑠𝑘 = 𝛼𝑘𝑑𝑘, 𝑘 = 0, 1, . . . , 𝑛 (1.2)

where 𝛼𝑘 > 0 is a step size obtained by carrying out a one dimensional search, known as the line searches [21],
we usually use the inexact one [22, 26], this is due to the fact that when we perform an exact linear search at
each iteration, it is hardly feasible in practice and it is quite expensive in time and memory. Among them, the
so-called strong Wolfe line search conditions require that [23,24]

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘)− 𝑓(𝑥𝑘) ≤ 𝛿𝛼𝑘𝑔𝑇
𝑘 𝑑𝑘, (1.3)⃒⃒

𝑔𝑇
𝑘+1𝑑𝑘

⃒⃒
≤ −𝜎𝑔𝑇

𝑘 𝑑𝑘. (1.4)

where scalars 𝛿 and 𝜎 satisfy 0 < 𝛿 ≤ 𝜎 < 1.
And 𝑑𝑘 is the search direction generated by the rule:

𝑑𝑘 =

{︃
−𝑔0, if 𝑘 = 0
−𝑔𝑘 + 𝛽𝑘−1𝑑𝑘−1, if 𝑘 ≥ 0,

(1.5)

where 𝑔𝑘 is the gradient of 𝑓 at the point 𝑥𝑘 and 𝛽𝑘 is known as the CG parameter. The different choices for the
parameter 𝛽𝑘 correspond to different conjugate gradient methods. Moreover, we are going to summarize some
most popular formulas of the conjugate gradient methods in the following Table 1.

These methods are the same if 𝑓 is a strongly convex quadratic function and 𝛼𝑘 is obtained by exact line
search since the parameters 𝛽𝑘 of these methods are equal and thus generate the same sequence {𝑥𝑘}𝑘=0

∞ , but
in the opposite case when applied to a general nonlinear function with inexact line searches, we get different
sequences {𝑥𝑘}𝑘=0

∞ , implying a range of different methods [16].
One of the most useful CG methods is the hybrid method which combines the classical CG methods [5] in

order to have a good practical conjugate algorithm. Moreover, we are going to summarize some well known
hybrid conjugate gradient methods in Table 2.

In this work we propose another hybrid CG method based on combination of FR, PRP and DY conjugate
gradient algorithms for solving unconstrained optimization problems. The corresponding conjugate gradient
parameters are

𝛽FR
𝐾 =

‖𝑔𝑘+1‖2

‖𝑔𝑘‖2
, (1.6)
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Table 2. Hybrid conjugate gradient methods.

No Formula Authors

1 𝛽𝑐
𝐾 = (1− 𝜃𝑘)𝛽HS

𝐾 + 𝜃𝑘𝛽DY
𝐾 Andrei [3]

2 𝛽ℎ𝑦𝑏
𝐾 = (1− 𝜃𝑘)𝛽LS

𝐾 + 𝜃𝑘𝛽DY
𝐾 Liu and Li [16]

3 𝛽ℎ𝑦𝑏
𝐾 = (1− 𝜃𝑘)𝛽HS

𝐾 + 𝜃𝑘𝛽FR
𝐾 Djordjević [10]

4 𝛽𝑐
𝐾 = (1− 𝜃𝑘)𝛽HS

𝐾 + 𝜃𝑘𝛽CD
𝐾 Zheng et al. [27]

𝛽DY
𝐾 =

‖𝑔𝑘+1‖2

𝑦𝑇
𝑘 𝑠𝑘

, (1.7)

𝛽PRP
𝐾 =

𝑔𝑇
𝑘+1𝑦𝑘

‖𝑔𝑘‖2
, (1.8)

where 𝑦𝑘 = 𝑔𝑘+1−𝑔𝑘 and ‖.‖ stands for the Euclidean norm. The above methods correspond to those of Fletcher
and Reeves [13], Dai and Yuan [8] and Polak–Ribiere–Polyak [19,20] respectively.

The paper is summarized as follows: in Section 2, we present the new selected hybrid CG method, and we
got the parameters 𝛾𝑘, 𝛿𝑘 using some techniques, under mild conditions we prove that the selected method
with the Wolfe line search generates directions satisfying the sufficient descent condition. Section 3 presents the
algorithm.Convergence properties of the new selected method are analyzed in Section 4. In Section 5, we proved
the efficiency of our method by giving some numerical comparisons against FR, PRP and DY methods using
30 different test problems from the CUTE [7]. Finally, a brief conclusion is drawn in Section 6.

2. Hybrid conjugate gradient algorithms

In this section, we will describe a new CG method for unconstrained optimization where the parameter 𝛽𝑘

in the proposed method, denoted by 𝛽ℎ𝑦𝑏
𝐾 , is computed as a convex combination of 𝛽FR

𝐾 , 𝛽PRP
𝐾 and 𝛽DY

𝐾 , i.e.

𝛽ℎ𝑦𝑏
𝐾 = 𝛿𝑘𝛽FR

𝐾 + 𝛾𝑘𝛽PRP
𝐾 + (1− 𝛿𝑘 − 𝛾𝑘)𝛽DY

𝐾 , (2.1)

where 𝛿𝑘, 𝛾𝑘 ∈ [0, 1] are named the hybridization parameters that will be determined in a specific way to be
described later.

