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Résumé succinct

Titre : Propriétés qualitatives des solutions pour les problemes elliptiques et paraboliques
quasi-linéaires : non-localité et singularité

Lauteur : Abdelhamid GOUASMIA

Les directeurs de thése de doctorat :

» Abdelhafid MOKRANE, Laboratoire d’ EDPNL et HM, Ecole Normale Supérieure de Kouba,
Algérie.

¢ Jacques GIACOMONI, LMAP (UMR 5142), IPRA, Université de Pau et des Pays de '’Adour,
France.

Dans cette these, notre objectif principal est d’étudier les propriétés qualitatives d'une
classe de problémes paraboliques et stationnaires, ainsi que d’établir de nouvelles versions
des inégalités de Picone discretes, associées a des opérateurs fractionnaires non linéaires.

Nous avons divisé notre travail en quatre chapitres :

¢ Dans le premier chapitre, nous présentons I'état de I’art complet et les outils mathéma-
tiques, puis incluons les principaux résultats avec un apercu de la preuve.

¢ Dans le deuxieme chapitre, nous étudions I'existence, I'unicité et d’autres propriétés quali-
tatives de la solution faible d’'une équation parabolique doublement non linéaire impliquant
un opérateur de Laplace fractionnaire non linéaire. Premierement, en utilisant la méthode de
semi-discrétisation en temps, nous prouvons |'existence locale, ainsi qu’en utilisant I'inégalité
fractionnaire de Picone, conduit a un nouveau principe de comparaison, d’ou 'unicité des
solutions faibles. Enfin, nous montrons que les solutions globales convergent vers I'unique
solution stationnaire non triviale par la théorie des semi-groupes.

« Dans le troisieme chapitre, nous établissons d’abord versions des inégalités de Picone pour
inclure une grande classe d’opérateurs fractionnaires et non homogenes, puis, nous don-
nerons plusieurs applications a ces inégalités comme la non-existence, I'existence et 'unicité
de solutions faibles pour des problemes non locaux et non homogénes. Nous obtenons égale-
ment des principes de comparaison, un principe de comparaison Sturmian et une inégalité
de type Hardy avec poids pour cette classe d’opérateurs ainsi que des résultats qualitatifs sur
des systemes elliptiques non linéaires a croissance sous-homogene.

¢ Dans le dernier chapitre, nous étudions les systemes singuliers impliquant des opérateurs
non linéaires et non locaux. Nous montrons d’abord la non-existence de solutions classiques
positives. Ensuite, le théoreme du point fixe de Schauder garantissait I'existence d'une paire
de solutions faibles positives dans la coque conique appropriée, puis des résultats de régu-
larité Holder. Enfin, nous prouvons 'unicité en appliquant un argument bien connu de
Krasnoselskii.

Mots-clés : Opérateur p-Laplacian fractionnaire, I'équation d’évolution doublement non
linéaire, Identité de Picone, stabilisation, théorie des semi-groupes non linéaires, solutions
positives, non-existence, unicité, résultats de régularité, principes de comparaison, sys-
temes singuliers quasi-linéaires, sous-solutions et sur-solutions, problemes sous-homogenes,
Théoréme du point fixe de Schauder.
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Abstract

Title : Qualitative properties of solutions for quasi-linear elliptic and parabolic problems :
non-locality and singularity

Author : Abdelhamid GOUASMIA

Supervisors of the doctoral thesis :

e Abdelhafid MOKRANE, Laboratoire ¢’ EDPNL et HM, Ecole Normale Supérieure de Kouba,
Algérie.

¢ Jacques GIACOMONI, LMAP (UMR 5142), IPRA, Université de Pau et des Pays de I'’Adour,
France.

In this thesis, our main purpose is to study the qualitative properties of a class of parabolic
and stationary problems, as well as establish new versions of discrete Picone’s inequalities,
associated to nonlinear fractional operators.

We divided our work into four chapters :

« In the first chapter, we present the comprehensive state of the art and mathematical tools,
then included the main results with a glimpse of the proof.

« In the second chapter, we study the existence, uniqueness, and other qualitative properties
of the weak solution to a doubly nonlinear parabolic equation involving a nonlinear fractional
Laplace operator. First, by using the semi-discretization in time method, we prove the local
existence, as well as using fractional Picone inequality, leads to a new comparison principle,
hence the uniqueness of weak solutions. Finally, we show that global solutions converge to
the unique non-trivial stationary solution by semi-group theory.

« In the third chapter, we firstly established new versions of Picone inequalities to include
a large class of fractional and non-homogeneous operators. Second, we give several appli-
cations to these inequalities as non-existence, existence, and uniqueness of weak solutions
for non-local and non-homogeneous problems. We also obtain comparison principles, a
Sturmian comparison principle, and a Hardy-type inequality with weight for this class of oper-
ators, as well as some qualitative results to nonlinear elliptic systems with sub-homogeneous
growth.

« In the last chapter, we study singular systems involving nonlinear and non-local operators.
We first show the non-existence of positive classical solutions. Next, Schauder’s Fixed Point
Theorem guaranteed the existence of a positive weak solutions pair in the suitable conical
shell, and then Holder regularity results. Finally, we prove the uniqueness by applying a
well-known Krasnoselskii’s argument.

key-words : Fractional p-Laplacian operator, doubly nonlinear evolution equation, Picone
inequalities, stabilization, nonlinear semi-group theory, positive solutions, non-existence,
uniqueness, regularity results, comparison principles, quasilinear singular systems, sub and
super-solutions, sub-homogeneous problems, Schauder’s fixed point Theorem.
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Notations and function spaces

Notations

N=1 Dimension of the space domain.

Q An open bounded domain of RN with smooth boundary.
0Q The boundary of Q.
T Maximal time of the study.

[0,T] Time interval of the study.

Qr The product space (0, T) x Q.

I't The product space (0, T) x RN\Q.

u* The positive part of the function u i.e.u” := max{u,0}.
u- The negative part of the function u i.e.u™ := max{-u,0}.
supp(u) Support of a function u.

d() The distance function up to the boundary 0Q i.e. d(x) := dist(x,0)
— Strong convergence.

— Weak convergence.

X Weak star convergence.

p' Conjugate exponent of p, ie,l/p+1/p =1.

a.e. Almost everywhere.

Function spaces

LP(Q)::{u:Q—>RN: u is measurable and f Iulpdx<oo}, 1< p<oo.
Q

L*®Q) :={u:Q — R: u is measurable and |u(x)| <C a.e. in Q for some constant C}.

C(Q) space of continuously fanctions on Q.

= inf |[x—y]|.
y€0Q y

C(Q) functions in C(Q) where the function x— u(x) admits a continuous extension to Q.

CPQ):={¢p:RN->R:peC®RY) and supp(p) € Q}.
CO%(Q):= {ue C(Q), sup Iu(x);uiy)l <oo}, with 0<a< 1.
x,yeﬁ,x;éy |x—y|
lu(x) — u(y)I”?

PNy -— p (N
W>P([R™) : {ueL(R ), fRNfRN x— y|N+oP

W, P (@) :={ue WPRY): u=0a.e. in RN\ Q}.

lu(x) -
10() (Q) {MEL'U((L)), f f |x y|N+Sp

p
U@ dxdy<oo, forallw @Q}.

dxdy<oo}, with0<s<1land 1<p<oo.

C( [O,T],WS 'P(Q)) the space of continuous functions in [0, T] with vector values in Wé’p (Q).
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CHAPTER 1

INTRODUCTION AND MAIN RESULTS
WITH BRIEF PROOFS

The present thesis addresses a series of results concerning the qualitative properties of (weak
and classical) solutions to a class of parabolic and elliptic problems involving nonlinear and
non-local diffusion operators as the p—fractional Laplacian denoted by (—A); u, and defined
under suitable smoothness conditions of the function u : RN — R as:

() - u)|" ™% (ux) - uy)
N+ps

forallx e IRN;

(—A)i7 u(x) := 2P.V.f

RY |~y

where p > 1,0 < s < 1 and PV. denotes the Cauchy principal value. The thesis also investigates
new versions of discrete Picone’s inequalities for non-homogeneous fractional operators as
fractional p, g—Laplacian operators in order to derive comparison principles and uniqueness
results for problems involving such kind of non standard growth operators. We point out that,
in the current literature, there are several definitions of this kind of operators, for instance (in
the special case p = 2), the fractional Laplacian can be defined as a singular integral operator,
as a fractional power in the sense of Bochner or Balakrishnan, as a pseudo-differential operator
via the Fourier transform, as a generator of a stable Lévy process, as an operator associated to
an appropriate Dirichlet form, as an infinitesimal generator of an appropriate semi-group
of contractions and as the Dirichlet-to-Neumann operator for an appropriate harmonic
extension problem (see e.g. [63, 85, 87, 91, 104] for further explanations and equivalence of
the above definitions). In the more general case 1 < p < co and for Q RN, (N > 1) a bounded
domain with C"'! boundary 3Q, the fractional p—Laplacian operator is known as the gradient
of the Gagliardo functional, given by (see [83]) :

|u(x) — uy)|?
Ips(u) = LN«[I;%N _ N+sp ———dx dy’

x

on
W, P(Q) :={uel’®RY) : J),s(w) <oo, u=0a.e. inRN\Q},

which is a Banach space endowed with the norm J, s (1) % It is worthy to point out that, this
definition is consistent to one of the above definitions of the fractional Laplacian operator
(see [31, 32, 62]). Furthermore, if p # 2 the term (—A); u is a non-local and non-linear one,
where the non-linearity is degenerate when p > 2 and singular when 1 < p < 2, we refer to
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[19, 51, 81, 82, 99, 116] and the references cited therein for describing many properties (as
boundness, monotonicity and continuity) of this kind of nonlinear fractional elliptic operators.

These types of operators arise in several contexts and play a crucial rule in describing many
phenomena, such as in finance, physics, fluid dynamics, image processing, various fields
like continuum mechanics, stochastic processes of Lévy type, stratified materials, anomalous
diffusion, crystal dislocation, soft thin films, semipermeable membranes, flame propagation,
conservation laws, ultra-relativistic limits of quantum mechanics, quasi-geostrophic flows,
geophysical fluid dynamics, phase transitions, population dynamics, optimal control and
game theory, for more details and applications, see [19, 43, 51, 117, 121] and the references
therein. For instance we point out :

» Through the study of internal traveling solitary waves in a stable two-layer perfect fluid of
infinite depth contained above a rigid horizontal bottom, we obtain the following Benjamin-
Ono equation (see [7, 65]) :

A u+u—u>=0 in R.

o In [44] dealing with the two-dimensional quasigeostrophic equation (QGE), which plays an
important role in Geophysical Fluid Dynamics models. A simple model involves the fractional
Laplacian (with 0 < s < 1) and states as :

00+ uV0=—-k(-A)°6;
L 1
u=V W’ e:_(_A)ZWy
where :
* u is the velocity;
* K is the viscosity;
* 1 is the stream function;
* 0 is the potential temperature.

