

Nonlinear fractional and singular systems: Nonexistence, existence, uniqueness, and Hölder regularity

Abdelhamid Gouasmia^{id}

Laboratoire d'équations aux dérivées partielles non linéaires et histoire des mathématiques, École Normale Supérieure, Algiers, Algeria

Correspondence

Abdelhamid Gouasmia, Laboratoire d'équations aux dérivées partielles non linéaires et histoire des mathématiques, École Normale Supérieure, B.P. 92, Vieux Kourba, 16050 Algiers, Algeria.
Email: gouasmia.abdelhamid@gmail.com

Communicated by: V. Radulescu

In the present paper, we investigate the following singular quasilinear elliptic system:

$$\begin{cases} (-\Delta)^{s_1}_{p_1} u = \frac{1}{u^{\alpha_1} v^{\beta_1}}, & u > 0 \text{ in } \Omega; u = 0, \text{ in } \mathbb{R}^N \setminus \Omega, \\ (-\Delta)^{s_2}_{p_2} v = \frac{1}{v^{\alpha_2} u^{\beta_2}}, & v > 0 \text{ in } \Omega; v = 0, \text{ in } \mathbb{R}^N \setminus \Omega, \end{cases} \quad (S)$$

where $\Omega \subset \mathbb{R}^N$ is an open-bounded domain with smooth boundary, $s_1, s_2 \in (0, 1)$, $p_1, p_2 \in (1, +\infty)$, and $\alpha_1, \alpha_2, \beta_1, \beta_2$ are positive constants. We first discuss the nonexistence of positive classical solutions to system (S). Next, constructing suitable ordered pairs of subsolutions and supersolutions, we apply Schauder's fixed-point theorem in the associated conical shell and get the existence of a positive weak solutions pair to (S), turn to be Hölder continuous. Finally, we apply a well-known Krasnosel'skii's argument to establish the uniqueness of such positive pair of solutions.

KEYWORDS

fractional p -Laplace equation, nonexistence, quasilinear singular systems, regularity results, Schauder's fixed-point theorem, subhomogeneous problems, subsolutions and supersolutions

MSC CLASSIFICATION

35R11; 35B25; 49J35; 35A16

1 | INTRODUCTION AND STATEMENT OF MAIN RESULTS

Let $\Omega \subset \mathbb{R}^N$ be an open-bounded domain with $C^{1,1}$ boundary, $s_1, s_2 \in (0, 1)$, $p_1, p_2 \in (1, +\infty)$, and $\alpha_1, \alpha_2, \beta_1, \beta_2$ are positive constants. In this paper, we are interested in the following nonlocal quasilinear and singular system:

$$\begin{cases} (-\Delta)^{s_1}_{p_1} u = \frac{1}{u^{\alpha_1} v^{\beta_1}}, & u > 0 \text{ in } \Omega; u = 0, \text{ in } \mathbb{R}^N \setminus \Omega, \\ (-\Delta)^{s_2}_{p_2} v = \frac{1}{v^{\alpha_2} u^{\beta_2}}, & v > 0 \text{ in } \Omega; v = 0, \text{ in } \mathbb{R}^N \setminus \Omega. \end{cases} \quad (S)$$