The direction 𝑑ℎ𝑦𝑏
𝑘 , is given by

𝑑ℎ𝑦𝑏
0 = −𝑔0, 𝑑ℎ𝑦𝑏

𝑘+1 = −𝑔𝑘+1 + 𝛽ℎ𝑦𝑏
𝐾 𝑠𝑘. (2.2)

From the discussion according to the values of the hybridization parameters 𝛿𝑘 and 𝛾𝑘, we obtain the following
cases
– If 𝛿𝑘 = 1 and 𝛾𝑘 = 0, then 𝛽ℎ𝑦𝑏

𝐾 = 𝛽FR
𝐾 .

– If 𝛿𝑘 = 0 and 𝛾𝑘 = 0, then 𝛽ℎ𝑦𝑏
𝐾 = 𝛽DY

𝐾 .

– If 𝛿𝑘 = 0 and 𝛾𝑘 = 1, then 𝛽ℎ𝑦𝑏
𝐾 = 𝛽PRP

𝐾 .

– If 𝛿𝑘 = 0 and 0 < 𝛾𝑘 < 1, then 𝛽ℎ𝑦𝑏
𝐾 = 𝛾𝑘𝛽PRP

𝐾 + (1− 𝛾𝑘)𝛽DY
𝐾 i.e. 𝛽ℎ𝑦𝑏

𝐾 is a convex combination of 𝛽PRP
𝐾 and

𝛽DY
𝐾 . See [25].

– If 𝛾𝑘 = 0 and 0 < 𝛿𝑘 < 1, then 𝛽ℎ𝑦𝑏
𝐾 = 𝛿𝑘𝛽FR

𝐾 + (1− 𝛿𝑘)𝛽DY
𝐾 i.e. 𝛽ℎ𝑦𝑏

𝐾 is a convex combination between 𝛽FR
𝐾

and 𝛽DY
𝐾 . See [1].

– If 1− 𝛿𝑘 − 𝛾𝑘 = 0, 0 < 𝛿𝑘, 𝛾𝑘 < 1, then 𝛾𝑘 = 1− 𝛿𝑘. Then 𝛽ℎ𝑦𝑏
𝐾 = 𝛿𝑘𝛽FR

𝐾 + (1− 𝛿𝑘)𝛽PRP
𝐾 i.e. 𝛽ℎ𝑦𝑏

𝐾 is a convex
combination between 𝛽FR

𝐾 and 𝛽PRP
𝐾 . See [9].

– If 0 < 𝛿𝑘, 𝛾𝑘 < 1, then we have a new hybrid CG method as a convex combination of three methods “FR,
PRP and DY”. Which we will focus on studying in the topic of our research.



2318 S. BEN HANACHI ET AL.

2.1. New hybrid conjugate gradient algorithm

If 𝛿𝑘 ∈]0, 1[ and 𝛾𝑘 ∈]0, 1[, then 𝛽ℎ𝑦𝑏
𝐾 is a convex combination among three parameters 𝛽FR

𝐾 , 𝛽PRP
𝐾 and 𝛽DY

𝐾 .

Theorem 2.1. If the relations (2.1) and (2.2) hold, then

𝑑ℎ𝑦𝑏
𝐾+1 = 𝛿𝑘𝑑FR

𝐾+1 + 𝛾𝑘𝑑PRP
𝐾+1 + (1− 𝛿𝑘 − 𝛾𝑘)𝑑DY

𝐾+1. (2.3)

Proof. We have
𝑑ℎ𝑦𝑏

𝑘+1 = −𝑔𝑘+1 + 𝛽ℎ𝑦𝑏
𝐾 𝑠𝑘.

According to the relation (2.1), the last form becomes

𝑑ℎ𝑦𝑏
𝑘+1 = −𝑔𝑘+1 +

[︀
𝛿𝑘𝛽FR

𝐾 + 𝛾𝑘𝛽PRP
𝐾 + (1− 𝛿𝑘 − 𝛾𝑘)𝛽DY

𝐾

]︀
𝑠𝑘. (2.4)

Considering again the relation (2.4) and after adding and subtracting the value (𝛿𝑘 + 𝛾𝑘)(𝑔𝑘+1), we get

𝑑ℎ𝑦𝑏
𝑘+1 = −(1− 𝛿𝑘 + 𝛿𝑘 − 𝛾𝑘 + 𝛾𝑘)𝑔𝑘+1 +

[︀
𝛿𝑘𝛽FR

𝐾 + 𝛾𝑘𝛽PRP
𝐾 + (1− 𝛿𝑘 − 𝛾𝑘)𝛽DY

𝐾

]︀
𝑠𝑘,

= 𝛿𝑘

(︀
−𝑔𝑘+1 + 𝛽FR

𝐾 𝑠𝑘

)︀
+ 𝛾𝑘

(︀
−𝑔𝑘+1 + 𝛽PRP

𝐾 𝑠𝑘

)︀
+ (1− 𝛿𝑘 − 𝛾𝑘)

(︀
−𝑔𝑘+1 + 𝛽DY

𝐾 𝑠𝑘

)︀
.