For more details, we refer to [34, 49, 65, 115] for further explanations and references in the
current literature in connection with a large spectrum of applications.

During the past decades, non-local elliptic operators have found great interest and in partic-
ular many research papers generalize the results (the existence, uniqueness, and regularity
questions and other qualitative properties) that hold for the classical Laplacian. This exten-
sion was introduced in the seminal papers [36] and [94] shedding some light on a better and
deeper understanding of the classical results (see [19]).

The main crux of the present thesis is exposed through three separate chapters :

« In the first chapter, we study the local existence, uniqueness, regularity, and global behavior
of solutions to doubly nonlinear parabolic equations involving the fractional p—Laplace
operator. First, by using the semi-discretization in time method applied to an auxiliary evolu-
tion problem, we prove the local existence of weak energy solutions. Next, for global weak
solutions, we prove the stabilization results of the weak solution by using semi-group theory
(in particular related to nonlinear accretive operators). This property is strongly linked to the
Picone identity applied to an auxiliary operator that provides results of independent interest
as weak comparison principle, barrier estimates, and uniqueness of the stationary positive
weak solution.
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« In the second chapter, we establish new versions of Picone inequalities concerning a large
class of non-local and non-homogeneous operators. Next, we give several applications
to these new Picone type identities as existence, non-existence, and uniqueness of weak
solutions for fractional (p, g)—Laplacian problems. Also using these inequalities, we ob-
tain comparison principles for some non-local and non-homogeneous equations involving
(-=A)y +(=A); operator, a Sturmian Comparison principle to fractional p-Laplace equations,
as well asa Hardy type inequality with weight and some qualitative results to nonlinear elliptic
systems with sub-homogeneous growth.

« In the third chapter, we study a class of singular quasi-linear elliptic systems involving the
(s1, s2)-fractional (p;, p2)-Laplace operator. First, we discuss the non-existence of positive
classical solutions. Next, constructing suitable ordered pairs of sub- and super-solutions, we
apply Schauder’s Fixed Point Theorem in the associated conical shell and get the existence of
a positive weak solutions pair to this system, turn to be Holder continuous. Finally, we apply
a well-known Krasnoselskii’s argument to establish the uniqueness of such positive pair of
solutions.

This thesis includes the results of the following research articles :

(i) J. Giacomoni, A. Gouasmia; A. Mokrane; Existence and global behavior of weak solutions
to a doubly nonlinear evolution fractional p—Laplacian equation, Electron. J]. Diff.
Equations., (09) (2021), 1-37.

(ii) J. Giacomoni, A. Gouasmia; A. Mokrane; Discrete Picone inequalities and Applications
to non local and non homogenenous operators, submitted to Rev. R. Acad. Cienc.
Exactas Fis. Nat. Ser. A Mat. RACSAM.

(iii) A. Gouasmia; Nonlinear fractional and singular systems : Non-existence, existence,
uniqueness, and Holder regularity. Math. Methods Appl. Sci., (2022),1-21.

Now, before stating the main results and outline their proofs for each chapter, we recall
some notations and function spaces which will be used. Considering a measurable function
u: RN - R, we adopt :

e Let p € [1; +ool, the norm in the space L”(Q) is denoted by

1/
Iy = [ 1l da]

e Set0 < s<1and p > 1, we recall that the fractional Sobolev space WP (RY) is defined as

lu(x) —u(y)”
P mNy . P mNy .
W (R ).—{uEL([RZ ).f fRN P dxdy<oo},

endowed with the norm

lux) —uI? 1/p
luhyer) = (1l gy + [ [ 0 dxdy)

 The space Wé’p (Q) is the set of functions
WP (Q) = {ueWPRY):u=0a.e. inRVN\Q},

and the associated Banach norm is given by the Gagliardo semi-norm

lu(x) — u(y)I? 1/p
luelhysr g = \AI;N\II;QN PRI dxdy) :

3
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+ Now, we define

WP(Q):={uell(w), [Ulwsr) <oo, forall weQ}

loc

where the localized Gagliardo semi-norm is defined as

1
lu(x) —uy)l” »
[u]ws,p(u,) = (L . WdXdy) .

e Let x € (0,1], we consider the space of Holder continuous functions :

lu(x) — u(y)| <oo}’

CO%Q) ={ueCcQ),
(04
X,y€Q, x£y lx =yl

endowed with the norm

[u(x) —u(y)l

lulconiy = 1ulheog +  sup |x -yl

X, yeﬁ,x;ﬁ ¥y
e Let T > 0, and consider a vector-valued measurable function :
110, T[— Wy" (),

with the notation u(t)(x) := u(t, x). Let C([0, T],Wg'p (Q)) be the space of continuous functions
in [0, T] with vector values in Wg'p (), endowed with the Banach norm

[l 2ell speom = sup () lywsp -
C([0, T, W™ (M) te[0.T] W, (Q)
* We denote by d(-) the distance function up to the boundary 0€2, that means
d(x) :=dist(x,0Q) = inf [x—y|.
y€0Q

e We define for r = 1, the convex sets
M(Q):={u: Q>R :ueL™(Q) and Ic > 0s.t. cld*x)<u (x) < cd*(x0)};
VI={u:Q— (0,00 : u’" e WP ()}

» We define the weighted space

LCE’;(Q)::{u:Q—>IR2:uEL°°(Q)S.t. ELOO(Q)}.

u
ds(-)
* Let ¢y 5, be the positive normalized eigenfunction (|1 s pllioi) = 1) of (-A)3, in Wy” (Q)

associated to the first eigenvalue A 5 ,. We recall that ¢ 5, € C%%(Q) for some a € (0, 5] (see
Theorem 1.1in [83]) and ¢y 5, € J%;s (Q) (see [83, Theorem 4.4] and [50, Theorem 1.5]).

e For 1 < r <oo and a given function m, € IRI(O)] $1,5,r (M) denotes the positive normalized
eigenfunction (|| 1,5, (my) ||LOO(Q) = 1) of (—A)} with weight m, in W, (Q) associated to the
first eigenvalue A g - (m;).

* Now, we definefor1<g<p:

p

P1,s,qll, s
. TwyP @)
5mp'_ 1 )

P p
” mp (bl,s,q ”Lp(Q)

by definition of Ay 5 , (1)), we have that f),*;qp = A1,5,p(mp).

4
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1.1 Overview of Chapter 2

The main goal of this chapter is to study a class of doubly nonlinear parabolic problems
involving the fractional p—Laplace operator, whose prototype is given by :

Z—qq— 1 O¢ (qu—l) + (—A); u=f(x,u)+ h(t,x) ud1 in Qr;
u=0 on I't;
u(o)) = U ln Q.

Here 1< g<p<o0,0<s<1,Qr:=(0,T)xQ, where Q RN, with N > sp, is an open bounded
domain with C"! boundary. I't := (0, T) x RN\Q denotes the complement of the cylinder Q.

Concerning the conditions on the functions f and &, we assume the following hypothesis:

(H1) f:QxR* — R* is a continuous function, such that f(x,0) = 0 and f is positive on

Q x RT\{0}.
fx,2) . . oo
(H2) Fora.e.xe(Q, z— —— is non-increasing in R™\{0}.
z
H3) Ifg=p, z— f(;cf) is decreasing in R"\{0} for a.e. x € Q and limr—»+oo% =0
z r
uniformly in x € Q.
(x, (x))
(H4) The map x — fq% belongs to L2(Q).
(bl, s, p(x)
(H5) There exists h € L>°(Q)\{0}, & = 0 such that h(z,x) = h(x) a.e. in Q.
(H6)
p
Il <Aispi= inf "o
Loo(Q ) 1, s = ] e —
T pewsP@vor 10170
and

(H7) If g = p, h, f fulfills the condition

f(x,2)

;1615 (ﬁ(x)+ lim : )>)\1,s,p.

z—0* zP
Example 1.1. An example of function f satisfying (H1)-(H4) and (H7) given by :

f(x,2):= g(x)cp‘isyp(x)zﬁ forany (x,z) € Q xR¥,

1
wherepe [0,g—1[ anda+p>qg-1- 7 with g € L>°(Q) is a non-negative function.

Concerning the problem (DNE), we discuss the existence, uniqueness, regularity and global
behavior of weak solutions, as well as stabilization property. First, for u € L*°(Qr), we have

(see [29, Proposition 9.5]) :
q
2q-1

0, (w21 Y = u 19, (u?),
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we obtain then an equivalent problem (see (E) blow) to our problem (DNE). In this case, after
introducing the notion of the weak solutions for the problem (E) (see Definition 1.1.5), we use
the semi-discretization in time method to prove the existence of weak energy solutions to this
auxiliary problem. The uniqueness question was answered via the fractional version of the
Picone identity. Next, we investigate the asymptotic behavior of global solutions, in particular
the convergence to a unique non-trivial stationary solution as t — oo by semi-group theory.

1.1.1 Literature

The study of non-local elliptic operators arouse more and more interest in mathematical
modeling, see e.g. [27, 31, 33, 36, 83, 103, 123] and the references cited therein. Concerning the
investigation on parabolic equations involving non-local operators, the study of analomous
diffusion and transport aspects has found great interest in recent times for its occurrence in a
number of phenomena. In this regard, we can quote several areas of physics, finance, biology,
ecology, geophysics, and many others which can be characterized by having non-Brownian
scaling ([75]) and without giving an exhaustive list we refer to [1, 16, 34, 35, 48, 49, 64, 92,
98,101, 102, 109, 115, 116, 117, 121]. In particular [34] investigates some non-local diffusion
models coming from game theory. In connection to our doubly nonlinear problem (DNE),
[115] exhibits different methods (entropy method and contraction semi-group theory) for
dealing with two evolution models of flows in porous media involving fractional operators :

« The first model is based on Darcy’s law and is given by

d,u=V-(uVP)  in(0,00) xRN,
P=(-A)"u in (0,00) x RY,

u(0, x) = up(x) in IRN,

where u is the particle density of the fluid, P is the pressure and (—A)~* is the inverse of the
fractional Laplace operator (i.e. p =2). The initial data u, is a non-negative, bounded and
integrable function in RN (see also [37] for further explanations).

