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Abstract
This paper introduces a heartbeat classification system that combines three types of neural networks: random neural networks, 
deep autoencoders and RBF neural networks. The aim is to make use of the advantages of these neural networks in order to 
introduce a model with simpler architecture than the state-of-the-art deep models. Indeed, the advantages of the three com-
bined networks, briefly, are these: (i) Autoencoders provide high level features without pre-processing; (ii) Random neural 
networks provide good generalisation and very fast training; (iii) RBF neural networks provide high coverage of the input 
space and allow using prior knowledge. On the other hand, two types of features are used: coded features (obtained from the 
autoencoder) and RR interval based-features. To evaluate the performance of the proposed system, we conduct experiments 
on the MIT-BIH arrhythmia dataset and we consider the recommendations of the association for the advancement of medical 
instrumentation, which defines five classes of interest. Furthermore, the experiments are based on an inter-patient paradigm 
and the obtained results are compared with some of the state-of-the-art methods.

Keywords ECG arrhythmia · Radial basis function neural network · Random vector functional link neural network · Sparse 
autoencoder · Multi-class classification

1 Introduction

The electrocardiogram (ECG) signal is widely used as one of 
the most important clinical tools for evaluating the cardiac 
state of patients. However, the non-linear, non-stationary 
nature of the signal and the noise hinder its automatic pro-
cessing. The need to overcome these obstacles has led to 
the use of various methods and techniques for its analysis. 
Generally, ECG heartbeat classification systems include 
three main steps: data pre-processing, feature extraction and 
classification. The heartbeat classification methods can be 
divided into two main categories depending on how these 

three steps are performed. The first category includes tra-
ditional methods in which feature extraction and classifica-
tion are performed in separate steps. Whereas, the second 
category includes methods based on deep learning approach, 
in which the feature extraction and classification are auto-
matically performed in the same architecture.

In the first category, both the extracted features and the 
classifier model have an important impact on the overall 
performance. The most common features of a single ECG 
beat are the amplitudes, morphologies, durations of indi-
vidual waves (P, Q, R, S, and T), intervals (RR, PP, PR, 
ST, … ) and segments (PR and ST). In recent years, vari-
ous feature extraction techniques have been developed. 
This includes principal component analysis (PCA), linear 
discriminant analysis algorithms (LDA), wavelet transform 
(WT)..., etc (Martis et al. 2013). On the other hand, with 
regard to the classification step, artificial neural networks 
(ANNs) have been widely used for this task. This is due 
to their learning capabilities, approximation abilities and 
high predictive power (Soares et al. 2020; Angelov et al. 
2017). Among ANNs, radial basis function neural networks 
(RBFNNs) Roguia and Mohamed (2019) have been success-
fully applied.
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The second category includes deep learning-based meth-
ods, which yield to automatic extraction of effective features 
directly from the raw input data. These methods avoid time-
consuming and complex feature extraction phases. The deep 
learning approaches have been successfully applied in vari-
ous steps of the ECG analysis systems, such as dimensional 
reduction, feature extraction and classification. Among the 
most used deep models in heartbeat classification: convolu-
tional neural network (CNN) (Ji et al. 2019; Mousavi and 
Afghah 2019; Zhou and Tan 2020) and sparse autoencoders 
(SAE) (Yang et al. 2015, 2018; Nurmaini et al. 2020; Siouda 
et al. 2020, 2021). However, these methods have two major 
issues. First, they have large architectures that include a lot 
of hidden layers and neurons. Second, they may ignore some 
important features like RR interval features.

In this work, we propose a heartbeat classification system 
based on combining both categories, i.e., conventional meth-
ods and deep learning approaches. The proposed system 
consists of a deep SAE as a feature extractor and a hybrid 
neural model as a classifier. The latter combines random 
neural networks and RBFNN. In addition, two types of fea-
tures are used, i.e., coded features (obtained using SAE) 
and RR-interval based-features. To solve the problem of 
imbalanced data, which occurs in most medical problems, 
we use the synthetic minority over-sampling technique 
(SMOTE) Chawla et al. (2002). For the evaluation, we use 
the well-known MIT-BIH arrhythmia dataset and we apply 
the recommendations of the association for the advance-
ment of medical instrumentation (AAMI), which outlines 
five classes: normal (N), ventricular (V), supraventricular 
(S), fusion of normal and ventricular (F), and unknown beats 
(Q). The AAMI further recommends the adoption of the 
inter-patient paradigm, i.e., the training and test beats should 
be taken from different patients De Chazal et al. (2004). 
Accordingly, we perform inter-patient tests and compare our 
results with some of the state-of-the-art methods.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related work. Section 3 gives some back-
grounds concerning the sparse autoencoder and RVFLN. 
Section 4 details the principles of the proposed model and 
discusses its implementation. Section 5 reports and analy-
ses the experimental results conducted on MIT-BIH dataset. 
Finally, Sect. 6 concludes this paper.