Finally, we get (2.3). �

Our motivation to select the parameters 𝛿𝑘, 𝛾𝑘 in such a manner that the search direction 𝑑𝑘+1 satisfies the
conjugacy condition i.e. (𝑑𝑇

𝑘+1𝑦𝑘 = 0).
We have

𝑑ℎ𝑦𝑏
𝑘+1 = −𝑔𝑘+1 +

[︀
𝛿𝑘𝛽FR

𝐾 + 𝛾𝑘𝛽PRP
𝐾 + (1− 𝛿𝑘 − 𝛾𝑘)𝛽DY

𝐾

]︀
𝑠𝑘. (2.5)

Having in view the relations (1.6)–(1.8), the last relation becomes

𝑑ℎ𝑦𝑏
𝑘+1 = −𝑔𝑘+1 + 𝛿𝑘

‖𝑔𝑘+1‖2

‖𝑔𝑘‖2
𝑠𝑘 + 𝛾𝑘

𝑔𝑇
𝑘+1𝑦𝑘

‖𝑔𝑘‖2
𝑠𝑘 + (1− 𝛿𝑘 − 𝛾𝑘)

‖𝑔𝑘+1‖2

𝑦𝑇
𝑘 𝑠𝑘

𝑠𝑘, (2.6)

multiplying (2.6) by 𝑦𝑇
𝑘 from the left and using the conjugacy condition, we obtain

𝑦𝑇
𝑘 𝑑ℎ𝑦𝑏

𝑘+1 = −𝑦𝑇
𝑘 𝑔𝑘+1 + 𝛿𝑘

‖𝑔𝑘+1‖2

‖𝑔𝑘‖2
(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀
+ 𝛾𝑘

𝑔𝑇
𝑘+1𝑦𝑘

‖𝑔𝑘‖2
(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀
+ (1− 𝛿𝑘 − 𝛾𝑘)‖𝑔𝑘+1‖2,

𝑦𝑇
𝑘 𝑔𝑘+1 = 𝛿𝑘

‖𝑔𝑘+1‖2

‖𝑔𝑘‖2
(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀
+ 𝛾𝑘

𝑔𝑇
𝑘+1𝑦𝑘

‖𝑔𝑘‖2
(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀
+ ‖𝑔𝑘+1‖2 + (−𝛿𝑘 − 𝛾𝑘)‖𝑔𝑘+1‖2,

−𝑔𝑇
𝑘 𝑔𝑘+1‖𝑔𝑘‖2 = 𝛿𝑘

(︁
‖𝑔𝑘+1‖2

(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀
− ‖𝑔𝑘+1‖2‖𝑔𝑘‖2

)︁
+ 𝛾𝑘

(︁(︀
𝑔𝑇

𝑘+1𝑦𝑘

)︀(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀
− ‖𝑔𝑘+1‖2‖𝑔𝑘‖2

)︁
−𝑔𝑇

𝑘 𝑔𝑘+1‖𝑔𝑘‖2 = 𝛿𝑘

(︁
𝑦𝑇

𝑘 𝑠𝑘 − ‖𝑔𝑘‖2
)︁
‖𝑔𝑘+1‖2 + 𝛾𝑘

(︁(︀
𝑔𝑇

𝑘+1𝑦𝑘

)︀(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀
− ‖𝑔𝑘+1‖2‖𝑔𝑘‖2

)︁
.

Finally,

𝛾𝑘 = −
𝑔𝑇

𝑘 𝑔𝑘+1‖𝑔𝑘‖2 + 𝛿𝑘

(︁
𝑦𝑇

𝑘 𝑠𝑘 − ‖𝑔𝑘‖2
)︁
‖𝑔𝑘+1‖2(︀

𝑔𝑇
𝑘+1𝑦𝑘

)︀(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀
− ‖𝑔𝑘+1‖2‖𝑔𝑘‖2

, where, 0 < 𝛿𝑘 < 1. (2.7)

Supposing that 𝑑𝑘 is a descent direction (𝑑0 = −𝑔0), then for the algorithm given by (1.2) and (2.6) we can
prove the following result.
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Theorem 2.2. Assume that 𝛼𝑘 in algorithm (1.2) and (2.6) is determined by the Wolfe line search (1.3) and
(1.4), if 0 < 𝛿𝑘, 𝛾𝑘 < 1, and⃒⃒⃒⃒

⃒⃒
(︁
‖𝑔𝑘‖2 +

(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀)︁
𝑔𝑇

𝑘 𝑠𝑘(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀
‖𝑔𝑘‖2

⃒⃒⃒⃒
⃒⃒‖𝑔𝑘+1‖2 ≥ 2

(︀
𝑔𝑇

𝑘+1𝑦𝑘

)︀(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
‖𝑔𝑘‖2

· (2.8)

Then direction 𝑑ℎ𝑦𝑏
𝑘+1 given by (2.6) is a descent direction.

Proof. We have
𝑦𝑇

𝑘 𝑑𝑘 = (𝑔𝑘+1 − 𝑔𝑘)𝑇
𝑑𝑘 = 𝑔𝑇

𝑘+1𝑑𝑘 − 𝑔𝑇
𝑘 𝑑𝑘, (2.9)

from the strong Wolfe condition, we get

𝑦𝑇
𝑘 𝑑𝑘 = 𝑔𝑇

𝑘+1𝑑𝑘 − 𝑔𝑇
𝑘 𝑑𝑘 ≥ 𝜎𝑔𝑇

𝑘 𝑑𝑘 − 𝑔𝑇
𝑘 𝑑𝑘 ≥ −(1− 𝜎)𝑔𝑇

𝑘 𝑑𝑘 > 0. (2.10)

Then,
𝑦𝑇

𝑘 𝑑𝑘 > 0, (2.11)

multiplying by 𝛼𝑘, we obtain
𝑦𝑇

𝑘 𝛼𝑘𝑑𝑘 = 𝑦𝑇
𝑘 𝑠𝑘 > 0. (2.12)