* The second model in analogy to classical models of transport through porous media (see
[52]) is described in the non-local case by

o,u+(=A)°*w™=0. (1.1

For s — 17 and m =1, the limiting model (1.1) is the well known heat equation. Furthermore,
if m> 1, (1.1) is known as the porous media equation (PME for short) whereas in case m < 1
it is referred as the fast diffusion equation (FDE for short). Existence and global behaviour
of solutions are described in [115] for the two types of models. We refer again to [117] for
further explanations about the physical background and the adequacy of non-local diffusion
operators (see also [49] for related issues). The paper [48] deals with the problem (1.1) in the
special case s = %, and p = 2 and investigates the local existence, uniqueness and regularity
of the weak solution. We highlight here that few results are available about the parabolic
equation involving fractional p-Laplacian operator in contrast with the stationary elliptic
equation. In [75], considering the more general case 1 < p < oo, authors obtain the existence,
uniqueness, and regularity of the weak solution to the fractional reaction diffusion equation :

o, u+ (—A)f, u+gx,u) = f(x,u) in Qr;
u=20 in I'r; (1.2)

u(0,.) = up in RY,

6
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here f and g, satisfying suitable growth and homogeneity conditions. In addition, the authors
prove that global solutions converge to the unique positive stationary solution as ¢t — oo.
Previously, [1] dealt with the case where the non-linearity f depends only on x and ¢ and
established the existence and some properties of non-negative entropy solutions. In the
paper [64], the authors have studied (1.2), under similar conditions about f and g(x, u) :=
—lu(t, x)|9 2 u(t, x), with g = 2. They prove the existence of locally-defined strong solutions to
the problem with any initial data uy € L' (Q2) and r = 2. They also investigate the occurrence
of finite time blow up behavior. In [92, 116] the results about existence, uniqueness and T-
accretivity in L! of strong solutions to the fractional p-Laplacian heat equation with Dirichlet
or Neumann boundary conditions, are obtained through the theory of nonlinear accretive
operators. The asymptotic decay of solutions and the study of asymptotic models as p — 1*
are also investigated. In [72], authors extend the results obtained in [13] in case of singular
nonlinearities and fractional diffusion.

Recently, in [22] using the Galerkin approximations with the potential well theory, the author
have studied the local existence of the following Dirichlet problem for a parabolic equation
involving fractional p—Laplacian (with p = 2) together with logarithmic non-linearity :
dpu+ (=N, u+lulP?u=uP?ulog(ul)  inQ, >0
u=0 in RN\ Q, £>0;
u(oy-) = uo in Q.
Also, they proved decay estimates of global solutions. More recently, in [108], the authors
studied the existence and uniqueness of mild and strong solutions of non-local and nonlinear
diffusion problems of p—Laplacian type with nonlinear boundary conditions posed in metric

random walk spaces. We refer the reader to [89, 102, 111, 120, 121] and their references within
for further investigations of above issues.

1.1.2 Main tools

First, by using the fractional version of the Picone identity (see [25, Proposition 4.2]) combined
with Young’s inequality, we obtain the following weak comparison principle :

Lemma 1.1.1. Let1 < p <oo. Then, for1 < r < p and for any u, v two measurable and positive
functionsinQ :

lu(x) — uIP~?(u(x) — uy))

u" -v" u®' - v(y)r]

u(x)r—l u(y)r—l (1 3)
v(x)" —u(x)" _ vy —uy)’ .

v(x)r—l v(y)r—l

+v(x) —vIP (0 (x) - v(y)

fora.e. x,y € Q. Moreover, ifu,v € Wg’p(Q) and if the equality occurs in (1.3) for a.e. x,y € Q,
then we have the following two statements :

u
(1) —=const>0a.e. in Q.
v

) Ifalsop #r, thenu=v a.e. inQ.

We highlight here that the proof of the second statement of the above Lemma is based on the
strict ray-convexity of operators # : V. — R, defined by

1 1/r _ 1/rp
W(w)::—f f (W)™ = w71 gy,
p JrN JrN |x — y|N*+sP

7
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where the notion of strict ray-convexity is as follows (see Proposition 2.1.7, Page 37, Chapter1)

Definition 1.1.2. Let X be a real vector space. Let C be a non empty convex cone in X. A
functional # : C — R will be called ray-strictly convex (strictly convex, respectively) if it satisfies

W({(-tvy+tv) <A -W (v)+tW (v2),

v
for all v}, v, € C and for all £ € (0, 1), where the inequality is always strict unless d-¢>o
V2
(always strict unless v = v, respectively).

Next, in order to use semi-discretization in time method to the problem (DNE), we need to
investigate the existence, uniqueness, and regularity of the weak solution to the following
elliptic problem associated to (DNE) :

U2q_1+)\(—A);U= ho() v L+ Af(x,v) in Q
v>0 in Q (1.4)
v=0 in RV\Q,
where A is a positive parameter and hg € (L*°(Q))* satisfying the hypothesis :
(H8) ho(x) = Ah(x) for a.e. in Q, where h is defined in (H5).
The notion of weak solution of (1.4) is defined as follows :

Definition 1.1.3. A weak solution of the problem (1.4) is any non-negative and nontrivial
function v € Wg’p (Q) NL29(Q) such that for any @ € Wg’p Q) NL29(Q),

—vW)IP2(w(x) - -
f”zq_l"’d“)\f f [v(x) —vIP= () — v () (@(x) — 9(y)) dxdy
0 RN JrN |x— y|N*sp

:f hov"_lq)dx+)\f f(x, v)pdx.
Q Q

The following theorem gives the existence and the uniqueness of the weak solution of (1.4) :

Theorem 1.1.4. Assume that f satisfies (H1), (H2), (H6). In addition suppose that hy € L*°(Q)
and satisfies (H8). Then, forany1 < q < p and A > 0, there exists a positive weak solution v €
C(Q)n A (Q) to (1.4). Moreover, let vy, V2 be two weak solutions to (1.4) with hy, hy € L®(Q)
satisfy (H8), respectively, we have (with the notation t* = max{0, t}),

Iy = v e < I (hy — h2)* 2. (1.5)

The proof of this Theorem is done through three main steps. First, by using variational
methods, we prove the existence of vy, a global minimizer of the energy functional ¢ :
W, P (@) N1 (Q) — R

1 2g lv(x)—vMIP 1 +\q .
j(v)—2 f dx+— fRNf[RN PRI dXdy_EthO(v ) dx—)\fQF(x,v)dx,

with F(x, z) denoting the primitive of f(x, z) w.r.t variable z. After that, we construct a function
vin Wg’p (Q)NL29(Q) such that FZ(v)<0=_¢#(0), then, we deduce that the global minimizer v
is non trivial and non-negative. Next, we adapt arguments used by [61, Theorem 3.2] to prove

8
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the boundedness of the weak solutions. Still in this case, by [83, Theorem 1.1] we also prove
the C>%(Q)-regularity of vy, which turns to be positive via the strong maximum principle.
Concerning .}, (Q) boundary behavior of the weak solution we need the assistance of a
new comparison principle (Theorem 2.5.4), Hopf’s lemma (see [50, Theorem 1.5]) and [83,
Theorem 4.4]. Finally, in order to apply the discrete Picone’s inequality (see [25, Proposition
4.1]) for proving the contraction properties and uniqueness of weak solution, we need the
boundary behavior of the weak solutions which implies that

q q\+ q q\—
(V) —v,) (v, —vy)

g-1 ’ q-1
U Uy

belong to the energy space Wg’p (Q)NL29(Q), and can be chosen as test functions in Definition
1.1.3. By the contraction property (1.5) together with approximation arguments, we can
extend the results in the theorem above to case potential h € L?(Q) (see Theorem 2.2.5, page
46, Chapter 2).

Next, we investigate the stabilization result for the weak solutions to (E). For this purpose, we
apply semi-group theory to suitable associated operator. For this we introduce the following
nonlinear operator : 7, : L*(Q) > D(93) — L*(Q) defined by

dy— f(x,ut’%|,

- 1450y — yMa () 1P=2 (1} 9 (x) — ul'4
Tqu= ul_qq (QP'V.f lu"(x) —u" 7yl N(u (x) —ut9(y)
RN |x_y| +Sp

with domain as
DTy ={w:Q—R", w'1ewW;P(Q), wel*Q),T,wel*Q)}.

Then, we investigate the following perturbed problem (with &y € L>°(Q)) which is associated
to the parabolic equation (1.11) below :

u+Aggu= hy in Q;
u>0 in Q; (1.6)

u=0 inRN\ Q.

1
Still in this case, we remark that if vy is weak solution of (DNE), then 1 = v/ is weak solution
of (1.6), and by taking into account Theorem 1.1.4, we discuss the existence, uniqueness of
the weak solutions, and accretivity results (see Corollary 2.2.4, page 45, Chapter 2). Again by
approximation arguments, we can extend this results to potential ki € L2(Q) (for more details
see Corollary 2.2.6, page 47, Chapter 2)

1.1.3 Main results with a glance of proofs
Now, we investigate the following associated parabolic problem of (DNE) :

v7710, () + (M) v =h(t,)vT " + f(x,v)  inQr;

v>0 inQr;
Qr )
v=0 onI'r;
U(O)') =11 inQ.

We recall here, that any weak solution of associated parabolic problem (E) is also a weak
solution of the main problem (DNE). Before starting the main results, we define the notion of
weak solution to problem (E) as follows :
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Definition 1.1.5. Let T > 0. A weak solution to problem (E) is any non-negative function
v € L°(0, T; W, " (©)) nL®(Qr) such that v > 0 in Q, 9,(v%) € L*(Qr) and satisfying for any
te(0,T]:

t
ffar(vq)vq_l¢dxdz
0 Ja

+ftf f lv(z,x) - v(z, PIP2(v(z,x) — v(z, )@z, X) — @z, 7))
0 JrRNJRN |x — y|N*sp

dxdydz

t
=f f(h(z,x)vq_1+f(x, v)pdxdz,
0 Ja

for any ¢ € L(Qr) N L' (0, T; W, 7 (Q)), with v(0,.) = vg a.e. in Q.
We start by the existence, regularity and boundary behavior of the weak solution for (E).

Theorem 1.1.6. LetT > 0 and q € (1, pl. Assume that | satisfies (H1)-(H4), (H6) and (H7).
Assume in addition that h € L*°(Qr) satisfies (H4), (H5) and that vy € 4 L@Qn Wg'p (Q). Then,
there exists a weak solution v to the problem (E) (in sense of Definition 1.1.5). Furthermore, v
belongs to C([0, T]; L7 (Q)) for any 1 < r < oo and there exists C > 0 such that, for any t € [0,T] :

Cld*x)<v(t,x) <Cd*(x) a.e inQ. (1.7)

A glimpse of the proof:

We will prove this Theorem by using the time semi-discretization method. For this purpose,
we consider the following approximation of the potential £ :

Letus n* e N* and T > 0. We set A; = % and for n € {1,...,n*}, we define t,, = nA,. For
nefl,...,n*}, we define for (¢, x) € [£,—1, ;) X Q,

1 [n
ha,(t,x) = h" (x) := ~ h(z,x)dz.

tJip—1

It is easy to prove that hy, — h inL?(Qr). Then, by using Theorem 1.1.4, the following
implicit Euler scheme :

VZ__UZ—l q-1 s _1n,q-1 . .
A, v, + (—A)pvn =h"v, +f(x, v, in Q;
X ) (1.8)
v, >0 in Q;
v, =0 in RN\ Q,

has a unique solution v, € C(Q) N1, (Q) for any n=1,2,3,...,n*. Now, we construct with
the help of the weak comparison principle (see Theorem 2.5.4) a sub-solution w and a super-
solution w in C(Q) n .}, (Q) for the following equivalent form of (1.8) :

2q-1

vl A=) v = (AR + vl ) v+ A f(x, v,

such that v, € [w,w] forall n € {0,1,2,..., n*}, that gives the boundary behavior of the solution
to (E). Indeed, the following sequences :

UAt(t) = Vn,
_ (t—1tp-1)
Up, (1) = A—”(u,‘i - UZ_l) + vZ_l
t

10
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verify
Gl
-1UVA -1
vy 7§i+hAgmM:hﬁﬁt+fqug (1.9)
and

~1/

cld¥(x) < U, VA,q < cd®(x).