2  Related work

The main aim of this paper is to combine the advantages 
of conventional methods and deep learning techniques 
to introduce an efficient deep system with simpler archi-
tecture than existing models. More precisely, we aim to 
introduce a system based on automatic features combined 
with only some important handcrafted features, namely 

RR interval features. In this context, Shi et al. (2020) 
combine automatic features and seven RR interval fea-
tures. They proposed a deep structure based on CNN and 
long short-term memory (LSTM) network. A heartbeat is 
first divided into three regions. Then, the CNN is used to 
automatically extract features from the three inputs and 
the obtained sequence goes through an LSTM network. 
The output of LSTM is concatenated with the RR interval 
features, and a fully connected layer is used for outputting 
the final result. The deep neural network consists of nine 
layers: the convolution layer, pooling layer, two concat-
enated layers, the LSTM layer, flattening layer, and three 
fully-connected layers. Each layer has many units. Wang 
et al. (2020a) combine automatic features with four RR 
intervals. The automatic features are extracted by one-
dimensional (1D) CNN and concatenated with the RR 
intervals features. The obtained set of features is used as 
the input of the multi-layer perceptron (MLP). The MLP 
hidden layer includes 64 neurons. The CNN architecture 
contains three convolutional blocks and three pooling 
layers. Each convolutional block includes a convolution 
layer, a ReLU activation function, and a batch normaliza-
tion layer. These two methods performed well; however, 
they have many layers and a large number of neurons in 
each layer, and they use many RR-interval features. The 
optimization of these networks became more difficult as 
the layer size increased. In this work, we propose a sim-
pler architecture based on a stacked autoencoder with only 
one hidden layer and a hybrid neural classifier that also 
consists of one hidden layer. In the proposed system, we 
combine automatic features with only two RR intervals. 
To the best of our knowledge, extracted features from ECG 
beats using autoencoders haven’t been combined with RR 
interval features in previous works. The stack autoencod-
ers have been widely used in extracting features from 
ECG Beats (Yang et al. 2015, 2018; Nurmaini et al. 2020; 
Siouda et al. 2021). Note that all these methods are based 
on autoencoders with multiple hidden layers.

On the other hand, we propose, as a classifier, a hybrid 
RBF-random neural network in order to achieve bet-
ter generalization capability and faster learning speed. 
Therefore, the entire system consists of an AE to generate 
automatic features and a hybrid neural classifier to give 
the final decision. Indeed, the AE has been successfully 
combined with random neural networks in several appli-
cations (Zhang et al. 2019; Katuwal and Suganthan 2019; 
Nayak et al. 2020; Sun et al. 2017; Tang et al. 2015). In 
this work, we use AE jointly with a hybrid RBF-RVFLNN 
and apply them to arrhythmia classification. The motiva-
tion behind the proposition of this system is to achieve 
high generalization capability with a simple structure in 
the inter-patient paradigm, in which the training set and 
test set are from distinct patients.
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3  Theoretical background

3.1  Sparse autoencoder (SAE)

An autoencoder is a neural network trained with an unsu-
pervised learning algorithm to provide target values equal 
to the inputs (y(i) = x(i)) . It is designed to learn a function 
G(x) ≈ x ; thus, the output x̂ is similar to the input x.Conse-
quently, interesting information can be found using a limited 
number of hidden neurons. An autoencoder can be consid-
ered as a specific type of DL, which is used to automatically 
learn potential features from unlabelled samples. Fig. 1 gives 
an example of an autoencoder with one hidden layer.

The sparse autoencoder (SAE) aims to learn sparse fea-
tures with the addition of a sparse penalty term inspired 
from sparse coding (Ng 2011). This penalty is added to the 
cost function to ensure that the learned features are not just 
a simple repetition of inputs. The sparse penalty aims to 
minimize the number of “active” hidden neurons. Consider 
that aj(x) is the activation of the jth hidden neuron, the aver-
age activation of this neuron is given by:

where, n is the dimension of the feature space.
The sparsity can be achieved through the addition of a regu-

larization term that indicates the difference between the mean 

(1)�j =
1

n

n∑
i=1

[aj(x(i))]

activation value, �̂j , and a sparsity target value, � . This can be 
done using the Kullback-Leibler discrepancy as follows:

The cost function can be given as follows:

where, MSE(X − X̂) is the mean squared error and Ωw is the 
sum squared of all network weights.