Since 0 < 𝛿𝑘, 𝛾 < 1, |1− 𝛿𝑘 − 𝛾𝑘| < 1, from (2.6) we get

𝑔𝑇
𝑘+1𝑑

ℎ𝑦𝑏
𝑘+1 = −𝑔𝑇

𝑘+1𝑔𝑘+1 + 𝛿𝑘
‖𝑔𝑘+1‖2

‖𝑔𝑘‖2
(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
+ 𝛾𝑘

𝑔𝑇
𝑘+1𝑦𝑘

‖𝑔𝑘‖2
(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
+ (1− 𝛿𝑘 − 𝛾𝑘)

‖𝑔𝑘+1‖2

𝑦𝑇
𝑘 𝑠𝑘

(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
,

≤ −‖𝑔𝑘+1‖2 +
‖𝑔𝑘+1‖2

‖𝑔𝑘‖2
(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
+

𝑔𝑇
𝑘+1𝑦𝑘

‖𝑔𝑘‖2
(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
+
‖𝑔𝑘+1‖2

𝑦𝑇
𝑘 𝑠𝑘

(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
,

≤

(︃
−1 +

𝑔𝑇
𝑘+1𝑠𝑘

‖𝑔𝑘‖2
+

𝑔𝑇
𝑘+1𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

)︃
‖𝑔𝑘+1‖2 +

𝑔𝑇
𝑘+1𝑦𝑘

‖𝑔𝑘‖2
(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
. (2.13)

On the other hand, we have

−1 +
𝑔𝑇

𝑘+1𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

=
−𝑦𝑇

𝑘 𝑠𝑘 + 𝑦𝑇
𝑘 𝑠𝑘 + 𝑔𝑇

𝑘 𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

=
𝑔𝑇

𝑘 𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

, (2.14)

according to the relation (2.14), the relation (2.13) becomes

𝑔𝑇
𝑘+1𝑑

ℎ𝑦𝑏
𝑘+1 ≤

(︃
𝑔𝑇

𝑘 𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

+
𝑔𝑇

𝑘+1𝑠𝑘

‖𝑔𝑘‖2

)︃
‖𝑔𝑘+1‖2 +

𝑔𝑇
𝑘+1𝑦𝑘

‖𝑔𝑘‖2
(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
. (2.15)

Denoting 𝐴 = 𝑔𝑇
𝑘 𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

+ 𝑔𝑇
𝑘+1𝑠𝑘

‖𝑔𝑘‖2
, to facilitate the theoretical proof, we must simplify 𝐴 as shown.

𝐴 =
𝑔𝑇

𝑘 𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

+
𝑔𝑇

𝑘+1𝑠𝑘

‖𝑔𝑘‖2
,

=

(︀
𝑔𝑇

𝑘 𝑠𝑘

)︀
‖𝑔𝑘‖2 +

(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀
‖𝑔𝑘‖2

=

(︀
𝑔𝑇

𝑘 𝑠𝑘

)︀
‖𝑔𝑘‖2 +

(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀2 +
(︀
𝑔𝑇

𝑘 𝑠𝑘

)︀(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀
‖𝑔𝑘‖2

·
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Finally, we get

𝐴 =

(︁
‖𝑔𝑘‖2 + 𝑦𝑇

𝑘 𝑠𝑘

)︁(︀
𝑔𝑇

𝑘 𝑠𝑘

)︀
(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀
‖𝑔𝑘‖2

+
𝑦𝑇

𝑘 𝑠𝑘

‖𝑔𝑘‖2
, (2.16)

using (2.16), then we obtain

𝑔𝑇
𝑘+1𝑑

ℎ𝑦𝑏
𝑘+1 ≤

(︃
𝑔𝑇

𝑘 𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

+
𝑔𝑇

𝑘+1𝑠𝑘

‖𝑔𝑘‖2

)︃
‖𝑔𝑘+1‖2 +

𝑔𝑇
𝑘+1𝑦𝑘

‖𝑔𝑘‖2
(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
,

≤

⎛⎝
(︁
‖𝑔𝑘‖2 + 𝑦𝑇

𝑘 𝑠𝑘

)︁(︀
𝑔𝑇

𝑘 𝑠𝑘

)︀
(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀
‖𝑔𝑘‖2

⎞⎠‖𝑔𝑘+1‖2 +
𝑦𝑇

𝑘 𝑠𝑘

‖𝑔𝑘‖2
‖𝑔𝑘+1‖2 +

𝑔𝑇
𝑘+1𝑦𝑘

‖𝑔𝑘‖2
(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
,

≤

⎛⎝
(︁
‖𝑔𝑘‖2 + 𝑦𝑇

𝑘 𝑠𝑘

)︁(︀
𝑔𝑇

𝑘 𝑠𝑘

)︀
(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀
‖𝑔𝑘‖2

⎞⎠‖𝑔𝑘+1‖2 +
𝑦𝑇

𝑘 𝑠𝑘

‖𝑔𝑘‖2
𝑔𝑇

𝑘+1𝑔𝑘+1 +
𝑔𝑇

𝑘+1𝑦𝑘

‖𝑔𝑘‖2
(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
,

≤

⎛⎝
(︁
‖𝑔𝑘‖2 + 𝑦𝑇

𝑘 𝑠𝑘

)︁(︀
𝑔𝑇

𝑘 𝑠𝑘

)︀
(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀
‖𝑔𝑘‖2

⎞⎠‖𝑔𝑘+1‖2 +

(︀
𝑔𝑇

𝑘+1𝑦𝑘

)︀
‖𝑔𝑘‖2

(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
+

(︀
𝑔𝑇

𝑘+1𝑦𝑘

)︀
‖𝑔𝑘‖2

(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
.