Next, by using Theorem 2.5.4, discrete Picone’s inequality (see [25, Proposition 4.2]), discrete
hidden convexity [25, Proposition 4.1], and by Young’s inequality, we obtain the following
uniform estimates :

(aﬁAt

) is bounded in L?(Qr) uniformlyin A

(ﬁi/tq), (vas) is bounded in L®(0, T; W,

Qoan 0y 2 v in Lo, T;Wo P (Q);
var— v9 and vao;— v inC([0,T];L7(Q2)), forallr=1;
aﬁAt al)q

—— inl? .
3 T Q)

P (1) uniformly in At

Finally, gathering all the above estimates, we can pass to the limit in (1.9) as A; — 0" in order
to get the existence of a weak solution to (E) in the sense of Definition 1.1.5.

Concerning the regularity of the weak solution obtained by Theorem 1.1.6, we first use the
result proved in [24, Theorem I1.5.16], interpolations inequalities, and by choosing a suitable
set of test functions in discrete Picone’s inequality (see [25, Proposition 4.1]) we get the
right-continuity of the weak solution. Next, by multiply (E) by

B vq(.+n,.)_ vq(.,.)
= nvq—l

TV eL*(Qr) nL (0, T; W, 7 (),

using again discrete Picone identity, Young’s inequality, and dominated convergence Theorem,
we show the left-continuity of the weak solution, that gives rise to the following Theorem :

Theorem 1.1.7. Under the assumptions of Theorem 1.1.6, the weak solution v, of (E) obtained
by Theorem 1.1.6, belongs to C(0, T; Wy” (Q)) and for any t € [0, T satisfies

troovl, q p
[ [ Grrasazs Lieon,,,

4 ovd tr flx,v)ov? q
= h(—)dxd —dxdz+=llvl? ., .
fo fQ ( 37 )dx z+[0 T ot xdz+ p“ UO”WO””(Q)

The uniqueness results is given in the following Theorem under less restrictive assumptions
about the initial data vy and potential (or coefficients) & :

Theorem 1.1.8. Let v, w be two solutions of the problem (E) in sense of Definition 1.1.5, with

respect to the initial data vy, wy € L29(Q), vy, wo = 0 and h, hel? (QT). Then, forany t € [0,T],

t ~
w90 - w! D lz < lvd - w iz + fo Ih(2) — h(2)ll 20 dz. (1.10)

A glimpse of the proof:
The proof is based on choosing the following test functions :

_(v+€)‘7—(w+e)‘7 a (w+e)9—-(v+e)

(0N ’
(v+e)d-1 (w+e€)d-1

11
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in Definition 1.1.5, for € € (0; 1), together with Lemma 1.1.1, dominated convergence Theorem,
Fatou’s Lemma, Holder inequality and Gronwall Lemma.

Now, to establish the convergence to a stationary solution of (E) as ¢ — oo, we prove the
following Theorem concerning the associated parabolic problem below :

Theorem 1.1.9. Under the assumptions of Theorem 1.1.6, for any the initial data uy such that
1/q

U, '€ J%;s Q)N Wg'p (Q), there exists a unique weak solution u € L>(Qr) of the problem :
ou+Jyu=nh in Qr;
u>0 inQr;
A (1.11)
u=0 onl'T;

u(0,-) = uy inQ.
In particular,
@) u''eL>(0,T;W,"” (), 0,ueL*(Qr);
(ii) there exists ¢ > 0 such that for any t € [0,T];

clds(x) < uV9t,x) <cd’(x) ae inQ;

(iii) foranyt € [0,T], u satisfies

t
ffatu\lfdxdz+
0 Jao

te Mz x) - ut 9z, P2 (Ul (2, x) — ut 9z, y))((ul_Tq‘I’) (20— (W7 W)z, )
fo fRZN |x — y|N*sp

dxdydz

t t 1—
:f f h(z,x)‘I’dxdz+f ff(x, u”q)uTq‘I’dxdz,
0 Ja 0 Ja

foranyV € LZ(QT) such that
1119 e L0, T; Wy P () nL®(0, T; L ().
Moreover, for any 1 < r < oo, u belongs to C([0,T];L" (Q)).

Using the T-accretive property of 7 in L2(Q) (see corollaries 2.2.4 and 2.2.6, Page 45 and
47, Chapter 2) and under additional assumptions on regularity of initial data, we obtain the
following stabilization result for the weak solutions to the problem (E).

Theorem 1.1.10. Assume that the hypothesis in Theorem 1.1.6 hold for any T > 0. Let v be
the weak solution of the problem (E) with the initial data vy € 4}, (Q) mWS’p (Q). Assume in
addition that there exists ho, € L°°(Q) such that

L) 1h(t,) — hooll 12y =O(1) ast— oo (1.12)
with | continuous and positive on ]sy; +ool and f:m% < +o0, for some s > sy = 0. Then, for
anyr =1,

lv9(t,-) - Ugo”Lr(Q) -0 ast— oo,

where v, is the unique solution of associated stationary problem with the potential he.

12
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A glimpse of the proof:

The proof of this Theorem appeals to the theory of accretive operators. First by global
minimization arguments, we prove the existence and uniqueness v € C(Q) Nn.#},(Q) to the
following problem :

(—A)‘;V =bxvTl+ fx,v) inQ;
v>0 in Q; (St
v=0 inRY\Q,

where b € L*°(Q) and non-negative. We also prove that there exists one and only one weak

solution 1 in V/ n /%;s/q (Q) to the problem :

Tqu=">b in Q;

u>0 in Q; (1.13)
u=0 inRV\Q.

We are then ready to prove the stabilization property. For this we consider two cases :

Case 1 : We introduce the family of operators {S(¢) : ¢ = 0} defined on Vi’ N J%;iq(Q) as

w(t) = S(t)wy where w is the unique solution obtained in Theorem 1.1.9 and the initial data
wy, where h = ho,. From the uniqueness together with above properties, {S(?) : £ = 0} defined
a semi-group on VY n /%;S/q(ﬂ). Note that # = (S(£)wg) "7 is the solution of (E) with & = h

and the initial data wé/q.

Let us denote v the solution of (E) with & = hy, and the initial data vy (Theorem 1.1.6). Hence
we obtain u(t) = v(£)9 = S(t) up with uy = vg . Then, we construct a sub-solution w and a
super-solution w to (St) with b = h, such that w < vy < w. Now, we define u(t) = S(H)w?
and (1) = S(H)w the solutions to (1.11). Therefore, u:= (v)7 and u := (v)7 are obtained by
the iterative scheme (1.8) with vy = w and vy = w. Hence, by comparison principle the maps
t— u(t) and t — u(t) are respectively non-decreasing and non-increasing. In the other hand,
(1.10) ensures that for any £ = 0,

w=<u(t)<u(t) <u(t) <w. (1.14)

Weset u_ = tlim u(t) and Uy = tlim u(t). Then from continuity property of semi-group in
—00 —00
L2(€)), we obtain

u = lim S(t+2)w?=S(1) lim (S(2) (wN) =S(Ou,;

Z—00

Tioo = lim S(¢+ W7 =S(1) lim (S(2) @) = $(1) o

Z—00

This implies that u__ and U, are the stationary solutions to (1.13) with b = h. By uniqueness,
we have Ugtar := U = Uoo Where Uy is the stationary solution to (1.11). Therefore from (1.14)
and by dominated convergence Theorem, we obtain

”u(t)_ustat”LZ(Q) —0 as t—oo.
Thus using (1.14) and the interpolation inequality with 2 < r < oo,

1-
(1P [ e [
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we obtain, the above convergence for any r > 1.

Case 2: h # he. From (1.12), for any € > 0 there exists ) > 0 large enough such that
frzooflt)dt <eand for any £ = 1,

LD h(t,) = hoollp 2@y <M for some M > 0.

Let T > 0 and v be the solution of the problem (E) obtained by Theorem 1.1.6 with / and the
initial data vy = u(l)/q and set u = v9. Since v satisfies (1.7), we can define @(t) = S(t + to) up =
S(t)u(ty). Then, by (1.10) and uniqueness argument, we have for any ¢ >0 :

t
lu(t+ to,-) — 6(t, )2 5[ Ih(z+ to,") — heolly2(yd 2
0

+00 1
st ——dz <Me.
N l(Z)

By Case 1, we have i(f) — Ugac in L2(Q) as t — oco. Therefore, we obtain

llu(e) - ustat”LZ(Q) —0 ast—oo.

1.2 Overview of Chapter 3

The first main part of this chapter is to derive generalized versions of Picone’s identity in
non-local elliptic operators as the fractional p—Laplace operator. In the second, we use these
identities to obtain new applications, in particular, we provide new results about existence,
non-existence, and uniqueness of weak positive solutions to problems involving fractional and
non-homogeneous operators, we also obtain comparison principles, a Sturmian comparison
principle, a Hardy-type inequality with weight, and some qualitative results for nonlinear and
non-local elliptic systems with sub-homogeneous growth.

1.2.1 Literature

In 1910, Mauro Picone presented in the original paper [100] the following equality :
v? 2 AV
Vuv| = |- 19P == |Vo-vu =] (1.15)
u u

where u, v = 0 are differentiable functions, with u > 0. This version was used to prove a com-
parison principle for ordinary differential equations of Sturm-Liouville type. In [3], authors
extend the result to the nonlinear p—Laplace operator, defined as A,u = div(|VulP~2Vu),
withp>1:

vP
p-

IVulp_ZVuV(
u

1)SIVUIP. (1.16)
More recently, non-homogeneous Picone inequalities of (1.16), were established. The first
contribution is obtained in [25, Proposition 2.9] and states as follows :
2 v
IVulP~=vVuv (—) <|Vv|9\VulP~ 1,
ud-1

and a second form of identity is given in [84, Lemma 1] as follows :

pb—a+l
), (1.17)

vP
IVul92Vuv (—) < |Vv|‘7_2VUV(
up-1 ubP-49

14
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where u, v are non-negative differentiable functions, with # >0 and 1 < g < p. We also quote
[20] where the inequality (1.17) is established when p < g, providing several applications for
problems involving (p, g)—Laplace operators.

