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AN EFFICIENT NEW HYBRID CG-METHOD AS CONVEX COMBINATION OF
DY AND CD AND HS ALGORITHMS

Amina Hallal*, Mohammed Belloufi and Badreddine Sellami

Abstract. In this paper, we proposed a new hybrid conjugate gradient algorithm for solving uncon-
strained optimization problems as a convex combination of the Dai-Yuan algorithm, conjugate-descent
algorithm, and Hestenes-Stiefel algorithm. This new algorithm is globally convergent and satisfies the
sufficient descent condition by using the strong Wolfe conditions. The numerical results show that the
proposed nonlinear hybrid conjugate gradient algorithm is efficient and robust.
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1. Introduction

Consider the following unconstrained optimization problem:

min {𝑓(𝑥), 𝑥 ∈ R𝑛} . (1)

Let 𝑓 : R𝑛 → R be a function that is continuously differentiable, ∇𝑓 (𝑥𝑘) the gradient of 𝑓 denoted 𝑔 (𝑥𝑘).
The conjugate gradient methods are one of the most effective optimization methods for solving this problem,

especially for large-scale problems.
Generally, the conjugate gradient method creates a sequence of points {𝑥𝑘}𝑘𝜖N as

𝑥0𝜖R𝑛, 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 = 0.1 . . . (2)

𝛼𝑘𝜖 ]0,∞[ is the stepsize selected by using line search, the search direction 𝑑𝑘 is represented by

𝑑0 = −𝑔0, 𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑠𝑘, 𝑘 = 0.1 . . . (3)

𝑠𝑘 = 𝑥𝑘+1− 𝑥𝑘, 𝛽𝑘𝜖R the coefficient of conjugate gradient method. The different choices for the coefficient
𝛽𝑘 correspond to different conjugate gradient methods.

Some well-known 𝛽𝑘 formulas from previous researchers are
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Hestenes-Stiefel method (1952), Fletcher-Reeves method (1964), Polyak-Polak-Ribère method (1969),
Conjugate-descent method (1987), Liu-Storey method (1991), Dai-Yaun method (1999) (see [7, 15, 16, 18, 21,
24,25]), which are given by

𝛽𝐻𝑆
𝑘 =

𝑔𝑇
𝑘+1𝑦𝑘

𝑠𝑇
𝑘 𝑦𝑘

, (4)

𝛽𝐹𝑅
𝑘 =

‖𝑔𝑘+1‖2

‖𝑔𝑘‖2
, (5)

𝛽𝑃𝑅𝑃
𝑘 =

𝑔𝑇
𝑘+1𝑦𝑘

‖𝑔𝑘‖2
, (6)

𝛽𝐶𝐷
𝑘 =

‖𝑔𝑘+1‖2

−𝑠𝑇
𝑘 𝑔𝑘

, (7)

𝛽𝐷𝑌
𝑘 =

‖𝑔𝑘+1‖2

𝑠𝑇
𝑘 𝑦𝑘

, (8)

𝛽𝐿𝑆
𝑘 =

𝑔𝑇
𝑘+1𝑦𝑘

−𝑠𝑇
𝑘 𝑔𝑘

. (9)

The FR [16], CD [15], and DY [7] methods are globally convergent, but they may not perform in practice.
On the other hand, the HS [18], PRP [24, 25], and LS [21] methods are more efficient with excellent numerical
performance, but they may not always be convergent without some modifications this survey of methods, with
special attention to their global convergence, is given by Hager and Zhang [17]. Naturally, researchers try to
develop some new methods that have the advantages of both these two categories of methods. One of the most
effective conjugate gradient methods is the hybrid CG method, which is a combination of different classical
CG methods for global convergence properties and excellent numerical performance. Recently, some hybrid CG
methods. For example the HSDY method is a convex combination of HS and DY methods (see [2]), where 𝛽𝑘

has been introduced as
𝛽𝐻𝑆𝐷𝑌

𝑘 = (1− 𝜃𝑘) 𝛽𝐻𝑆
𝑘 + 𝜃𝑘𝛽𝐷𝑌

𝑘 . (10)

The LSCDCC method is a convex combination of LS and CD methods (see [12]), which 𝛽𝑘 was proposed as