Finally, we get

𝑔𝑇
𝑘+1𝑑

ℎ𝑦𝑏
𝑘+1 ≤

⎛⎝
(︁
‖𝑔𝑘‖2 + 𝑦𝑇

𝑘 𝑠𝑘

)︁(︀
𝑔𝑇

𝑘 𝑠𝑘

)︀
(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀
‖𝑔𝑘‖2

⎞⎠‖𝑔𝑘+1‖2 + 2

(︀
𝑔𝑇

𝑘+1𝑦𝑘

)︀
‖𝑔𝑘‖2

(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
. (2.17)

Then, since 𝑦𝑇
𝑘 𝑠𝑘 > 0 by (2.12) and since 𝑔𝑇

𝑘 𝑠𝑘 ≤ 0, it follows that⎛⎝
(︁
‖𝑔𝑘‖2 + 𝑦𝑇

𝑘 𝑠𝑘

)︁(︀
𝑔𝑇

𝑘 𝑠𝑘

)︀
(𝑦𝑇

𝑘 𝑠𝑘)‖𝑔𝑘‖2

⎞⎠‖𝑔𝑘+1‖2 ≤ 0. (2.18)

Therefore, from (2.8) it follows that 𝑔𝑇
𝑘+1𝑑

ℎ𝑦𝑏
𝑘+1 ≤ 0 i.e. the direction 𝑑ℎ𝑦𝑏

𝑘+1 is descent one. �

Now we can prove that 𝑑ℎ𝑦𝑏
𝑘+1 satisfies the sufficient descent condition in the following theorem.

Theorem 2.3. Suppose that
(︀
𝑔𝑇

𝑘+1𝑦𝑘

)︀(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
≤ 0, if 0 < 𝛿𝑘, 𝛾𝑘 < 1. Then the direction 𝑑ℎ𝑦𝑏

𝑘+1 given by (2.2)
satisfies the sufficient descent condition

𝑔𝑇
𝑘+1𝑑

ℎ𝑦𝑏
𝑘+1 ≤ −

(︃
1− (1− 𝛿𝑘 − 𝛾𝑘)

𝑔𝑇
𝑘+1𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

)︃
‖𝑔𝑘+1‖2. (2.19)

Proof. For 𝑘 = 0, then 𝑑0 = −𝑔0, it holds 𝑔𝑇
0 𝑑0 = −‖𝑔0‖2, we can see that (2.19) holds for 𝑘 = 0. Next we

assume that (2.19) holds for some 𝑘 ≥ 1. Multiplying (2.6) by 𝑔𝑇
𝑘+1 from the left, we get

𝑔𝑇
𝑘+1𝑑

ℎ𝑦𝑏
𝑘+1 = −‖𝑔𝑘+1‖2 + 𝛿𝑘

‖𝑔𝑘+1‖2

‖𝑔𝑘‖2
(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
+ 𝛾𝑘

(︀
𝑔𝑇

𝑘+1𝑦𝑘

)︀
‖𝑔𝑘‖2

(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
+ (1− 𝛿𝑘 − 𝛾𝑘)

‖𝑔𝑘+1‖2

𝑦𝑇
𝑘 𝑠𝑘

(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
.

≤ −‖𝑔𝑘+1‖2 + 𝛿𝑘
‖𝑔𝑘+1‖2

‖𝑔𝑘‖2
(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
+ (1− 𝛿𝑘 − 𝛾𝑘)

‖𝑔𝑘+1‖2

𝑦𝑇
𝑘 𝑠𝑘

(︀
𝑔𝑇

𝑘+1𝑠𝑘

)︀
≤ −

(︃
1− 𝛿𝑘

𝑔𝑇
𝑘+1𝑠𝑘

‖𝑔𝑘‖2
− (1− 𝛿𝑘 − 𝛾𝑘)

𝑔𝑇
𝑘+1𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

)︃
‖𝑔𝑘+1‖2.
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Let 0 < 𝛿𝑘 < 1, so we can write 0 ≥ −𝛿𝑘 ≥ −1, now we get

𝑔𝑇
𝑘+1𝑑

ℎ𝑦𝑏
𝑘+1 ≤ −

(︃
1− (1− 𝛿𝑘 − 𝛾𝑘)

𝑔𝑇
𝑘+1𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

)︃
‖𝑔𝑘+1‖2 ≤ 0.

Observe that, since 𝑦𝑇
𝑘 𝑠𝑘 > 0 by (2.12) and since 𝑔𝑇

𝑘+1𝑠𝑘 = 𝑦𝑇
𝑘 𝑠𝑘 + 𝑔𝑇

𝑘 𝑠𝑘 < 𝑦𝑇
𝑘 𝑠𝑘, then 𝑔𝑇

𝑘+1𝑠𝑘 < 𝑦𝑇
𝑘 𝑠𝑘 implies

𝑦𝑇
𝑘 𝑠𝑘

𝑔𝑇
𝑘+1𝑠𝑘

> 1. Therefore 1− 𝛿𝑘 − 𝛾𝑘 < 1, it follows that

1− 𝛿𝑘 − 𝛾𝑘 <
𝑦𝑇

𝑘 𝑠𝑘

𝑔𝑇
𝑘+1𝑠𝑘

,

then

−(1− 𝛿𝑘 − 𝛾𝑘) > − 𝑦𝑇
𝑘 𝑠𝑘

𝑔𝑇
𝑘+1𝑠𝑘

,

we obtain (︃
1− (1− 𝛿𝑘 − 𝛾𝑘)

𝑔𝑇
𝑘+1𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

)︃
> 1−

(︃
𝑦𝑇

𝑘 𝑠𝑘

𝑔𝑇
𝑘+1𝑠𝑘

)︃(︃
𝑔𝑇

𝑘+1𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

)︃
= 1− 1 = 0.