In [113] proved a more involved nonlinear Picone inequality analogue of (1.15), in connection
to the Laplace operator, as follows :

Vuv(v—z) <0(|Vv|2
fw) ™~ '

for differentiable functions u and v, with u # 0 and where f(y) # 0 when y # 0 together with
f'y) = é for some a > 0. In [14], the author provides an extension of Tyagi’s result to the

p—Laplace operator (with a = 1) : for u and v differentiable functions such that u > 0 and

v =0, one has
p

v
IVulP~2vVuv (—) <|Vu|?,
fw
-2
where f(y) >0,0<yeRand f'(y) = (p— l)f(y)% with p > 1. Furthermore, the authors in
[57] obtained analogue results to the pseudo p—Laplace operator, defined as :

P=2 du
axi

ou

N9
(a_xi

Z_

i=10%;

), withp > 1.

Picone’s inequalities are often used to prove several qualitative properties of differential equa-
tions. For instance, these inequalities arise to obtain the uniqueness and non-existence of
positive solutions of partial differential equations and systems of both linear and nonlinear
nature, as well as Hardy type inequalities, bounds on eigenvalues, Morse index estimates, Li-
ouville’s Theorem and Sturmian comparison principle, see e.g. [21, 25, 112] and the references
therein. In the context of problems with non standard growth, we refer to [2, 10] and [124]
for suitable forms of Picone identity. In case of high order elliptic operators, we further refer
the readers to [54] and [56]. More recently, the paper [114] investigates Picone’s identities for
p—Laplace operator and bi-harmonic operators on hyperbolic space. They use this result
to prove the existence of the principal eigenvalue, and obtain a Hardy-type inequality on
hyperbolic space. From Picone inequalities, one may derive useful Diaz-Saa type inequalities
from which comparison principles, accretivity of nonlinear operators can be established. In
this direction, we refer the seminal works [30] and [53] (concerning case p = 2 and general
case 1 < p <oorespectively).

The study of non-local elliptic operators have found great interest in the recent time, in
connection with problems showing analomous diffusion and transport features.

This naturally rises to the following question :
Question : Can we extend in the non-local setting similar type Picone inequalities?

In this regard, [6] proved the following Picone inequality :

v)P  v(y)?P
u(x)P~t  u(y)p-1

|u(x) — u)|P ™% w(x) - uy) <|v@ - vy)|”. (1.18)

In [25, Proposition 4.2], the authors extended this result, as follows:

v(x)9 vy

_ T RN
RO <|v(x)— v |ux) - uy)|

|l u(x) — u)|” ™ (wx) - uy)) [

15
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where 1 < p<o0,1< ¢ < pand u, v two Lebesgue measurable functions, where v = 0, u > 0.
Among the others, these inequalities were applied to obtain a weak comparison principle, bar-
rier estimates and uniqueness of the stationary positive weak solution of parabolic problems
(see [68] for instance).

In a further extend, non-homogeneous (p, q)-Laplace problems have many physical interpre-
tations. We can refer for example the study of general reaction-diffusion equations, biophysics,
plasma physics and chemical reactions, with double phase features (see [70, 90] and the refer-
ences cited therein for further details). Consequently, this kind of non-homogeneous opera-
tors have attracted more and more attention and we can quote the contributions [20, 110] and
the references therein in connection with Picone identities. In particular, in [20], authors use
Picone inequalities (1.16) and (1.17) to obtain the non-existence of positive weak solutions to
the following problem :

—Apu—Aqu= f(x,u) in Q;
u=>0 on 09,

where 1 < g < p with Q <R is an open smooth bounded domain and f : Q x R — R satisfies
suitable growth conditions. In case where

Fow) = (P ulP?u+Nul7 %y,

with A; (p) denoting the first eigenvalue of the Dirichlet p—Laplace in Q, they also discuss the
existence and non-existence of positive weak solutions, for some range of A > 0.

The non-local and non-homogeneous counterpart problems involving (—A);} + (—A)ff, for

s1,82 € (0,1) and 1 < g, p < oo have been recently investigated (see, for instance [4, 5] and
the references cited therein, when the domain is RY). Concerning more specifically the case
of bounded domains, we refer to [78] and [97]. In [78], authors establish L*° estimates and
the interior Holder regularity of the weak solutions to following nonlinear doubly non-local
equation :

(=A)p u+Pp(=A);u=Nax) w2 u+b) |ul’%u  inQ;
u=0 on RN\ Q,

where 1 <8<2<g=<p<r=pg,0<s<s <1, N> ps and A,f are non-negative pa-
rameters, a € L75(Q) and b € L®(Q) are sign changing functions. Following the authors
[26] approach and using barrier estimates, [70] established interior and boundary regularity
results in the superquadratique case (i.e. g = 2) complementing those in [78]. They also
proved a Hopf type maximum principle and strong comparison principle. Recently, [69]
complemented the global regularity results in the subquadratic case (i.e. g < 2).

1.2.2 Main results with a glance of proofs

Here we describe our results with the main ingredients of the proof. Our first aim was to
extend the Picone inequality (1.17) to the discrete case, as specified below :

Theorem 1.2.1. Letl < p<ooandl< q< p. Let u,v be two Lebesgue-measurable functions
inQ, withv=0andu>0, then

v(x)P v(y)P
u()P=t  u(y)p1

|uCx) — u)| 7% (wix) - uy)

PP (it (1.19)

u(x)P-4a u(y)l’—q

< v - v W - v() [
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Chapter 1. Introduction and main results with brief proofs

Moreover, the equality in (1.19) holds in Q if and only if u = kv, for some constant k > 0.

A glimpse of the proof:

In order to prove the above result, we need to prove the following technical inequality :
Q-7 AP - <|A- 1|72 (A- AP T -, (1.20)

forall0<t<1and Ae R", such that 1 < p <ooand 1< g < p. Furthermore, (1.20) is always
strict unless A =1 or ¢ = 0 (for more details see Lemma 3.2.1, Page 72, Chapter 3).

On the other hand, we can suppose that u(x) = u(y), and rewriting (1.19) as

u(x)q(v(y))" (v(x)u(y)) _u(y) q‘z((v(x)u(y)) ~ u(y)) ((v(x)u(y))”_‘“l _M)
u(y) v(ux)) ux) v(ux)) ulx)) \v(y)ulx) u(x)
p g-1 p
v (22 |- 2] s
u(y) u(x) v(y)u(x) u(x)
choosing A = v(x) uly) t= Uy , and by inequality (1.20), we obtain the desired conclusion.

v(yux)  ux)
Since t # 0, we remark that the equality in (1.19) holds ifand only A=1, i.e.

v(x) v

that means u = kv a.e. in Q for some k > 0.

The next main result is given in the following Theorem :

Theorem 1.2.2. Let1 < p<ooandl < q < p. Let u, v be two Lebesgue-measurable functions
inQ, with v=0 and u > 0 with u be a non-constant function. Also assume that f satisfy the
following hypothesis :

) f:R* —R* isa continuous function and positive on R\ {0}.
€) f(z)=z9"1, forallzeR".

f(2)

(t2) The function s — g is non-decreasing in R*\ {0}.
z

Then
v v
fux)  fu)

Moreover, the equality in (1.21) holds if and only if v? = k uf (u), for some constant k > 0.

|u(x) - u)|P* (w0 - u(y) < @) - v || u@ -ump|P71. 1.21)

A glimpse of the proof:

The proof of this Theorem follows from (fy)- (f,) and convexity of the function T — 19 on R*.
Precisely, setting ¢ = % < 1, we rewrite (1.21) as follows :
u(x

v(x)9u(x)9! B |U(x) - U(y)|q N t(v(y)qu(y)q_l )
fu(x)) 1-n4 t9 f(u(y))

Next, from Young’s inequality and Theorem 1.2.2, we get the following corollary, which
has useful applications.

17
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Corollary 1.2.3. Let0<s<1,1<p<ocoandl < g < p. Assume that f satisfies (f)-(2). Then
for any u, v two non-constant measurable and positive functions in Q, the following inequality:

— q — q
(u(x)_u(y))p—z(u(x)_u(y))(u(x)f(u(x)) v u() fuly) v(y))

fu(x) fuy) (1.22)
p-2 v(x) f(wx)-ux) vy fwy)- u(y)") - '
- -~ - >0
+Hpx—vm) (v - v) ( fw(x) flwy)

holds for a.e. x,y € Q. Furthermore, if the equality occurs in (1.22), then there exist positive

va.e. in.

constants ki, ko such that v = kyuf(u), u? =lkvf(v) and {/kov<u< T
1

Applications :
In this chapter, we give some applications of the above discrete Picone’s identities :

Let us consider the following nonlinear problem involving fractional (p, g) —Laplace operator:
(—A)pu+(-NFu=gxw, u>0 inQ; u=0, nRV\Q; (P1)

where0<s;<sj<landl<g<p<oo.

« Firstly, we assume the following hypothesis on the function g :

(H1) g: QxRt*—{0} >R"isa non-negative continuous function, such that g(x,0) =0 and g
is positive on Q x R*\{0}.

g(x,2)
zd-1

(H2) Fora.e.xe(Q, z— is non increasing in R*\{0}.

g(x,2) _

(H3) Uniformlyin x € Q, lim,_ o+ T forallxe Q.
z

-1
Example 1.2. A prototype example of the function g satisfying (H1)-(H3) is g(x,z) = h(x) 2" -1
with r < q with h € C(Q) a positive function.

« We now recall the embedding of W,"”(Q) in W,*?(Q) for suitable powers and orders, as
stated in the following Lemma (see [78, Lemma 2.1] for the proof) :

Lemma 1.2.4. let1 < g < p <oo and 0 < s, < 51 < 1. Then, there exists a constant C =
C(QI,N, p, g, s1, s2) > 0 such that

I ””wgz'q(m <C| M”W;Lp(g),

forallue ng’p(Q).

Remark 1.2.5. The embedding in Lemma 1.2.4 when sy = sp, with p # q does not hold, see [93,
Theorem 1.1] for the counterexample. We then use the framework W:= ng’p (Q), in the case
0<s,<s1<1,andifs= s = sy, weset W:= Wg’p(Q) mWS’q(Q), equipped with the Cartesian
norm|-|lw:= ||'||Wg'p(9) + ||'||W3ﬂ(9) .

The choice of test functions while applying the above discrete Picone’s identities plays an
important role in the computations and to guarantee their inclusion in the energy space W,
we need the boundary behavior of weak solution uy € W to (P1). For this purpose, by using
[70, Theorem 3.5], we obtain uy € L*(2). Moreover, Theorem 2.3 in [70] and Corollary 2.4 in
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[69] provide the C**(Q)-regularity of 1, for some a € (0, 5;) and by [70, Theorem 2.5], we infer
that uy > 0 in Q. Finally, Hopf’s Lemma [70, Proposition 2.6] implies that 1y = k d*1*¢(x) for
some k = k(€) > 0 and for any € > 0. Again by using [70, Proposition 3.11], we get that, for all
o € (0, s7) there exists a constant K = K(o) > 0 such that ug < Kd° (x) in Q.

The notion of weak solution of (P1) is defined as follows :

Definition 1.2.6. A nonnegative function u € WnL*(Q) is called a weak solution to (P1) if, for
any ¢ € Wwe have :

u(x) — u()” % (ux) — u) (ex) — @)
fRNfRN( )" )( )dxdy

|x_y|N+51P

+f f (u(x) - u) 772 (ux) - u) (P(x) — 9()
RN JRN

N dxdy:ng(x, u)pdx.