𝛽𝐿𝑆𝐶𝐷𝐶𝐶
𝑘 = (1− 𝜃𝑘) 𝛽𝐿𝑆

𝑘 + 𝜃𝑘𝛽𝐶𝐷
𝑘 . (11)

𝜃𝜖 [0, 1].
Sellami et al. (see [27]) proposed a family of globally convergent conjugate methods, where

𝛽*
𝑘 =

𝜆 ‖𝑔𝑘+1‖2 + (1− 𝜆) 𝑦𝑇
𝑘 𝑔𝑘+1

𝜆 ‖𝑔𝑘‖2 + (1− 𝜆) ‖𝑔𝑘‖2
· (12)

𝜆𝜖 [0, 1]. Here 𝑦𝑘 = 𝑔𝑘+1− 𝑔𝑘 and ‖.‖ the Euclidean norm.
Motivated by the works of [2] we present a new hybrid conjugate gradient method for solving problem (1)

based on Dai-Yaun method, Conjugate-descent method and Hestenes-Stiefel method. In Section 2, we find new
scalar 𝛽𝑘 computed as a convex combination of 𝛽𝐷𝑌

𝑘 , 𝛽𝐶𝐷
𝑘 and 𝛽𝐻𝑆

𝑘 formulas. The sufficient descent property of
the suggested method is proved in Section 3. The global convergence of the suggested method is established in
Section 4. In Section 5, we discuss the numerical results and comparisons. Finally we present some conclusions.
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2. The new conjugate gradient method

In this section, we will present a new hybrid conjugate gradient formula. The our new 𝛽𝑘 which is known as

𝛽HDYCDHS
𝑘 = 𝜆𝑘𝛽𝐷𝑌

𝑘 + 𝜃𝑘𝛽𝐶𝐷
𝑘 + (1− 𝜆𝑘 − 𝜃𝑘) 𝛽𝐻𝑆

𝑘 . (13)

And

𝛽HDYCDHS
𝑘 = 𝜆𝑘

‖𝑔𝑘+1‖2

𝑠𝑇
𝑘 𝑦𝑘

+ 𝜃𝑘
‖𝑔𝑘+1‖2

−𝑠𝑇
𝑘 𝑔𝑘

+ (1− 𝜆𝑘 − 𝜃𝑘)
𝑔𝑇

𝑘+1𝑦𝑘

𝑠𝑇
𝑘 𝑦𝑘

· (14)

So, we may actually write

𝑑0 = −𝑔0, 𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽HDYCDHS
𝑘 𝑠𝑘, 𝑘 = 0.1 . . . (15)

The parameters 𝜆𝑘, 𝜃𝑘𝜖 [0, 1] and 0 ≤ 𝜆𝑘 + 𝜃𝑘 ≤ 1.
The following line search conditions are used to find 𝛼𝑘

𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘)− 𝑓 (𝑥𝑘) ≤ 𝛿𝛼𝑘𝑔𝑇
𝑘 𝑑𝑘. (16)

𝜎𝑔𝑇
𝑘 𝑑𝑘 ≤ 𝑔𝑇

𝑘+1𝑑𝑘 ≤ −𝜎𝑔𝑇
𝑘 𝑑𝑘. (17)

0 < 𝛿 ≤ 𝜎 < 5
11 .

The value of the 𝜆𝑘 and 𝜃𝑘 is determined in such a way that the search direction fulfills the famous D-L
conjugacy condition [8]:

𝑑HDYCDHS
𝑘+1 𝑦𝑘 = −𝑡𝑠𝑇

𝑘 𝑔𝑘+1, 𝑡 > 0.