3.2  Random vector functional link network (RVFLN)

Random neural networks (RNNs) constitute powerful machine 
learning techniques due to their high computing and fast learn-
ing abilities in processing big data (Zhang and Suganthan 
2016). The random vector functional link network (RVFLN) 
is one of the most important RNNs (Pao, Y- H, Takefuji, Y, 
1992). In RVFLN, the input weights and biases are randomly 
initialized and the output weights are analytically calculated. 
In these networks, the direct link between the input and out-
put layers is a simple yet efficient regulation technique that 
prevents over-adjustment. The structure of the RVFL neural 
network is shown in Fig. 2. The dashed lines represent the 
direct links from the input to the output layer.

Consider ing a dataset  of training samples 
{(Xq, Tq), q = 1 ∶ Q} , where, Xq = [xq1, xq2, ..., xqN]

T ∈ R
N 

and Tq = [tq1, tq2, ..., tqJ]
T ∈ R

J.
An RVFL network with M enhancement neurons can be 

formulated as the following quadratic optimization problem.

where, � is the output weight matrix, �  is the matrix of tar-
gets and � is the matrix that concatenates the input and the 
outputs of the enhancement neurons.

The matrices �  , � and � are given by:

𝕊 = [𝕏ℍ] where,

(2)Ωspar = KL(� ∥ �̂j) = �log
�

�̂j
+ (1 − �)log

1 − �

1 − �̂j

(3)f = MSE(X − X̂) + aΩspar + �Ωw

(4)arg min
�
‖�� − �‖2

(5)� =

⎡⎢⎢⎢⎣

TT
1

∶

∶

TT
Q

⎤⎥⎥⎥⎦
Q×J

� =

⎡⎢⎢⎣

x11 ... x1N
∶ ... ∶

xQ1 ... xQN

⎤⎥⎥⎦Q×N

Fig. 1  An example of sparse autoencoder with five inputs and three 
hidden neurons
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Here, g is the activation function of the enhancement neu-
rones, Wm = [w1m,w2m, ...,wNm] and bm are the input weights 
and the bias corresponding to the mth hidden neuron.

where, Uk = [uk1, uk2, ..., ukJ]
T is the vector weight connect-

ing the kth hidden neuron (or input) to the output layer.
These output weights can be then analytically calculated 

using the minimum norm least square method by: Rao et al. 
(1972)

where, �‡ is the Moore-Penrose generalized inverse of the 
matrix �.

(6)ℍ =

⎡
⎢⎢⎢⎢⎢⎣

g(W1.X1 + b1) ... g(WM .X1 + bM)

∶ ... ∶

g(W1.XQ + b1) ... g(WM .XQ + bM)

⎤
⎥⎥⎥⎥⎥⎦Q×M

(7)� =

⎡
⎢⎢⎢⎣

UT
1

∶

∶

UT
K

⎤
⎥⎥⎥⎦
K×J

(8)� = �
‡
�

4  The proposed method

4.1  Main idea and motivations

Deep learning methods permit automatic extraction of fea-
tures from raw data. These methods avoid time-consuming 
and complex phases of feature extraction encountered in 
conventional methods. However, deep models have two 
major problems. First, they have large architectures that 
include a lot of hidden layers and neurons. Second, they 
ignore some important key features like RR interval fea-
tures. In this paper, we propose a system that tackles these 
two problems. This system has a simple architecture based 
on a stacked autoencoder with only one hidden layer and 
a hybrid neural classifier which also consists of one hid-
den layer. The proposed system combines automatic fea-
tures and handcrafted features. The automatic features are 
extracted using SSAE. The used hand-crafted features are 
based on RR intervals, which are very effective and can 
be obtained easily.

As a classifier, we propose a hybrid RBF-RVFL neu-
ral network. The motivations behind combining RBF and 
RVFL neural networks are as follows:

First, RBFNN is based on local responses while RVFLN 
is based on global responses. Their combination can pro-
vide better decision boundaries using fewer hidden neu-
rons and simpler structure.

Fig. 2  An example of RVFLN 
with N inputs, M enhancement 
neurons and J output neurons. 
The input features are first 
transformed to the enhance-
ment neurons through the input 
weights, which are randomly 
generated. All the original and 
improved features are connected 
to the outputs
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Second, the output weights in both RVFLN and RBFNN 
can be directly calculated in one-step. In the proposed hybrid 
neural classifier, the direct and output weights of RVFLN are 
concatenated with the output weights of RBFNN. All These 
weights are then calculated in one step using the moore-pen-
rose pseudo-inverse solution. This allows very fast learning.