Therefore (︃
1− (1− 𝛿𝑘 − 𝛾𝑘)

𝑔𝑇
𝑘+1𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

)︃
> 0,

proving the theorem. �

3. Algorithm of new hybrid conjugate gradient coefficient

Step 1. Initialization. Select 𝑥0 ∈ R𝑛 and the parameters 0 < 𝛿 ≤ 𝜎 < 1. Let 𝑘 = 0. Compute 𝑓(𝑥0),
𝑔0 = ∇𝑓(𝑥0). Consider 𝑑0 = −𝑔0, set the initial guess: 𝛼0 = 0 and 𝛿𝑘 = 0.8.

Step 2. Test a criterion for stopping iterations, if ‖𝑔𝑘‖
‖𝑔0‖ < 10−6, then stop. Else continue with Step 3.

Step 3. Line search. Compute 𝛼𝑘 > 0 by the strong Wolfe line search, i.e. 𝛼𝑘 satisfies (1.3), (1.4).
Step 4. Generate. 𝑥𝑘+1 = 𝑥𝑘 +𝛼𝑘𝑑𝑘. Compute 𝑓(𝑥𝑘+1), 𝑔𝑘+1 = ∇𝑓(𝑥𝑘+1) and 𝑠𝑘 = 𝑥𝑘+1−𝑥𝑘, 𝑦𝑘 = 𝑔𝑘+1−𝑔𝑘.
Step 5. Compute 𝛾𝑘 as in equation (2.7).
Step 6. Calculate 𝛽ℎ𝑦𝑏

𝑘 by equation (2.1).
Step 7. Computation of the search direction. Compute 𝑑 = −𝑔𝑘+1 + 𝛽ℎ𝑦𝑏

𝑘 𝑠𝑘. If the restart criterion of Powell⃒⃒
𝑔𝑇

𝑘+1𝑔𝑘

⃒⃒
≥ 0.2‖𝑔𝑘+1‖2,

is satisfied, then 𝑑𝑘+1 = −𝑔𝑘+1. Otherwise define 𝑑𝑘+1 = 𝑑.
Step 8. Put 𝑘 = 𝑘 + 1 and continue with Step 2.

4. Convergence properties

In this section, we study the global convergence properties of the proposed conjugate gradient method. For
further considerations we need the following assumptions and lemmas.

Assumption 4.1. The level set 𝑆 = {𝑥 ∈ R𝑛 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded, i.e. there exists a constant 𝐵 > 0,
such that

‖𝑥‖ ≤ 𝐵, for all 𝑥 ∈ 𝑆. (4.1)
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Assumption 4.2. In a neighborhood 𝒩 of 𝑆 the function 𝑓 is continuously differentiable and its gradient ∇𝑓(𝑥)
is Lipschitz continuous, i.e. there exists a constant 0 < 𝐿 < ∞ such that

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖ ≤ 𝐿‖𝑥− 𝑦‖, for all 𝑥, 𝑦 ∈ 𝒩 . (4.2)

Under Assumptions 4.1 and 4.2 on 𝑓 , there exists a constant Γ ≥ 0, such that

‖∇𝑓(𝑥)‖ ≤ Γ, (4.3)

for all 𝑥 ∈ 𝑆.

Lemma 4.3. Let Assumptions 4.1 and 4.2 hold. Consider the method (1.2), (1.5), where 𝑑𝑘 is a descent direc-
tion and 𝛼𝑘 obtained by the strong Wolfe line search, if∑︁

𝑘≥1

1
‖𝑑𝑘‖2

= ∞. (4.4)

Then
lim

𝑘→∞
inf‖𝑔𝑘‖ = 0. (4.5)

Lemma 4.4 ([16]). Suppose that assumptions (2.1) and (2.2) holds, if 𝑑𝑘 is a descent direction and 𝛼𝑘 satisfies

𝑔𝑇
𝑘+1𝑑𝑘 ≥ 𝜎𝑔𝑇

𝑘 𝑑𝑘, 𝜎 < 1. (4.6)

Then,

𝛼𝑘 ≥
(1− 𝜎)

𝐿

⃒⃒
𝑑𝑇

𝑘 𝑔𝑘

⃒⃒
‖𝑑𝑘‖2

· (4.7)

Proof. It follows (4.6), the Lipschitz condition, the Cauchy–Bunyakovsky–Schwartz inequality, it holds that

−(1− 𝜎)𝑑𝑇
𝑘 𝑔𝑘 ≤ 𝜎𝑑𝑇

𝑘 𝑔𝑘 − 𝑑𝑇
𝑘 𝑔𝑘 ≤ 𝑑𝑇

𝑘 (𝑔𝑘+1 − 𝑔𝑘) ≤ 𝑑𝑇
𝑘 𝐿𝛼𝑘𝑑𝑘 ≤ 𝐿𝛼𝑘‖𝑑𝑘‖2. (4.8)

Hence, the assertion (4.7) holds. �

According to the Lemma 4.4, assumptions (2.1) and (2.2), the strong Wolfe condition and (2.19), we conclude
that 𝛼𝑘 which obtained in our new method is not equal to zero i.e. there exists a constant 𝜆 > 0 such that

𝛼𝑘 ≥ 𝜆, for all 𝑘 ≥ 0. (4.9)

Now, by Lemma 4.3, we can prove the following convergence result.