We have
𝑑HDYCDHS

𝑘+1 = −𝑔𝑘+1 + 𝜆𝑘𝛽𝐷𝑌
𝑘 𝑠𝑘 + 𝜃𝑘𝛽𝐶𝐷

𝑘 𝑠𝑘 + (1− 𝜆𝑘 − 𝜃𝑘) 𝛽𝐻𝑆
𝑘 𝑠𝑘. (18)

And

𝑑HDYCDHS
𝑘+1 = −𝑔𝑘+1 + 𝜆𝑘

‖𝑔𝑘+1‖2

𝑠𝑇
𝑘 𝑦𝑘

𝑠𝑘 + 𝜃𝑘
‖𝑔𝑘+1‖2

−𝑠𝑇
𝑘 𝑔𝑘

𝑠𝑘 + (1− 𝜆𝑘 − 𝜃𝑘)
𝑔𝑇

𝑘+1𝑦𝑘

𝑠𝑇
𝑘 𝑦𝑘

𝑠𝑘. (19)

Therefore

−𝑔𝑇
𝑘+1𝑦𝑘 + 𝜆𝑘

‖𝑔𝑘+1‖2

𝑠𝑇
𝑘 𝑦𝑘

𝑠𝑇
𝑘 𝑦𝑘 + 𝜃𝑘

‖𝑔𝑘+1‖2

−𝑠𝑇
𝑘 𝑔𝑘

𝑠𝑇
𝑘 𝑦𝑘 + (1− 𝜆𝑘 − 𝜃𝑘)

𝑔𝑇
𝑘+1𝑦𝑘

𝑠𝑇
𝑘 𝑦𝑘

𝑠𝑇
𝑘 𝑦𝑘 = −𝑡𝑠𝑇

𝑘 𝑔𝑘+1. (20)

Solving (20) implies that

𝜆𝑘 =
𝜃𝑘

(︁
𝑔𝑇

𝑘+1𝑦𝑘 − ‖𝑔𝑘+1‖2
−𝑠𝑇

𝑘 𝑔𝑘
𝑠𝑇

𝑘 𝑦𝑘

)︁
− 𝑡𝑠𝑇

𝑘 𝑔𝑘+1(︀
𝑔𝑇

𝑘+1𝑔𝑘

)︀ · (21)

If 𝜆𝑘 ≥ 1 put 𝜆𝑘 = 1, if 𝜆𝑘 ≤ 0 put 𝜆𝑘 = 0, if 𝜆𝑘 + 𝜃𝑘 ≥ 1 put 𝜆𝑘 + 𝜃𝑘 = 1.
Finally, having in view the relation (13), we define

𝛽𝑘 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛽𝐷𝑌
𝑘 If 𝜆𝑘 = 1, 𝜃𝑘 = 0

𝛽𝐶𝐷
𝑘 If 𝜆𝑘 = 0, 𝜃𝑘 = 1

𝛽𝐻𝑆
𝑘 If 𝜆𝑘 = 0, 𝜃𝑘 = 0

𝜆𝑘𝛽𝐷𝑌
𝑘 + (1− 𝜆𝑘) 𝛽𝐻𝑆

𝑘 If 𝜆𝑘𝜖 ]0, 1[ , 𝜃𝑘 = 0

𝜆𝑘𝛽𝐷𝑌
𝑘 + (1− 𝜆𝑘) 𝛽𝐶𝐷

𝑘 If 𝜃𝑘 = 1− 𝜆𝑘

and 𝜆𝑘, 𝜃𝑘𝜖 ]0, 1[
𝜃𝑘𝛽𝐶𝐷

𝑘 + (1− 𝜃𝑘) 𝛽𝐻𝑆
𝑘 If 𝜆𝑘 = 0, 𝜃𝑘𝜖 ]0, 1[

𝜆𝑘𝛽𝐷𝑌
𝑘 + 𝜃𝑘𝛽𝐶𝐷

𝑘 + (1− 𝜆𝑘 − 𝜃𝑘) 𝛽𝐻𝑆
𝑘 If 𝜆𝑘𝜖 ]0, 1[ , 𝜃𝑘𝜖 ]0, 1[

and 0 < 𝜆𝑘 + 𝜃𝑘 < 1.

The following is the 𝛽HDYCDHS
𝑘 method algorithm:
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Algorithm 1

Step 1: Select 𝑥0 ∈ R𝑛, 𝜖 > 0, compute 𝑓0 and 𝑔0, set 𝑑0 = −𝑔0, 𝛼0 = 1
‖𝑔0‖ .