Third, both RBFNN and RVFLN provide nonlinear 
mapping except the direct links in RVFLN, which provide 
linear mapping. The combination of these two neural net-
works allows them to map data in both linear and nonlinear 
manners.

Fourth, RVFLN is randomly initialized while RBFNN 
can be initialized using clustering methods. Their combina-
tion can then reduce the effect of the random initialisation 
and allow using prior knowledge. In the proposed model, 
the K-means method is used for initialising the RBF centres. 
This clustering method is used in a supervised manner, i.e., 
applied to each class separately, in order to get more accurate 
RBFs (Salah et al. 2019). The widths of RBFs are subse-
quently calculated using the P-nearest neighbours’ method 
(Benoudjit et al. 2002).

4.2  Process

Fig. 3 illustrates the principal scheme of the proposed sys-
tem. First, the R peaks are detected from the original ECG 
signal. Second, two types of features are calculated: the RR 
intervals and the coded features. The latter are obtained 
using the stacked sparse autoencoder. Third, all features are 
concatenated and the synthetic minority over-sampling tech-
nique (SMOTE) is used to alleviate the problem of imbal-
anced data. Finally, the hybrid RBF-RVFL neural network 
is used for the classification.

4.2.1  ECG beats segmentation

In order to extract ECG beats from a given ECG signal, two 
steps are performed: 

 (i) Find the R peaks of the ECG signal.
 (ii) Divide the ECG signal into a series of heartbeats, in 

which each one consists of 260 samples : 99 samples 
before the R-peak, 160 samples after the R-peak and 
the R-peak itself (Yildirim et al. 2019; Murat et al. 
2020).

4.2.2  RR interval features

The RR intervals are calculated based on the time between 
successive beats. In this work, two RR intervals are used as 
dynamic features:

where, the RRprevious indicates the distance between the 
current heartbeat and the previous one; the RRposterior 
indicates the distance between the current heartbeat and the 
next one; R(i) is the position of the ith R-peak; 360 is the 
frequency of the ECG signal.

4.2.3  Training

The training of the proposed system is performed in two 
steps: (i) Training the sparse autoencoder using unsuper-
vised data; (ii) Training the hybrid neural network using 
supervised data.

The training formulas of the SAE are given in Sec-
tion  3.1. However, there is a lack of methods for designing 

(9)RRprevious(i) = [R(i) − R(i − 1)] × 360

(10)RRposterior(i) = [R(i + 1) − R(i)] × 360

Fig. 3  A simple block diagram summarizing the stages of the pro-
posed system
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the appropriate structure, i.e., the number of hidden layers 
and the number of features. To deal with this issue, we per-
form tests with several structures. For each structure, we 
use a validation set, taken from the training data, to evaluate 
the obtained coded features. The evaluation is performed by 
calculating the mean square error between the original and 
reconstructed heartbeats.

The training of the hybrid classifier is given in the next 
section.

4.3  Architecture and training of the hybrid neural 
classifier

The proposed classifier combines three neural networks: 
deep SSAE, RBFNN and RVFLN. The SSAE is used to 
extract coded features from ECG signals. These features 
and other RR interval based-features are used as input to 
the hybrid RBFNN-RVFLN classifier. In this classifier, the 
coded features are connected to the RBFNN while the RR 
intervals are connected to the RVFLN.

Fig. 4 illustrates an example of the proposed classi-
fier with (N + P) inputs, D RBF neurons, M enhancement 
neurons and J outputs. Every input sample is represented 
by a concatenation of two vectors: a vector with N coding 
features (X = [x1, x2, ..., xN]) and a vector with P dynamic 
features (XX = [xx1, xx2, ..., xxP]).

The different parameters of the proposed classifier are 
set as follows: 

1. The weights linking the inputs (coding features) to the 
RBF neurons are equal to ‘1’

2. The centres of the RBFs are calculated using the 
K-means clustering method. We use this method in a 
supervised way, i.e., applied to each class separately, in 
order to get more accurate RBFs (Salah et al. 2019). The 
widths of RBFs are subsequently calculated using the 
P-nearest neighbours’ method (Benoudjit et al. 2002). 
The width of the dth hidden neuron is given by: 

Fig. 4  The structure of proposed hybrid neural classifier (RBFNN-RVFLN)
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where, Vn (n = 1...P) are the P-nearest neighbours’ of the 
centre Vd = [vd1, vd2, ..., vdN].