In addition if u satisfies u > 0 throughout Q), we call u positive weak solution.
The next theorem gives the existence and uniqueness of the weak solution to (P1) :

Theorem 1.2.7. Assume that g satisfies (H1)-(H3). Then, there exists a unique nontrivial weak
solution u to (P1). In addition, u € C*%(Q), for some a € (0,s,) and for any o € (0,s;) and
o' > s1, there exists a positive constant c = c(0,0") > 0, such thatc™'d® <u<cd® inQ.

A glimpse of the proof:

First, the proof of the existence of weak solution  in the above result is based on minimiza-
tion type arguments (for more details we refer to the proof in Theorem 3.1.8, page 71, Chapter
3). Next, the uniqueness is proved by taking (for € > 0) :

_(up+e)7-(v+e) (v+e)7—(up+e€)1

d v=
(ig + €)1 an (v+e)d-1

as a test functions in Definition 1.2.6 (where 1y and v two weak solution to (P1)). Passing
limits as € — 0, using Corollary 1.2.3, regularity above of weak solutions, a fractional Hardy
type inequality, Fatou’s lemma, and Lebesgue dominated convergence Theorem, we infer
that 1o = k v, for some k > 0. Now, we can assume that k < 1, (if k£ # 1). Since 1 < g < p and by
using (H2), we obtain

_ p _ q
ff |0 (%) — uo ()| dxdy+ff o (%) — uo ()| dxdy
RNJRN  |x — y|NFsip RNJRN  |x — y|N+s24q

_ p _ q
f[ |v(x) - v(y)] o -vol” ff v —v]? e -vwl®, o
RNJRN  |x — y|N*+a1p RN JRN  |x — y|N*s24
:k"f g(x,v) vdx:f k7 lg(x,v) kvdx

Q Q

| o (x) = uo(y)|” | o (x) = uo ()]
<];2g(x, Up) uodx—fRNfRN PRIy dxdy+fRNfRN Ty dxdy

which yields a contradiction. Hence k =1 and uj = v.

< k1

 Secondly, we investigate (P1) in case of asymptotically homogeneous growth, i.e.
g0, 1) = A a)u! ™" + Ay s, 4 (D)b(X)UT,

with a, b € (L>°(Q))" \ {0} and A is a positive real number.

In this case, the following theorem states both nonexistence and existence results to (P1) :
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Theorem 1.2.8. Let0< sy, <s;<1andl<q<p<oo. Then, we have :

1. IfA<Ay5,p(a), then (P1) has no nontrivial weak solution. Furthermore, if

(blrslyp(a) 7 Cq)l,sz,q(b) (1.23)

for every ¢ > 0, then (P1), with A = Ay 5, p(a) has no nontrivial weak solutions. Assuming
that s;(p— q) < sap+1 and A > B}, then (P1) has no positive weak solution.

2. If A5, p(a) <A <P, holds, then there exists a positive weak solution u € L*(Q) to (P1).

Moreover, any non trivial weak solution u to (P1) belong to C>*(Q), for somea € (0, s;)

and for all o € (0, s1) and o' > sy, there exists a positive constant ¢ = ¢(0,0’) > 0, such that
!

cl'd® <sus<cd® inQ.

A glimpse of the proof:

To prove the problem (P1) has no nontrivial weak solutions for A < Ay 5, ,(a), we argue by
¢1,sz,q(b)p
BT

- € W (where € > 0) as a test function

contradiction. Furthermore, by choosing
€
¢l,sz,q(b)p_q+l
ul™1
249(€1), and by Theorems 1.2.1-1.2.2 we obtain :

in Definition (1.2.6) combined with taking € W as a test function for the

eigenvalue problem associated to (—A)ﬁf in WS

82, (b)p %
Mg ® [ 500 P e [ ) o100 (1
U

€

_ [q)l,sz,q(b)(x)_(bl,sz,q(b)(_)/)]q_l (bl,sz,p(b)p_qﬂ(x) (Dl,sz,q(b)p_qul(y) dxd
_fN N |x — |N+52q p—q - p—q xay
RN JR xX-=y ue ' (x) ue ()
. f f |$1,55,4 (D) (X) = b1,6,,4(BYP)|” Jed
RN JRN |x_y|N+S1p y

(pl,Sz,q(b)p(x) _ q)l,sz,q(b)p(J/)
Ue(x)P~1 Ue(y)P1

_ q-1
fo [ue (%) — ue ()] dxdy
RN JRN |x—y|N+szq

f [t (x) — e ()]~
" Js S |x — y|N+sip

(Dl,Sz,q(b)p(x) _ (bl,Sz,q(b)p(y)
Ue(x)P~1 ue(y)P-1

dxdy.

Since s1(q — p) + s2p + 1 > 0, passing to the limit as € — 0, and thanks to the dominated
convergence theorem and Fatou’s lemma, we conclude the problem (P1) has no nontrivial
weak solutions for A > 7. Finally, the existence of weak solution to (P1) in assertion (2) is
based on the minimization method (for more details we refer to the proof in Theorem 3.1.9,
Page 71, Chapter 3).

« Thirdly, we give a weak comparison principle for positive weak solutions in the special case :
g(x,u) = h(x)u’™,
with 1 < g < p and h € L*°(Q2) a non-negative function. Precisely, we have

Theorem 1.2.9. Let u;, uy in W be positive weak solutions of (P1), with hy, hy in L®(Q),
respectively, verifying0 < h; < hy a.e. inQ. Then, u; < u, a.e. inQ.
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To prove the above Theorem, we follow the same approach as in the proof in Theorem 1.2.7.

Finally, using Theorem 1.2.2 and by choosing suitable positive test functions, we give an
extension of the Sturmian comparison principle in the context of fractional p—Laplacian
operators, establish a non-local and weighted Hardy inequality and finally deal with nonlinear
fractional elliptic systems, all these results are given in the following statements :

Proposition 1.2.10. Let a;, a, be two continuous functions with a) < ay. Let f, a Lipschitz
function, satisfies (f)-(¥2). Suppose in addition that u € Wg’p (Q) verifies

(—A);}u —aq(uPY, u>0 inQ; u=0, inRV\Q;
where0 < s <1 and 1 < p <oo. Then any nontrivial weak solution of the problem :
(—A);v =a,(X)f(v), inQ; v=0 inRY\Q;
must vanish in Q.
Lemma 1.2.11. Let f, a Lipschitz function, satisfying (f)- (). Assume that v € C*(Q) verifies
(—A);yz Agf(w); inQ v>0 inQ,

where0 < s<1,1 < p <oo, A >0 and g is non-negative and continuous. Then for any
Sp +
ue (W,"(Q)", we have

) —u)|”
A Pd ff Jucd-ul” |
fgml x= RN JRN |x_y|N+sP Y

Theorem 1.2.12. Assume that f a Lipschitz function, satisfies (fy)-(®,). Let (u,v) be a weak
solution to the following nonlinear system :

(—A);u:f(v), u>0 inQ; u=0, inRY\Q;

(v
(-A)v= (fp_l), v>0 inQ; v=0, inRV\Q,

with0 < s<1andl < p <oo. Then, there exists a constant k > 0 such that vP = ku f (u).

1.3 Overview of Chapter 4

In this chapter we deal with non-local quasi-linear and singular systems of the form :

(—A)Slu—; u>0 inQ; u=0, inRY\Q;
L u% pbr’ ’ - ’
. )
(_A)‘;;ZU:Tﬁz, v>0 in Q; UZO, in RN\Q
[Zaa 7}

Here Q c RN be an open bounded domain with C'! boundary, sy, s; € (0,1), p1, p2 € (1, +00)
and oy, a2, B1, P2 are positive constants. The main goals of the present chapter are to discuss
non-existence, existence, uniqueness, and Holder regularity results for (S). More precisely, we
use a weak comparison principle inherited from [11, Theorem 1.1] from which non-existence
of classical solutions and construction of suitable sub- and super-solutions can be performed.
Next, by using Schauder’s Fixed Point Theorem together with the sub and super-solutions
method, we prove the existence of a pair of positive weak solutions to system (S).
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1.3.1 Literature

The motivation to study singular systems of type (S) comes, for instance, from morphogenesis
models. More precisely, we refer the so-called Gierer-Meinhardt systems, see e.g. [40, 41,
67, 76] (in the local case). We quote also to [79, 119, 122] and their references within (for
the non-local setting), as well as for astrophysics models, where the problem (S) is a natural
extension of the following celebrated Lane-Emden equation (with x € R) :

(—A);j u=u* in Q. (1.24)

This type of equations has been extensively studied in the local setting (s = 1) as well as
non-local case, see for further discussions [46, 59, 105] and [118] when a > 0. Recently, much
attention about singular problems of (1.24) (i.e. with a < 0) have been brought and without
giving an exhaustive list we quote specifically [23, 66] and the references cited therein for
the local setting. In the corresponding non-local case, we refer to [8, 15, 39, 73, 70] where
existence, non-existence, regularity and uniqueness of weak solutions are investigated. More
recently, the paper [12] investigates the existence or non-existence properties, power and
exponential type Sobolev regularity results, and the boundary behavior of the weak solution
to an elliptic problem involving a mixed order with both local and non-local aspects, and in
either the presence or the absence of a singular non-linearity.

On the other hand, quasi-linear and singular elliptic systems have been also intensely inves-
tigated in the literature with various methods. In particular [66], the author studied (S) in
case s = 1, p = 2. In this paper, existence, non-existence, and uniqueness of classical solutions
in C?(Q) N C(Q) are investigated by applying the fixed point theorem. In [74], considering
the nonlinear case 1 < p < co and combining sub-supersolutions method with Schauder’s
fixed point theorem, the authors proved the existence, uniqueness, and regularity of the weak
solution to the following system :

inQ; ulsgg=0, u>0 in Q;
(1.25)

—Aqv = inQ; vi|g=0, v>0 in Q,

po2 uﬁz
where 1 < p, g < oo and the numbers a;, a2, 1,P2 > 0 satisfy suitable restrictions. The required
compactness of involved operators is ensured by a Holder regularity result of independent
interest for weak energy solutions to a scalar problem associated to (1.25) (see also [107] for
related issues). Recently, [38] and [42] used the same approach to get the existence of positive
solutions to other kinds of quasi-linear elliptic and singular systems (see also [45, 80, 106] for
further extensions).