Step 2: If ‖𝑔𝑘‖ < 𝜖 = 10−5 then stop.
Step 3: Compute 𝛼𝑘 using (16) and (17).
Step 4: Compute 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑔𝑘+1, 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 and 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘.
Step 5: If 𝑔𝑇

𝑘+1𝑔𝑘 = 0 then 𝜆𝑘 = 0, otherwise compute 𝜆𝑘 as in (21), 0 ≤ 𝜃𝑘 ≤ 1.
Step 6: Compute 𝛽𝑘 as in (13) .

Step 7: Compute 𝑑 = −𝑔𝑘+1+ 𝛽HDYCDHS
𝑘 𝑠𝑘.

If the restart criterion of Powell condition⃒⃒
𝑔𝑇

𝑘+1𝑔𝑘

⃒⃒
≥ 0.2 ‖𝑔𝑘+1‖2 . (22)

Is fulfilled, then 𝑑𝑘+1 = −𝑔𝑘+1.

Step 8: Put 𝑘 = 𝑘 + 1 and continue with step 2.

3. The sufficient descent property

It is well known that the descent property is an important property for iterative methods to be globally
convergent. The search direction 𝑑𝑘 of the new method satisfies the sufficient descent condition with inexact
line search.

Theorem 3.1. Let {𝑑𝑘}𝑘𝜖N given by Algorithme 1, 𝛼𝑘 provides (16) and (17) then

𝑔𝑇
𝑘+1𝑑𝑘+1 ≤ −𝐶 ‖𝑔𝑘+1‖2 , 𝑘 = 0.1 . . . (23)

𝐶 > 0 where 𝜎 < 5
11 .

Proof. Induction is used to show (23).
Since 𝑑0 = −𝑔0, we get 𝑔𝑇

0 𝑑0 = −‖𝑔0‖2 < 0. Consider that (23) for 𝑘 > 0.
If (22) hold then 𝑔𝑇

𝑘+1𝑑
HDYCDHS
𝑘+1 = −‖𝑔𝑘+1‖2 < 0.

The search direction that meets the sufficient descent condition is achieved.
If (22) does not hold then ⃒⃒

𝑔𝑇
𝑘+1𝑔𝑘

⃒⃒
< 0.2 ‖𝑔𝑘+1‖2 . (24)

Using (17), we can get that

𝑦𝑇
𝑘 𝑠𝑘 = (𝑔𝑘+1 − 𝑔𝑘)𝑇 𝑠𝑘 ≥ − (1− 𝜎) 𝑔𝑇

𝑘 𝑠𝑘. (25)

And ⃒⃒⃒⃒
⃒𝑔𝑇

𝑘+1𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

⃒⃒⃒⃒
⃒ ≤ 𝜎

(1− 𝜎)
·

Multiplying both sides of (18) by 𝑔𝑇
𝑘+1, we get

𝑔𝑇
𝑘+1𝑑

𝐻𝐷𝑌 𝐶𝐷𝐻𝑆
𝑘+1 = −‖𝑔𝑘+1‖2 + 𝜆𝑘𝛽𝐷𝑌

𝑘 𝑔𝑇
𝑘+1𝑠𝑘 + 𝜃𝑘𝛽𝐶𝐷

𝑘 𝑔𝑇
𝑘+1𝑠𝑘

+ (1− 𝜆𝑘 − 𝜃𝑘) 𝛽𝐻𝑆
𝑘 𝑔𝑇

𝑘+1𝑠𝑘.

We have demonstrated seven cases.
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Case 01: [4] If 𝜆𝑘 = 1, 𝜃𝑘 = 0 we have 𝑔𝑇
𝑘+1𝑑

𝐻𝑆𝐷𝑌 𝐶𝐷𝐻𝑆
𝑘+1 = 𝑔𝑇

𝑘+1𝑑
𝐷𝑌
𝑘+1

𝑔𝑇
𝑘+1𝑑

𝐷𝑌
𝑘+1 = −‖𝑔𝑘+1‖2 + 𝛽𝐷𝑌

𝑘 𝑔𝑇
𝑘+1𝑠𝑘 ≤ −‖𝑔𝑘+1‖2 + ‖𝑔𝑘+1‖2

⃒⃒⃒⃒
⃒𝑔𝑇

𝑘+1𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

⃒⃒⃒⃒
⃒ ,

≤ −
(︂

1− 𝜎

1− 𝜎

)︂
‖𝑔𝑘+1‖2 ≤ −𝑎1 ‖𝑔𝑘+1‖2 .