  The RBF neurons are linked with the vector of the 
coded features (X) . The output of dth RBF neuron is then 
given by: 

where, Vd = (v1d, v2d, ..., vNd) and �d are the center and 
the width corresponding to the dth RBF.

3. The input weights linking the input to the enhancement 
neurons ([wim], i = 1...P,m = 1...M) are randomly set.

4. The biases (bm,m = 1...M) are randomly set.
5. The enhancement neurons are linked with the vector of 

dynamic features (XX) . The outputs of the enhancement 
neurones are then given by the vector:

  

w h e r e ,  g  i s  t h e  a c t i va t i o n  f u n c t i o n , 
Wm = [w1m,w2m,… ,wPm] and bm are the vectors of input 
weights and the bias corresponding to the mth enhance-
ment neuron.

6. The output vector of the classifier is given by:
  Z = S × Uwhere, S is the vector that contatenate the 

vectors of RBF outputs (Y) , dynamic features (XX) and 
enhancement neurons (H) :

  S = [YXXH]

7. The matrix of the output weights (�) is calculated in 
one-step using all training samples. Consider a train-
ing dataset with Q training samples, in which every 
sample is represented by a vector (X) with N coding 
features and a vector (XX) with P dynamic features. 
The feature vectors corresponding to the qth sample are: 
Xq = [xq1, xq2, ..., xqN] and XXq = [xxq1, xxq2, ..., xxqP] .

  The qth target vector: Tq = [tq1, tq2, ..., tqJ].
  The matrix of the entire targets is given by the matrix 

�  as follows: 

 Let � be the matrix concatenating the dynamic inputs, 
the RBF outputs and the enhancement outputs. � is then 
given by:

(11)�d =
1

P

(
P∑

n=1

∥ Vn − Vd ∥
2

) 1

2

(12)Yd(X) = exp

(
−
∥ X − Vd ∥

2

2�2
d

)

(13)
H = [g(W1 ∗ XX + b1), g(W2 ∗ XX + b2)...g(WM ∗ XX + bM)]

T

(14)� =

⎡
⎢⎢⎢⎢⎢⎣

t11 ... t1J

∶ ... ∶

tQ1 ... tQJ

⎤
⎥⎥⎥⎥⎥⎦Q×J

  𝕊 = [𝕐𝕏𝕏ℍ]Q×(D+P+M)where ,

  �� =

⎡
⎢⎢⎢⎢⎢⎣

xx11 ... xx1P

∶ ... ∶

xxQ1 ... xxQP

⎤
⎥⎥⎥⎥⎥⎦Q×P

,

  ℍ =

⎡
⎢⎢⎢⎢⎢⎣

g(W1.XX1 + b1) ... g(WM .XX1 + bM)

∶ ... ∶

g(W1.XXQ + b1) ... g(WM .XXQ + bM)

⎤
⎥⎥⎥⎥⎥⎦Q×M

 and

   

 The matrix of the outputs corresponding to all training 
samples is given by: 

 Finally, the output weights (�) are simply calculated in 
one-step by: 

where, �‡ is the moore-penrose generalized inverse of �.

5  Experiment results

5.1  Dataset description

To evaluate the performance of the proposed classifier, we 
used the physionet MIT-BIH arrhythmia dataset (PhysioNet 
2001; Moody and Mark 2001). This dataset includes ECG 
signals collected at a sampling rate of 360 Hz for 48 inde-
pendent patients. The signal length is 650000 samples for 
30 minutes. There are two ECG leads in each record: lead II 
and lead V1. We use lead II as it is commonly used in litera-
ture. This dataset is recommended by the american associa-
tion of medical instrumentation (AAMI) AAMI (1998), as 
it contains the five major types of arrhythmias described in 
Table 1.

The experimental analysis is performed on the MIT-BIH 
dataset according to the inter-patient protocol proposed by 
De Chazal et al. (2004), which has been widely adopted 
in the literature (De Chazal et al. 2004; Luo et al. 2017). 
Under this protocol, the dataset (44 records according to 
the AAMI) is divided into two groups: DS1 = 101, 106, 
108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 

(15)� =

⎡
⎢⎢⎢⎢⎢⎣

y1(X1) ... yD(X1)

∶ ... ∶

y1(XQ) ... yD(XQ)

⎤
⎥⎥⎥⎥⎥⎦Q×D

(16)ℤ = 𝕊 × 𝕌

(17)� = �
‡
�
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205, 207,208, 209, 215, 220, 223,230 and DS2 = 100, 103, 
105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 
219,221, 222, 228, 231, 232, 233, 234. DS1 is used for the 
training, while DS2 for the test. With this separation, it is 
not possible to have heartbeats of the same patient in both 
training and test sets. The numbers of heartbeats in DS1 and 
DS2 data sets are listed in Table 2 by class.