Concerning the non-local singular systems case, [77] deals with the following (in the special
case s =1 = sy and p; = p» = 2), with d(-) := dist(-,0Q2) denoting the distance function up to
the boundary :

a(x

(—A)su:dm( Ll,u>0 inQ; u=0, inRY\Q;
v
b

(‘A)S”:daZ(X)sZ’WO inQ; v=0, inRN\Q.
u

Here a and b are non-negative bounded measurable functions such that infqa > 0 and
info b > 0. The author gave sufficient conditions on ay, a2, 31,2 to guarantee the existence of
weak solutions and investigated the asymptotic behavior of these solutions near 0Q2. More
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recently, using regularity results from [73], [47] extends the results obtained in [66] in case
of linear and fractional diffusion (with p; = p» = 2), see also [18, 55, 88] for related issues.
We highlight here that only very few results are available for systems in the nonlinear and
non-local case, i.e. (s1,s2)-fractional (p;, p2)-Laplacian operators, i.e. with §; <1, s <1,
p1 # 2 and p, # 2 and it concerns the non singular case. We refer in particular [95], [123]
and in the non-homogeneous case [96] where existence of solutions are investigated with
variational methods in case of sub-critical and critical growths.

1.3.2 Main tools

In this chapter the boundary behavior of the weak solution to the fractional p—Laplacian
problem involving singular non-linearity and singular weights plays an important role. We
consider the following singular equation :

s K(x) . . N
(—A)puzw, u>0 inQ; u=0 INnR'\Q (EQ)

where s€ (0,1), p € (1,00), a > 0 and K satisfies the following condition : for any x € Q
adx)P<Kx)<cdx™ (1.26)

for some B € [0, sp), and ¢y, ¢, are positive constants.

The notion of weak sub-solutions, super-solutions, solutions to (EQ) can be defined similarly
asin [11]:

Definition 1.3.1. A functionu e WZ’)‘Z (Q) is said to be a weak sub-solution (resp. super-solution)
of the problem (EQ), if

u  eW,"(Q) forsome x=1 and infu>0 forallKeQ

and

() — u)|" ™ (ux) - u) (e(x) - ()
Joo )

K(x)
=y N dxdy < (resp. 2)L7¢dx

forallpe |J WP (.

QeQ
A function which is both weak sub-solution and weak super-solution of (EQ) is called a weak
solution.

In the following Theorem, we recall some results obtained in [11] for problem (EQ), under the
condition (1.26) and used in the present Chapter :

Theorem 1.3.2. ([11])

1. If b +a < 1, then there exists a unique weak solution u € W;’p (Q) to problem (EQ), that
S
satisfies the following inequalities for some constantC >0 :

Cld*<u<Cd*™® holdinQ
for every € > 0. Furthermore, there exist constant w € (0, ) such that

. C¢(Q) foranye>0if 2<p<oo,
C'(Q) if 1<p<2.
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1
2. If b + o> 1 with < min { sp,1+s—— }, then there exists a unique weak solution in the
s

sense of definition 1.3.1 to problem (EQ), which satisfies the following inequalities for
someC>0:
Cld¥ susCd* inQ
sp—P
a+p-1

where o* := . Furthermore, we have the following (optimal) Sobolev regularity :

@ ueW,”(Q) ifand only if A <1

and
) ude Wg’p(Q) ifandonly if6>A=1

(sp—-Dp-1+a)
psp—P)

where A\ .=

. In addition, there exist constant v € (0,a*) such that

. C¥(Q) if 2<p<oo,
C®2(Q) if 1<p<2.
3. Ifp = ps, then there is no weak solution to problem (EQ).

Remark 1.3.3. We can conclude the results of non-existence in Theorem 1.3.2 (3) for the problem
(EQ) by a similar proofin [11, Theorem 1.3] when K satisfies the following condition :

adx) P <Kx) < crd(x) P2 forany xeQ

where ps <P <P, and c, ¢, are positive constants. Precisely, by contradiction, we suppose that
there exist a weak solution u € W;(’)’Z (Q) of the problem (EQ) and 8 = 1 such that u® e Wg'p Q).
Now, we can chooseT € (0,1) and o < sp such that a function K’ satisfies the growth condition

ATdx) P <TK ) < Tdx) P <c;dx)™ <K(x) forany xeQ

where ¢y, ¢, > 0 and the constantT is independent of Bo, for Bo = > 0. Then, we can follow
exactly the proof of [11, Theorem 1.3] to get the desired contradiction.

First, by comparison principle [11, Theorem 1.1] together with Theorem 1.3.2, one can derive
the following proposition for sub- and super-solutions to the problem (EQ) :

Proposition 1.3.4. Let u (resp. i) be a weak sub-solution (resp. super-solution) of (EQ) in the
sense of definition 1.3.1. Then, there exists a positive constant C > 0 such that :

1. u<Cd*> ¢ foreverye >0, and ii = C"'d*® holds in Q, if% +a<1.

* * ].
2. u<Cd® andii=C'd™ holdsinQ, ifE+a>1with0s6<min{sp,1+s——}
$ P
where o* := _Sp=P_ .
a+p-1

Next, we have the following result about the behaviour of classical solutions to (S) (see
Definition 1.3.7 below) :
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Lemma 1.3.5. Let (u, v) be a pair positive classical solution of system (S). Then, there exist two
positive constants Cy,Cy such that :

u=>Cyd"andv=Cyd* holdsin Q. (1.27)

A glimpse of the proof:

To prove the above Lemma, we consider w,, w» positive solutions of the following problems :
(-My wi=1,w; >0 inQ; w;=0, inRV\Q;

(—A);Zzwzzl,wz>0 inQ; w,=0, inRY\Q,

respectively. By using [83, Theorem 1.1], Hopf’s lemma (see [50, Theorem 1.5, p. 768]) and
comparison principle (see [11, Theorem 1.1]), we deduce (1.27). For a detailed insight, we
refer to Lemma 4.2.2, Page 94, Chapter 3.

1.3.3 Main results with a glance of proofs

Before stating the main results and outline their proofs, we define the notion of weak solution
to the system (S) as follows :

Definition 1.3.6. (u,v) in Wls;ép '(Q) x Wlsjép *(Q) is said to be pairs of weak solution to system
(S), if the following holds

1. for any compact setK € ), we have

infu>0 and infv>0,
K K

2. thereexistsk =1, such that

(uK, VK) € ngvpl (Q) x WSZIPZ (Q),

3. forall(p,y)e |J W' (@ = J W7 Q) :

Qe Qe
ff |u(x)—u(y)|p1_2(u(X)—u(y))(cp(x)—tp(y))d gy [ oW
REJRY |x—y[F TP TOV= b
3
_ p2=2 _ _
f f lvx) —v(y)| (v(x)N DY -y iy = 4GP
RNJRN |x_y| +S2p2 Qyo‘ZuﬁZ

We then define the notion of classical solutions to system (S) :

Definition 1.3.7. We say that a pair (u, v) is classical solution to system (S), if (u, v) is a weak
solutions pair to (S) and (u, v) € C(QQ) x C(Q).

We deal first with the non-existence of positive classical solutions to (S). Precisely, we have :

Theorem 1.3.8. Assume that ay,a2,01,02, together with € > 0 taken small enough, satisfy one
of the following conditions :
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(D ?+a1 <1 andf,(s;—€) = p252,
1
@) @+a2 <1andp,(s2—¢€) = p151,
2
- 1
3) Pis2 +o;1 > 1 and Pals1p1 = Pus2) = P2y, WithfP1sy<1+s——,
S1 a+p—1 231
- 1
4) % +o0o > 1 and P1(s2p2 = P2s1) = p181, WithPors; <1+ 8 — —,
$2 (X2+p2—1 p2
1
(5) a1 >1, Pr > ——(o + p1 — (1 - ), M<min{smz,1+s2——} and
s1P1 ap+pr-1 p2

Bi(sop2(oy +p1—1) =Pasip1) = sip1(cy + pr — (a2 + p2 — 1),

s s
(6) az>1, 1 > S—l(a2+p2—1)(1_a1), _Prs2p2

1
<min{slp1,1+sl ——} and
2P2 az+p2—1

P1
Ba(sipr(aa+p2—1)=P1S2p2) = sap1(o2 + p2— (g + p1 —1).

Then, there does not exist any classical solution to system (S).

Glimpse of the proof :

Suppose that there exists (1, v) a positive classical solution of the system (S). Now, we divide
the proof through different cases :

Case 1: by using the estimates in (1.27), u is a sub-solution of the following problem :

d P12 (x)

(-0 w= , w>0 inQ w=0, inRV\Q.
Cgl w™

By the statement of Proposition 1.3.4 together with Remark 1.3.3, the following problem :

$2 u_ﬁZ . . N
(—A)pzv:—, v>0 in; v=0 InR\Q,
o2
sip1—Pis
has no weak solution if B2 (s; —€) = p2 s, (for € > 0 small enough) and P2 151 ﬁll 2) = pasy
o+ p1—

s S 1
since % +o;<1and % +o; > 1 (with s < min{slpl, 1+ — p_ }) respectively.

1 1 1

Analogously, we get the same conclusion for (2).

Case 2: let us consider M = rn_in{ vP1 } . Then, u is a super-solution to the following problem :
Q

5 M . . N
(—A)plw:—, w>0 inQ; w=0, inR"\Q.
w*

By the statement of Proposition 1.3.4, the estimates (1.27) and Remark 1.3.3, we get the results
(5)-(6). For more details, we refer to the proof in Theorem 4.1.8, Page 91, Chapter 3.

Now, we introduce the notion of weak sub-solutions and super-solutions pairs to system (S):
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Definition 1.3.9. (u,v) and (,7) in W,"""(Q) x W,2*(Q) are said to be sub-solutions and
super-solutions pairs to system (S), respectively, if u < u, v < v and if the following holds

1. for any compact setK € Q, we have
infu, infv>0 and infu, infv>0,
K— K~ K K
2. thereexistski,K» = 1, such that

W, v e WM Q) x WP Q) and (@2, 7) e W (Q) x WP (),

3. forall(p,y)e |J W' () x |J WP (Q), withe,y =0inQ,
QeQ QeQ

() - u()]” 7 () - u () ) - @(y) o) B
N [N N+s1p1 dxdy < p— dx, VYve [y, l/]
RNJR |x _ y| QUMY

_ p2—2 _ —
f f lv(x0) — v (@) - v (W(x) W(y))dxdysf v (x) dx, Vue|w]
RNJRN Q

|x_y|N+82P2 v P2

that is equivalently

f |u(x) — w7 W) - u(y) @K - 9() ddy= f o
RN JRN Q

|x_y|N+slp1 Ealvﬁq ’

(P) : 4

_ p2—2 _ _
fN N|y(x) v @) - v (W (x) —w(y) dxdy < 4G
RNJR

|x_y|N+Szp2 Qz(xzﬁﬁz )

and

— = p1—2 _ 77 —
|70 - uy)| (u(x) —u() () cp(y))dxdy2 _tP(x) dx, VYvel[v7]
RNJRN |X—J’|N+Sllﬂ1 au™vh

() T (P22 S T -
|v(x) v(y)| wx)—-v(MWwx) W(y))dxdyz _W(X) dx, VuE[E,ﬁ]
RN JRN |X—J’|N+32Pz Qv ub2

that is equivalently

f () - ay)|" (WL TOQW =90, [ 0w
RN JRN |x_y| +s1p1 Qu lyﬁl
(P): ¢
_ = p2—2 — = _
f [7(x) - v(y)| (v(x)N TONWE -y dy> _xg(x) .
RN JRN |x_y| +S2p2 QU 2252

Concerning the existence, the uniqueness, and regularity of the solution to (S), we obtain :
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Theorem 1.3.10. Assume that the positive numbers o, &2, B1,P2 satisfy the following sub-
homogeneous condition :

(p1+0(1—1) (p2+0(2—1)—f)152>0. (1.28)
P12 P21 : .
1. Let —= + a3 <1 and —— + a3 < 1. Then problem (S) possesses a unique positive weak
S1 So

solution (u,v) € Wg’p '(Q) x Wé’p *(Q) satisfying for any € > 0 the following inequalities for
some constantC =C(e) >0 :

Cld"<u<Cd"® and Cld%<sv=Cd®® inQ.
In addition, there exist constants w1 € (0, s1) and w; € (0, s2) such that :

(v e CHERN) x C28(RN) if2<p<oo,
u,v
CY1(RN) x C@2(RN) ifl<p<2.