𝑎1 > 0 where 𝜎 < 5
11 .

Case 02: [12] If 𝜆𝑘 = 0, 𝜃𝑘 = 1 we have 𝑔𝑇
𝑘+1𝑑

𝐻𝑆𝐷𝑌 𝐶𝐷𝐻𝑆
𝑘+1 = 𝑔𝑇

𝑘+1𝑑
𝐶𝐷
𝑘+1

𝑔𝑇
𝑘+1𝑑

𝐶𝐷
𝑘+1 = −‖𝑔𝑘+1‖2 +

‖𝑔𝑘+1‖2(︀
−𝑔𝑇

𝑘 𝑠𝑘

)︀ (︀𝑔𝑇
𝑘+1𝑠𝑘

)︀
≤ −‖𝑔𝑘+1‖2 + ‖𝑔𝑘+1‖2

⃒⃒⃒⃒
⃒𝑔𝑇

𝑘+1𝑠𝑘

−𝑔𝑇
𝑘 𝑠𝑘

⃒⃒⃒⃒
⃒ ,

≤ − (1− 𝜎) ‖𝑔𝑘+1‖2 ≤ −𝑎2 ‖𝑔𝑘+1‖2 .

𝑎2 > 0 where 𝜎 < 5
11 .

From (24), we obtain ⃒⃒
𝑔𝑇

𝑘+1𝑦𝑘

⃒⃒
≤ ‖𝑔𝑘+1‖2 +

⃒⃒
𝑔𝑇

𝑘+1𝑔𝑘

⃒⃒
≤ 1.2 ‖𝑔𝑘+1‖2 . (26)

Case 03: [13] If 𝜆𝑘 = 0, 𝜃𝑘 = 0 we have 𝑔𝑇
𝑘+1𝑑

𝐻𝑆𝐷𝑌 𝐶𝐷𝐻𝑆
𝑘+1 = 𝑔𝑇

𝑘+1𝑑
𝐻𝑆
𝑘+1

𝑔𝑇
𝑘+1𝑑

𝐻𝑆
𝑘+1 = −‖𝑔𝑘+1‖2 +

(︀
𝑔𝑇

𝑘+1𝑦𝑘

)︀(︀
𝑦𝑇

𝑘 𝑠𝑘

)︀ (︀𝑔𝑇
𝑘+1𝑠𝑘

)︀
.

Now, with (26) and (18) implies that

𝑔𝑇
𝑘+1𝑑

𝐻𝑆
𝑘+1 ≤ −‖𝑔𝑘+1‖2 +

⃒⃒
𝑔𝑇

𝑘+1𝑦𝑘

⃒⃒ ⃒⃒⃒⃒⃒𝑔𝑇
𝑘+1𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

⃒⃒⃒⃒
⃒ ,

≤ −
(︂

1− 2.2𝜎

1− 𝜎

)︂
‖𝑔𝑘+1‖2 ≤ −𝑎3 ‖𝑔𝑘+1‖2 .

𝑎3 > 0 where 𝜎 < 5
11 .

Case 04: If 𝜆𝑘𝜖 ]0, 1[, 𝜃𝑘 = 0 we have 𝑔𝑇
𝑘+1𝑑

𝐻𝑆𝐷𝑌 𝐶𝐷𝐻𝑆
𝑘+1 = 𝑔𝑇

𝑘+1𝑑
𝐻𝑆𝐷𝑌
𝑘+1

𝑔𝑇
𝑘+1𝑑

𝐻𝑆𝐷𝑌
𝑘+1 = −‖𝑔𝑘+1‖2 + 𝜆𝑘𝛽𝐷𝑌

𝑘 𝑔𝑇
𝑘+1𝑠𝑘 + (1− 𝜆𝑘) 𝛽𝐻𝑆

𝑘 𝑔𝑇
𝑘+1𝑠𝑘.