5.2  Metric evaluation

The measures recommended by AAMI for the classification 
of arrhythmia are: overall accuracy (Acc), specificity (Spe), 
sensitivity (Se), positive predictive (+P) and false positive 
rate (FPR). In this study, we use the most commonly used 
measures, i.e.: overall accuracy (Acc), specificity (Spe), sen-
sitivity (Se), positive predictive (+P) and F1-score. These 
measures are indicated as follows:

Accuracy is the most common performance measure, 
expressed as the ratio of correct predictions to the total num-
ber of input samples. Mathematically, it is given by:

Specificity measures the model’s ability to make true nega-
tive predictions for each available category. It is the fraction 
of the correctly predicted negative samples among the true 
negative and false positive samples within the class. The 
specificity determines how many true negative labeled beats 
were found by the model. Mathematically, it is given by:

(18)Accuracy =
TP + TN

TP + FP + FN + TN
× 100%

Sensitivity measures the fraction of correctly predicted 
positive samples among the true positive and false negative 
samples within the class. The sensitivity determines how 
many true positive labeled beats were found by the model. 
Mathematically, it is given by:

Positive predictivity is defined as the quotient of true posi-
tive samples and the total predicted positive samples. The 
high precision percentage corresponds to a low false positive 
rate. Mathematically, it is given by:

The F1-score is a key metric to estimate the balance between 
sensitivity and positive predictivity metrics. In the case of 
unbalanced classes, the F1 score is the most suitable met-
ric to evaluate the performance of the classification model. 
Mathematically, it is given by:

where TP: true positive, FN: false negative, TN: true nega-
tive, and FP: false positive.

5.3  Experiments

In our experiments, we have considered only three classes 
(N, S and V). Indeed, the classes F and Q are not represented 
by a large number of beats and they have been ignored in 
several studies (Garcia et al. 2017).

First, we performed several tests on SSAEs in order to 
define the best structure. We used a validation set taken from 
the training data. The DS1 group is then divided into two 
new subgroups, DS11= 101, 106, 108, 109, 114, 115, 116, 
119, 122, 209, 223 and DS12= 112, 118, 124, 201, 203, 
205, 207, 208, 215, 220, 230. DS11 and DS12 are used for 

(19)Specificity =
TN

TN + FP
× 100%

(20)Sensitivity =
TP

TP + FN
× 100%

(21)Positive predictive =
TP

TP + FP
× 100%

(22)F1 − score =
2 ∗ TP

2 ∗ TP + FP + FN
× 100%

Table 1  Types of heartbeats in the MIT-BIH dataset recommended by AAMI

AAMI heartbeats MIT-BIH heartbeats

Normal (N) Normal beat (N); Left and right bundle branch block beats (L, R); Atrial escape beat (e); Nodal (junctional) 
escape beat (j)

Supraventricular ectopic beat (S) Atrial premature beat (A); Aberrated atrial premature beat (a); Nodal (junctional) premature beat (J); 
Supraventricular premature beat (S)

Ventricular ectopic beat (V) Premature ventricular contraction (V); Ventricular escape beat (E)
Fusion (F) Fusion of ventricular and normal beat (F)
Unknown beat (Q) Paced beat (/); Fusion of paced and normal beat (f); Unclassifiable beat (U)

Table 2  The number of samples 
in each class

Number of heartbeats

Heartbeat class DS1 DS2

N 45824 44218
S 943 1836
V 3788 3219
F 414 388
Q 8 7
Total 50977 49668
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training and evaluation respectively. This division is adopted 
from the work of Garcia et al. (2017).

Table 3 presents the mean square error between the origi-
nal and reconstructed ECG heartbeats corresponding to dif-
ferent structures. We notice that one layer of deep SAE and 
thirty features provide the best results.

Figure 5 illustrates an example of ECG beat (from class 
N) and its corresponding coded features. In this example, the 
original signal is encoded using 30 features. These features 
reconstruct the original beat efficiently.

Consequently, the chosen architecture of the SSAE is: one 
hidden layer and thirty features. The proposed system is then 
trained using all the training data.

Figure 6 presents the confusion matrix obtained for the 
test data. This matrix represents the correct and incorrect 
predictions of all heartbeats. Each row represents the actual 
class, and each column represents the predicted class.