Theorem 4.5. Consider the iterative method, defined by algorithm (3) and let all conditions of Theorem 2.3
hold then either 𝑔𝑘 = 0, for some 𝑘, or

lim
𝑘→∞

inf‖𝑔𝑘‖ = 0. (4.10)

Proof. Suppose that 𝑔𝑘 ̸= 0 for all 𝑘. Then, we are going to prove (4.10).
Suppose by contradiction that (4.10) is false. Then there exists 𝑟 > 0 such that

‖𝑔𝑘‖ ≥ 𝑟, ∀𝑘 sufficiently large. (4.11)

From the above Theorem 2.3, we have

𝑔𝑇
𝑘 𝑑𝑘 ≤ −𝐾‖𝑔𝑘‖2, for all 𝐾. (4.12)
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From the strong Wolfe conditions, we get

𝑦𝑇
𝑘 𝑑𝑘 = 𝑔𝑇

𝑘+1𝑑𝑘 − 𝑔𝑇
𝑘 𝑑𝑘 ≥ 𝛿𝑔𝑇

𝑘 𝑑𝑘 − 𝑔𝑇
𝑘 𝑑𝑘 ≥ −(1− 𝛿)𝑔𝑇

𝑘 𝑑𝑘 ≥ 𝐾(1− 𝛿)‖𝑔𝑘‖2, (4.13)

multiplying (4.13) by 𝛼𝑘 > 0 and using (4.9), (4.12), we obtain

𝑦𝑇
𝑘 𝑠𝑘 ≥ 𝐾(1− 𝛿)𝛼𝑘‖𝑔𝑘‖2 ≥ 𝐾(1− 𝛿)𝜆𝑟2.

On the other side, we have
‖𝑦𝑘‖ = ‖𝑔𝑘+1 − 𝑔𝑘‖ ≤ 𝐿‖𝑥𝑘+1 − 𝑥𝑘‖ ≤ 𝐿𝐷,

where 𝐷 is the diameter of the level set 𝑆.
We have

𝑑ℎ𝑦𝑏
𝑘+1 = −𝑔𝑘+1 + 𝛽ℎ𝑦𝑏

𝐾 𝑠𝑘.⃦⃦⃦
𝑑ℎ𝑦𝑏

𝑘+1

⃦⃦⃦
≤ ‖𝑔𝑘+1‖+

⃒⃒⃒
𝛽ℎ𝑦𝑏

𝐾

⃒⃒⃒
‖𝑠𝑘‖. (4.14)

While

𝛽ℎ𝑦𝑏
𝐾 = 𝛿𝑘𝛽FR

𝐾 + 𝛾𝑘𝛽PRP
𝐾 + (1− 𝛿𝑘 − 𝛾𝑘)𝛽DY

𝐾 .⃒⃒⃒
𝛽ℎ𝑦𝑏

𝐾

⃒⃒⃒
≤
⃒⃒
𝛽FR

𝐾

⃒⃒
+
⃒⃒
𝛽PRP

𝐾

⃒⃒
+
⃒⃒
𝛽DY

𝐾

⃒⃒
.

Further ⃒⃒
𝛽FR

𝐾

⃒⃒
=
‖𝑔𝑘+1‖2

‖𝑔𝑘‖2
≤ Γ2

𝑟2
· (4.15)

Also ⃒⃒
𝛽PRP

𝐾

⃒⃒
=

⃒⃒⃒⃒
⃒𝑔𝑇

𝑘+1𝑦𝑘

𝑔𝑇
𝑘 𝑔𝑘

⃒⃒⃒⃒
⃒ ≤ ‖𝑔𝑘+1‖ ‖𝑦𝑘‖

‖𝑔𝑘‖2
≤ Γ𝐿𝐷

𝑟2
·

Finally, we get ⃒⃒
𝛽PRP

𝐾

⃒⃒
≤ Γ𝐿𝐷

𝑟2
· (4.16)

Also ⃒⃒
𝛽DY

𝐾

⃒⃒
=
‖𝑔𝑘+1‖2

|𝑦𝑇
𝑘 𝑠𝑘|

≤ Γ2

𝐾(1− 𝛿)𝜆𝑟2
· (4.17)

From (4.15) to (4.17), we can write⃒⃒⃒
𝛽ℎ𝑦𝑏

𝐾

⃒⃒⃒
≤ Γ2

𝑟2
+

Γ𝐿𝐷

𝑟2
+

Γ2

𝐾(1− 𝛿)𝜆𝑟2
= 𝑀. (4.18)

According to the relation (4.18), the relation (4.14) becomes⃦⃦⃦
𝑑ℎ𝑦𝑏

𝑘+1

⃦⃦⃦
≤ ‖𝑔𝑘+1‖+ 𝑀‖𝑠𝑘‖ ≤ Γ + 𝑀𝐷

wherefrom ∑︁
𝑘≥1

1
‖𝑑𝑘‖2

= ∞. (4.19)