The sufficient descent condition is fulfilled, is montioned in [2], where

𝑔𝑇
𝑘+1𝑑

𝐷𝑌 𝐻𝑆
𝑘+1 ≤ −𝑎4 ‖𝑔𝑘+1‖2 . (27)

𝑎4 > 0 where 𝜎 < 5
11 .

Now, we have that

𝑔𝑇
𝑘+1𝑑

𝐻𝐷𝑌 𝐶𝐷𝐻𝑆
𝑘+1 = −𝜆𝑘 ‖𝑔𝑘+1‖2 − 𝜇𝑘 ‖𝑔𝑘+1‖2 − (1− 𝜆𝑘 − 𝜇𝑘) ‖𝑔𝑘+1‖2 ,

+𝜆𝑘𝛽𝐷𝑌
𝑘 𝑔𝑇

𝑘+1𝑠𝑘 + 𝜇𝑘𝛽𝐶𝐷
𝑘 𝑔𝑇

𝑘+1𝑠𝑘 + (1− 𝜆𝑘 − 𝜇𝑘) 𝛽𝐻𝑆
𝑘 𝑔𝑇

𝑘+1𝑠𝑘.

Hence
𝑔𝑇

𝑘+1𝑑
𝐻𝐷𝑌 𝐶𝐷𝐻𝑆
𝑘+1 = 𝜆𝑘𝑔𝑇

𝑘+1𝑑
DY
𝑘+1 + 𝜇𝑘𝑔𝑇

𝑘+1𝑑
CD
𝑘+1 + (1− 𝜆𝑘 − 𝜇𝑘) 𝑔𝑇

𝑘+1𝑑
HS
𝑘+1. (28)

Case 05: If 𝜃𝑘 = 1− 𝜆𝑘 and 𝜆𝑘, 𝜃𝑘𝜖 ]0, 1[ we have 𝑔𝑇
𝑘+1𝑑

𝐻𝑆𝐷𝑌 𝐶𝐷𝐻𝑆
𝑘+1 = 𝑔𝑇

𝑘+1𝑑
𝐷𝑌 𝐶𝐷
𝑘+1
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With (28) we get
𝑔𝑇

𝑘+1𝑑
𝐷𝑌 𝐶𝐷
𝑘+1 = 𝜆𝑘𝑔𝑇

𝑘+1𝑑
DY
𝑘+1 + (1− 𝜆𝑘) 𝑔𝑇

𝑘+1𝑑
CD
𝑘+1.

∃𝑤1, 𝑤𝜖R : 0 < 𝑤1 < 𝜆𝑘 < 𝑤3 < 1 then

𝑔𝑇
𝑘+1𝑑

𝐷𝑌 𝐶𝐷
𝑘+1 ≤ − (𝑤1𝑎1 + 𝑤3𝑎2) ‖𝑔𝑘+1‖2 ≤ −𝑎5 ‖𝑔𝑘+1‖2 .

𝑎5 > 0 where 𝜎 < 5
11 .

Case 06: If 𝜆𝑘 = 0, 𝜃𝑘𝜖 ]0, 1[ we have 𝑔𝑇
𝑘+1𝑑

𝐻𝑆𝐷𝑌 𝐶𝐷𝐻𝑆
𝑘+1 = 𝑔𝑇

𝑘+1𝑑
𝐻𝑆𝐶𝐷
𝑘+1

With (28) we get
𝑔𝑇

𝑘+1𝑑
𝐻𝑆𝐶𝐷
𝑘+1 = 𝜃𝑘𝑔𝑇

𝑘+1𝑑
CD
𝑘+1 + (1− 𝜃𝑘) 𝑔𝑇

𝑘+1𝑑
HS
𝑘+1.

Clearly, the sufficient descent condition is fulfilled, which

𝑔𝑇
𝑘+1𝑑

𝐶𝐷𝐻𝑆
𝑘+1 ≤ −𝑎6 ‖𝑔𝑘+1‖6 . (29)

𝑎6 > 0 where 𝜎 < 5
11 .