Table 4 details the obtained results: sensitivity (Se), posi-
tive prediction (+ P) and F1 score (%) of each class, as well 
as the average value of each metric. According to Table 4, 
the lowest performance corresponds to class S. This can be 
explained by the fact that this class is represented by a very 
small number of training samples. The overall accuracy of 
the proposed classifier is 93.11%, and the average sensitivity, 

Table 3  The mean square error between the original and recon-
structed ECG heartbeats of some SSAEs structures over MIT-BIH 
arrhythmia dataset

Bold values indicate the best results

#Features Structures of SSAEs Validation 
set (MSE)

Test set (MSE)

10 1 AE; 260-10 0.0048 0.0066
2 SSAEs; 260-100-10 0.0076 0.0091
3 SSAEs; 260-160-60-10 0.00812 0.0099

30 1 AE; 260- 30 0.0013 0.0015
2 SSAEs; 260-100-30 0.0044 0.006
3 SSAEs; 260-160-60-30 0.0056 0.0078

50 1 AE; 260- 50 0.0014 0.0016
2 SSAEs; 260-130-50 0.0039 0.0053
3 SSAEs; 260-160-80-50 0.0054 0.0073

Fig. 5  An example of ECG signal coding using SAE (class N)

Fig. 6  The confusion matrix 
obtained using the proposed 
system over MIT-BIH arrhyth-
mia dataset

Table 4  Performance of the proposed system on MIT-BIH arrhyth-
mia dataset

Overall accuracy (%) 93.11

Classes Sensitivity(%) +predictive(%) F1-score(%)

N 99.14 93.78 96.39
S 13.27 69.41 22.28
V 56.13 82.57 66.82
Average 56.18 81.92 61.83
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positive prediction and F1-score are 56.18%, 81.92% and 
61.83%, respectively.

Table 5 compares the obtained results with other works 
applied to the same dataset, i.e., MIT-BIH arrhythmia. These 
works include a large variety of classification methods and 
feature extracting techniques. From Table 5, we notice that 
the performance of our classifier outperformed all these 
works, except the two works of Shi et al. (2020) and Wang 
et al. (2020b). Although these two works provided better 
results, our system is much simpler as it is based only on 
one layer of deep SAE and it considers a smaller number 
of features. Indeed, the method in the first work (Shi et al. 
2020) is based on a deep network, which consists of multiple 
layers, including a convolutional layer, a pooling layer, an 
LSTM layer, a concatenated layer and fully connected layers. 
This method is based on automatic features, obtained from 
the first convolution layer, and seven RR interval features 
added to the fully connected layer. In the second work (Wang 
et al. 2020b), the classification system is based on a two 
fully connected neural network classifiers. This system is 
based on 105 features, including RR interval, morphologi-
cal features, statistical features and wavelet packet entropy. 
It should also be noted that the RR interval features are used 
in several compared methods (Zhang and Luo 2014; Shi 
et al. 2020; Wang et al. 2020a, b; Chen et al. 2017). The 
used RR interval features include previous, posterior, local 
average RR interval; mean of RR interval... etc. In Zhang 
and Luo (2014), the authors used 143 features. Among these 
features, 5 are based on RR-intervals. The remaining fea-
tures comprise intra-beat features, wavelet coefficients, and 

morphological features. They used combined support vector 
machines as classifier and they have achieved an accuracy 
of 87.88%. Chen et al. (2017) have used 30 projection coef-
ficients and 3 weighted RR intervals. They also used sup-
port vector machines as classifier and their model reached 
an overall accuracy of 93.1%. Wang et al. (2020a) used 
320 morphological features extracted by one-dimensional 
(1D) CNN and 4 RR intervals features. These features are 
concatenated and used as the input of MLP. The model has 
obtained an overall accuracy of 92.53%. In this work, we 
used 30 coded features and only 2 RR interval features: pre-
vious RR and posterior RR.

To further assess the proposed model, we analyze its per-
formance on classes V and S separately. This is in accord-
ance with the AAMI recommendations, which suggest that 
the detection of V and S should be considered individually. 
Indeed, due to the imbalanced number of beats in each class, 
the overall accuracy is insufficient for evaluating the quality 
of the classification. The number of true positive N beats 
dominates the overall accuracy and the trained classifier 
may provide good overall accuracy without considering the 
detection of the most important arrhythmias (V and S beats).