So, applying Lemma 4.3, we conclude that

lim
𝑘→∞

inf‖𝑔𝑘‖ = 0. (4.20)

This is a contradiction with (4.11), so we have finished the proof of (4.10). �
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5. Numerical experiments

In this section we present the computational performance of a Fortran implementation of the new algorithm on
a set of 450 unconstrained optimization test problems. The test problems are the unconstrained problems in the
CUTE [7] library, along with other large-scale optimization problems presented in [4]. We selected 30 large-scale
unconstrained optimization problems in extended or generalized form. For each function we have considered
numerical experiments with the increasing number of variables 𝑛 = 2, 4, 10, . . . , 25 000. In order to assess the
reliability of our new proposed method, we have tested them against FR, PRP and DY algorithms using the same
test problems. All these algorithms implement the Wolfe line search conditions with 𝛿 = 10−3 and 𝜎 = 10−4,
the same stopping criterion ‖𝑔𝑘‖∞

‖𝑔0‖∞ < 10−6, where ‖.‖∞ is the maximum absolute component of a vector,
and the hybridization parameter 𝛿𝑘 = 0.8. The comparisons of algorithms are given in the following context.
Let 𝑓ALG1

𝑖 (𝑥*) and 𝑓ALG2
𝑖 (𝑥*) be the optimal value found by ALG1 and ALG2, for problem 𝑖 = 1, . . . , 450,

respectively. We say that, in the particular problem 𝑖, the performance of ALG1 was better than the performance
of ALG2 if ⃒⃒

𝑓ALG1
𝑖 (𝑥*)− 𝑓ALG2

𝑖 (𝑥*)
⃒⃒⃒⃒

𝑓ALG1
𝑖 (𝑥0)− 𝑓ALG2

𝑖 (𝑥0)
⃒⃒ < 10−3, (5.1)

and the number of iterations, or the number function-gradient evaluations, or the CPU time of ALG1 was less
than the number of iterations, or the number of function-gradient evaluations, or the CPU time corresponding
to ALG2, respectively.

All codes are written in Matlab and compiler settings on the PC machine with Intel(R) Core(TM) i3-4030U
CPU @ 1.90 GHz processor and 4 GB RAM memory and windows 7 professional system.

Figures 1 and 2 show the performance of these methods relative to the number of iterations (iter) and CPU
time (time), which were evaluated using the profiles of Dolan and Moré [11]. Benchmark results are generated
by running a solver on a set 𝑃 of problems and recording information of interest the number of iterations and
CPU time and using parallel processing running a different CG method in each processor choosing in every step
the result giving the least value of the function [18]. Let 𝑆 be the set of solvers in comparison. Assume that
𝑆 consists of 𝑛𝑠 solvers, 𝑃 consists of 𝑛𝑝 problems. For each problem 𝑝 ∈ 𝑃 and solver 𝑠 ∈ 𝑆, denote 𝑡𝑝,𝑠 be
the computing time (or the number of iterations) required to solve problem 𝑝 ∈ 𝑃 by solver 𝑠 ∈ 𝑆, and the
comparison between different solvers is based on the performance ratio defined by

𝑟𝑝,𝑠 =
𝑡𝑝,𝑠

min{𝑡𝑝,𝑠 : 𝑠 ∈ 𝑆}
·

Assume that a large enough parameter 𝑟𝑀 ≥ 𝑟𝑝,𝑠 for all 𝑝, 𝑠 is chosen, and 𝑟𝑝,𝑠 = 𝑟𝑀 if and only if solvers 𝑠
does not solver problem 𝑝. Define

𝜌𝑠(𝜏) =
1
𝑛𝑝

size{𝑝 ∈ 𝑃 : log 𝑟𝑝,𝑠 ≤ 𝜏},

where size 𝐴 means the number of elements in set 𝐴, then 𝜌𝑠(𝜏) is the probability for solver 𝑠 ∈ 𝑆 that
a performance ratio 𝑟𝑝,𝑠 is within a factor 𝜏 ∈ R𝑛. The 𝜌𝑠 is the (cumulative) distribution function for the
performance ratio. The value of 𝜌𝑠(1) is the probability that the solver will win over the rest of the solvers.

That is, for each method, we plot the fraction 𝑃 of problems for which the method is within a factor of the
best time. The left side of the figure gives the percentage of the test problems for which a method is the fastest,
the right side gives the percentage of the test problems that are successfully solved by each of the methods. The
top curve is the method that solved the most problems in a time that was within a factor of the best time.

From the two figures, we can see that the new method is superior to the other conjugate gradient methods
on the testing problems.



NEW ITERATIVE CG METHOD FOR NONLINEAR UNCONSTRAINED OPTIMIZATION 2325

Figure 1. Performance Profile based on the iteration number.

Figure 2. Performance Profile based on the CPU time.

6. Conclusion

There are many conjugate gradient methods for solving unconstrained problems, especially large scale ones.
One of the most useful CG methods is the hybrid method, which combines the classical CG methods in order
to create a new method that performs well. In this paper, we have proposed a new hybrid method where the
parameter 𝛽𝑘 is computed as a convex combination of three parameters 𝛽FR

𝑘 , 𝛽PRP
𝑘 and 𝛽DY

𝑘 , the sufficient
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descent and global convergence have been proved and the practical results shown that the selected method is
faster and more efficient compared to the methods used.

Acknowledgements. We would to thank the professors of Laboratory Informatics and Mathematics (LIM) (University of
Souk Ahras, Algeria) who have always been helping and giving us advice.
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