Case 07: If 𝜆𝑘𝜖 ]0, 1[, 𝜃𝑘𝜖 ]0, 1[ and 0 < 𝜆𝑘 + 𝜃𝑘 < 1 we have

𝑔𝑇
𝑘+1𝑑

𝐻𝐷𝑌 𝐶𝐷𝐻𝑆
𝑘+1 = 𝜆𝑘𝑔𝑇

𝑘+1𝑑
DY
𝑘+1 + 𝜇𝑘𝑔𝑇

𝑘+1𝑑
CD
𝑘+1 + (1− 𝜆𝑘 − 𝜇𝑘) 𝑔𝑇

𝑘+1𝑑
HS
𝑘+1.

[11] ∃𝑘1, 𝑘2,, 𝑘3, 𝑘4𝜖R :
0 < 𝑘1 < 𝜆𝑘 < 𝑘3 < 1, 0 < 𝑘2 < 𝜃𝑘 < 𝑘4 < 1 then

𝑔𝑇
𝑘+1𝑑

𝐻𝐷𝑌 𝐶𝐷𝐻𝑆
𝑘+1 ≤ − (𝑘1𝑎1 + 𝑘2𝑎2 + (1− 𝑘4 − 𝑘3) 𝑎3) ‖𝑔𝑘+1‖2 .

𝑎7 = 𝑘1𝑎1 + 𝑘2𝑎2 + (1− 𝑘4 − 𝑘3) 𝑎3 > 0 where 𝜎 < 5
11 .

The Proof is complete. �

4. The convergence analysis

The following two assumptions are required to obtain the convergence of our algorithm in this part: [2]
H1. The level set ℋ = {𝑥 ∈ R𝑛 | 𝑓(𝑥) ≤ 𝑓 (𝑥0)} is bounded where 𝑥0 is the initial point.
H2. In a neighborhood 𝒱 of ℋ the function 𝑓 is continuously differentiable and its gradient ∇𝑓(𝑥) is lipschitz

continuous, for all 𝑥, 𝑦 ∈ 𝒱 there ∃ 𝐾 > 0 such that

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖ ≤ 𝐾‖𝑥− 𝑦‖. (30)

Under such hypotheses, there ∃ 𝐴 ≥ 0, such that

‖∇𝑓(𝑥)‖ ≤ 𝐴, for all 𝑥 ∈ ℋ. (31)

The following Lemma holds for any CG method using the strong Wolfe conditions, as shown in [6].

Lemma 4.1. Consider the conjugate gradient method proposed by (2) and (3), with 𝑑𝑘 satisfies (23) and 𝛼𝑘

satisfies (17) and (18) we have

𝐼𝑓
∑︁
𝑘≥1

1
‖𝑑𝑘‖2

= ∞ 𝑇ℎ𝑒𝑛 lim
𝑘→∞

inf ‖𝑔𝑘‖ = 0. (32)

Theorem 4.2. Assume that H2 holds. Consider the CG method given by (2) and (3) with 𝛽𝑘 = 𝛽HDYCDHS
𝑘 and

the step length is computed using the strong Wolfe conditions then we have

lim
𝑘→∞

inf ‖𝑔𝑘‖ = 0. (33)



AN EFFICIENT NEW HYBRID CG-METHOD AS CONVEX COMBINATION 4053

Proof. We proved by contradiction.
Assume that (33) is false, ie. 𝑔𝑘 ̸= 0, then there is a constant 𝐴 > 0 that exists, which

‖𝑔𝑘‖ ≥ 𝐴, 𝑘 = 0.1 . . . (34)

D is the diameter of the level set 𝒱 and 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘, we have

‖𝑦𝑘‖ ≤ 𝐾 ‖𝑠𝑘‖ ≤ 𝐾𝐷. (35)

Since
‖𝑑𝑘+1‖ ≤‖ 𝑔𝑘+1 ‖ +

⃒⃒
𝛽HDYCDHS

𝑘

⃒⃒
‖ 𝑠𝑘 ‖ .

Using (25) with the inequality of Cauchy Schwartz and H2, we get

‖𝑑𝑘+1‖ ≤ ‖ 𝑔𝑘+1 ‖ +
⃒⃒
𝛽HDYCDHS

𝑘

⃒⃒
‖ 𝑠𝑘 ‖,

≤ ‖ 𝑔𝑘+1 ‖ +

(︃
‖𝑔𝑘+1‖2⃒⃒

− (1− 𝜎) 𝑠𝑇
𝑘 𝑔𝑘

⃒⃒ +
‖𝑔𝑘+1‖2⃒⃒
−𝑠𝑇

𝑘 𝑔𝑘

⃒⃒ +
‖𝑔𝑘+1‖ ‖𝑦𝑘‖⃒⃒
− (1− 𝜎) 𝑠𝑇

𝑘 𝑔𝑘

⃒⃒)︃ ‖ 𝑠𝑘 ‖ .