From this Table 6, we note that our model outperforms 
these works in terms of accuracy, specificity, and positive 
prediction corresponding to class S. Concerning class V, 
the best results in terms of these tree metrics (i.e., accu-
racy, specificity, and positive prediction) are given by Zhang 
et al. (2014). The model proposed in Zhang et al. (2014) is 
based on the selection of effective feature subsets for dis-
tinguishing a class from others by making one-versus-one 

Table 5  Comparison of the classification results on MIT-BIH arrhythmia dataset

F1: RR-intervals, wavelet coeff.,morphological features; RR: the time between the R peaks of two heartbeats; TVCG: temporal vectorcardio-
gram; MIDNN: multiple input layers deep neural network; SDA: stacked denoising autoencoder; F2: morphological, RR-intervals,beat-to-beat 
correlation feature; F3: RR-intervals, morphological, statistical, higher order statistic, wavelet transform, wavelet packet entropy; wRR: weighted 
RR; PSO: particle swarm optimization; LST: least square Twin; SVM: support vector machine; RC Network: residual-concatenate network; 
ITML: information-theoretic metric learning; SNN; spiking neural network; XGBoost: extreme gradient boosting

Authors, year Number of 
classes    

Extraction features method Classifier Performance (%)

 Zhang and Luo (2014) 4 F1 Combined SVM Acc: 87.88
 Garcia et al. (2017) 3 TVCG + complex network + PSO SVM Acc: 92.4
 Luo et al. (2017) 4 Three layers SDA + multi-layer DNN DNN Acc: 89.3
 Chen et al. (2017) 3 Projections + wRR SVM Acc: 93.1
 Raj and Ray (2018) 5 Sparse Decomposition PSO optimized LSTwin SVM Acc: 89.93; Sen: 72.35
 Li et al. (2019) 3 F2 CNN Acc: 91.44
 Shi et al. (2019) 4 F3 XGBoost Acc: 92.1
 Shi et al. (2020) 3 Raw data + RR MIDNN Acc: 94.2
 Wang et al. (2020b) 3 CNN CNN Acc: 93.4
 Song et al. (2020) 5 RC Network + ITML Logistic Regression Classifier Acc: 89.11; Sen: 74.13; Spe: 95.95
 Wang et al. (2020a) 4 CNN + RR-intervals MLP Acc: 92.53
 Yan et al. (2021) 3 Raw heartbeat data CNN + SNN Acc: 90
This study 3 SAE + RR-intervals RBFNN + RVFLN Acc: 93.11; Sen: 55.66; Spe: 80.55



Evolving Systems 

1 3

comparison. It should be noted that these authors mentioned 
that the RR interval features are important features which 
are often selected. In terms of sensitivity, the best results for 
both classes S and V are given by Shi et al. (2020). How-
ever, as it was mentioned in discussing Table 5, the model 
presented in this work has a large architecture which con-
sists of multiple layers, i.e., convolutional, pooling, LSTM, 
concatenated, and fully connected layers.

Considering the above comparisons, we can conclude 
that the proposed model has given promising results with a 
simple structure, as it consists of a few neural layers and it 
considers only two RR interval features.

6  Conclusion

This paper introduced a neural system for heartbeat classifi-
cation based on three types of neural networks and two types 
of features. The aim is to make use of the advantages and 
complementary properties of the combined neural networks. 
In order to solve the problem of imbalanced data, we used 
an oversampling method, i.e., SMOTE.

To evaluate the proposed system, we used the well-known 
MIT-BIH arrhythmia dataset and we performed an inter-
patient test. Given the lack of methods for automatic design 
of autoencoders, we performed tests with several structures. 
We used a validation set, taken from the training data, to 
evaluate each structure. We found that only one layer and 
thirty features provided the best results. Subsequently, the 
proposed system was based on this structure. The proposed 
system was compared with some state-of-the-art methods 
and it outperformed most of them and provided promising 
performance. This confirms the efficiency of the proposed 
approach, which consists of extracting coded features using 
deep SAE, and then using these features besides two RR 
interval features as inputs to a hybrid RBFNN-RVLFN 
classifier.

As future work, we plan to further explore the idea of 
combining automatic features with handcrafted features. 
We want to develop classification models that are essen-
tially based on deep learning architectures, but that permit 
the integration of some key handcrafted features.To tackle 
the problem of unbalanced data, we have used the SMOTE 
method but the sensitivity of the proposed method has been 
low, especially for class S. Therefore, we plan to use other 
sophisticated methods of unbalanced data and to explore 
more key features to identify class S. Therefore, we can have 
high performance with compact structures. We also plan 
to extend this approach to specific-patient applications and 
potential use with long-time monitoring of wireless body 
area networks. Indeed, this type of system requires simple, 
yet effective data-analysis models.
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