It follows with using (23), (31), (34) and (35) that

‖𝑑𝑘+1‖ ≤ ‖ 𝑔𝑘+1 ‖ +

(︃(︂
‖𝑔𝑘+1‖

𝐵
+ ‖𝑔𝑘+1‖+

𝐴 ‖ 𝑠𝑘 ‖
𝐵

)︂
‖ 𝑠𝑘 ‖ ‖𝑔𝑘+1‖

𝐶 ‖𝑔𝑘‖2

)︃
,

≤
(︂

1 +
(︂

𝐴

𝐵
+ 𝐴 +

𝐴𝐷

𝐵

)︂
𝐾𝐷𝐴

𝐶𝐴2

)︂
.

Hence
1

‖𝑑𝑘+1‖2
≥ 1(︀

1 +
(︀

𝐴
𝐵 + 𝐴 + 𝐴𝐷

𝐵

)︀
𝐾𝐷𝐴
𝐶𝐴2

)︀2 · (36)

Therfore ∑︁
𝑘≥0

1
‖𝑑𝑘+1‖2

= ∞. (37)

Is terms of the contradiction with Lemma 4.1, so we have proved (33). �

5. The numerical results

In this section, we discuss the numerical performance of our method HDYCDHS using certain test problems
from references [3, 20].

All numerical tests were coded for a PC computer with a 1.60 GHz processor and 2.00 GB of RAM. The
strong Wolfe line search parameters are: 𝜎 = 10−2, 𝛿 = 10−4, we stop if ‖∇𝑓 (𝑥𝑘)‖ ≤ 10−5, with different 𝑥0

and deminsions, computed 𝜆𝑘 as in (21), 𝜃𝑘 = 0.25, 𝑡 = 1.
The comparisons of methods are provided in the following context. Let 𝑓𝐴𝐿𝐺1

𝑖 and 𝑓𝐴𝐿𝐺2
𝑖 be the optimal

solutions determined by ALG1 and ALG2, respectively. We show that, in the specific problem, the performance
of ALG1 was superior than the performance of ALG2 if:⃒⃒

𝑓𝐴𝐿𝐺1
𝑖 − 𝑓𝐴𝐿𝐺2

𝑖

⃒⃒
< 10−3.

And the CPU time, or the number of function evaluations, or the number of iterations of ALG1 was less
than the CPU time, or the number of function evaluations, or the number of iterations of ALG2, which were
evaluated using the profiles of Dolan and Moré [14].

Figure 1 presents the performance profiles based on CPU time of HDYCDHS versus HSDY, DY, and CD.
In Figure 2, which shows the number of function evaluations where HDYCDHS is better than HSDY, DY,

and CD.
Moreover, in terms of the number of iterations, as shown in Figure 3.
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Figure 1. Performance profiles using the CPU time.

Figure 2. Performance profiles using the function evaluation.

6. Conclusions

In this research, we presented a new hybrid conjugate gradient method for unconstrained optimization prob-
lems. The new CG parameter is known as
𝛽𝐻𝐷𝑌 𝐶𝐷𝐻𝑆

𝑘 = 𝜆𝑘𝛽𝐷𝑌
𝑘 +𝜃𝑘𝛽𝐶𝐷

𝑘 + (1− 𝜆𝑘 − 𝜃𝑘) 𝛽𝐻𝑆
𝑘 , the convex combination scalars 𝜆𝑘, 𝜃𝑘 are chosen in such a

way that the search direction satisfies the D-L conjugacy condition. The suggested method can provide sufficient
descent directions with an inexact line search. The global convergence of our hybrid technique was proved, and
the numerical results demonstrate its usefulness for unconstrained minimization problems.
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Figure 3. Performance profiles using the iteration number.
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