2. Let
__ s (az+p2—1)— p1P1s2 and - p2s2(aq + p1 —1) — p2Pas;
(a1 +p1 =D+ p1—1)—P1P2 (a1 +p1— Do+ p2—1)—P1f2
1
Now assume that% +o1 > 1 withiPy < min{plsl, 1+s— —} cde—52 + o0 > 1 with
S1 P1 $

1
YB2 < min{ p2S2, 1+ 8, — — } Then problem (S) possesses a unique weak solution (u, v)
2
in sense of Definition 1.3.6, and satisfies with a constantC >0 :
Cld"<u<Cd' and Cl'd°*<v<Cd* inQ.

Furthermore, we have the optimal Sobolev regularity :

e (u,v)€E ng’pl Q) x Wgz’pz (Q) ifand only if Ay <1 and Ay < 1

and

o (u%,u%) e ng’pl Q) x Wgz’pz (Q) ifand only if6, > A1 =1 and 0 > Ay = 1,

~D(p1 -1+ ~D(pr—1+
where A, = SPL= D P1 ) o n, i S2P2= D2 %)

p1(s1p1—EP1) p2(s2p2 — YP2)
In addition, there exist constants ws € (0, Y) and w4 € (0,&) such that :

) CYRY) x CERN)  if2<sp<oo,
u,v
CORN) x C*+RN) ifl<p<2.

3. Let:
_sip—pise
O(1+p1—1.
So—¢€ !
[f—ﬁl(sz ) +ag > 1 for somee >0, with 152 <min{p131,1+31—p—} and@ﬂxz =1
1 ; ;

hold, then, the problem (S) possesses a unique weak solution (u, v) in sense of Definition
1.3.6, satisfying the following inequalities for some constantC >0 :

Cld¥<u<Cd' and Cld2<v<Cd® ¢ inQ.
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Furthermore, ve W, (Q) and :
o ueW,"P'(Q) ifand only if A3 < 1
and
o u9eW,"P'(Q) ifand only if6 > A3 = 1
_(sipi—-D(p1—1+w)

where A3 :=
pi1(sip1—P1s2)
In addition, there exist constants ws € (0,y) and we € (0, s2) such that :

CYRN) x C2¢RN) if2<p<oo,
(u,v) .
CO RN x CosRY) ifl<p<2.

. Symmetrically to Part (3) above, let

_ S2p2—P2s
(Xz-f-pz—l'
S1—€ 1
If—ﬁZ( 1-¢) +ay > 1 for somee >0, with 25 <min{19282,1+32— —} a”dgﬂxl =1
s o1

2 2
hold, then problem (S) possesses a unique weak solution (u, v) in sense of Definition 1.3.6,
satisfying the following inequalities for some constant C >0 :

Cld"<u<Cd™ ¢ and C'd®<v<cCd® inQ.
Furthermore, u€ W,""'(Q) and :
$2,P2 . .
s VEW,"(Q) ifand only if Ay < 1

and
o V0 eW P (Q) ifand only if0 > Ay = 1

Sop2—1 -1+«

where Ay = (s2p2 — 1) (p2 2)_
p2(s2p2 —P2s1)

In addition, there exist constants w7 € (0, s1) and wg € (0,&) such that :

(v e COE®N) x CERN) if2< p<oo,
u,v
CY"(RN) x COs(RY) ifl<p<2.

A glimpse of the proof:

The proof of this Theorem is into three main steps :

Step 1 : According to the boundary behavior of solutions to (EQ) (see Theorem 1.3.2), we
will consider four alternatives. For each alternative, by using the weak comparison principle
[11, Theorem 1.1] and the condition (1.28), we construct sub-solutions (m; ug, myvg) and
super-solution (M; u;, Mav;) to (S), in sense of Definition 1.3.9, where 0 < m; < M; < oo and
0 < my < M3 < oco. The suitable choices of these constants implies that the following convex

6 -

{(u, V) eCQ) xCQ); mu; <u<Mpuy and myuv < USszo}

= [myu; Myupl x [mav1; Mavgl,
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is invariant under the following operator :
T (u,v)— T (u,v):= (J1(v),T2(w) : € — C(Q) x C(Q)

where v— 9, (v) = Qi € Wf(iép 'Qandu— 95 (w):=ve Wls (fép ?(Q) are defined to be the unique

positive weak solutions of the Dirichlet problems :

A = — oy : .o . N
(=Q)p, pre y[’n’u>0 inQ; @#=0, inR"\Q,
1
A2 5= 5 O T — : N
( A)p2 gazuﬁz’v>0 inQ; 7v=0, inR\Q

respectively.

Step 2 : By regularity results contained in Theorem 1.3.2, for all alternatives there exist
constants n; € (0, s1) and n € (0, s2), such that

ieC"(Q) and ©eC”2(Q),

with _uniform_bounds in €. Hence, by the compactness embedding C" Q) — C(Q) and
C"2(Q) — C(Q), we infer that 9 is compact. Now, let us consider an arbitrary sequence
{(Un, Vn)} pen € € verifying :

(n, V) — (U, o) in C(Q) x C(Q)

as n — oo. Setting (i, V) 1= I (U, vy) and (i, Do) := T (uy, Vo). Since I is compact there
exists a sub-sequence denoted again by {(#,, ,,)},en Such that :

(@n, Dp) — (@, 0)  in C(Q) x C(Q).
On the other hand, from Definition 1.3.6 we have (il,,, ,,) € W, "7 (Q) x W;2P?(Q) satisfying :

loc loc

iy € ng’pl (Q) and iIIgfan >0 forallKeQ,
D5 eW,?P*(Q) and info,>0 forallKeQ

for some k=1, and

f f Ian(x)—an(y)|”1‘2mn(x)—an(y))(cp(x)—cp(y))dxdy: o)
e =y @y ol
(1.29)
f f |02 (x) = 00 (1722 (0 (0) = D () (W) = W () dxdy - f v
RN JRN |x_y|N+52P2 Ql?,afu,ﬁf
forall (p,y) € |J W,""' (@) x [J Wy (.
Qe Qe

Then, by suitable choice of test functions for all alternatives and using the weak compactness
sometimes and follows the proof of [39, Theorem 3.6, p. 240-242] at other times, we can pass
the limit in (1.29) as n — oo, we obtain # and ¥ weak solutions to problems respectively :

a(x) — ()" 72 (@) - 2 @) - () (x)
fIR%NjI‘QN| : | N+51P1y . = dXdy:.L A((lj P1 dx,
|x -y 0% vy
PN 5 p2—2 PN N _
f f |0(x0) — 0(p)| (v(x)N PONWE) —wy) iy = yo o
w o oy
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in the sense of Definition 1.3.6. From uniqueness presented in Theorem 1.3.2, we infer that :
(@, D) = T (ug, vo),

which implies that 9 is continuous from C(Q) x C(Q) to C(Q) x C(Q). Finally, applying
Schauder’s Fixed Point Theorem to 9 : € — %, we obtain the existence of a positive weak
solution pair (u, v) to problem (S).

Step 3 : We apply a well-known argument due to M. A. Krasnoselskii [86, Theorem 3.5 (p. 281)
and Theorem 3.6 (p. 282)] together with contradiction argument, the condition (1.28) and
weak comparison principle (see [11, Theorem 1.1]), we conclude uniqueness for problem (S).
For more details, we refer to the proof in Theorem 4.1.9, Page 91, Chapter 3.

Now, we will explain the proof of our main results with complete details. We point out
that, we chose to keep the same form as the papers. Each chapter begins with a brief summary
and for the reader’s convenience, we include the preliminaries and functional setting, then
the content of the study.
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CHAPTER 2

EXISTENCE AND GLOBAL BEHAVIOUR OF
WEAK SOLUTIONS TO A DOUBLY
NONLINEAR EVOLUTION PROBLEM

This chapter includes the results of the following research article :

¢ J. Giacomoni, A. Gouasmia; A. Mokrane; Existence and global behavior of weak solutions to
a doubly nonlinear evolution fractional p—Laplacian equation, Electron. J. Diff. Equations.,
(09) (2021), 1-37.

Abstract :

In this chapter, we study a class of doubly nonlinear parabolic problems involving the frac-
tional p-Laplace operator. For this problem, we discuss existence, uniqueness and regularity
of the weak solutions by using the time-discretization method and monotone arguments. For
global weak solutions, we also prove stabilization results by using the accretivity of a suitable
associated operator. This property is strongly linked to the Picone identity that provides
further a weak comparison principle, barrier estimates and uniqueness of the stationary
positive weak solution.

keywords : Fractional p-Laplace equation; doubly nonlinear evolution equation; Picone
identity; stabilization; nonlinear semi-group theory.

2.1 Introduction and statement of main results

Letl<g<p<oo,0<s<1,Qr:=(0,T)xQ,where Qc RN with N > sp, is an open bounded
domain with C1! boundary. I't := (0, T) x RN \ Q denotes the complement of the cylinder Qr.
In this work, we deal with the existence, uniqueness and other qualitative properties of the
weak solution to the following doubly nonlinear parabolic equation :

mi—lat(uzﬂi‘l)ﬂ—mi;u:f(x, w+h(t,0u’"  inQr;
) u>0 in Qr; (DNE)
u=0 onl'r;
1(0,-) = ug in Q.
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Throughout this chapter we assume the following hypothesis :

H1) f: Q xR* — R* is a continuous function, such that f(x,0) =0 and f is positive on

Q x RT\{0}.
(H2) Fora.e.xe(Q, z— f(;c f) is non-increasing in R*\{0}.
z
f(x 2 flx, 1)
(H3) If g =p, z— | is decreasing in R*\{0} for a.e. x € Q and lim,_ ;oo ——— e 0

uniformly in x € Q.
(H4) There exists h € L*(Q)\{0}, & = 0 such that h(¢,x) = h(x) a.e. in Q.

(H5) If g =p,

P17 ey
IRl <Arsp:=  inf o
EW P ()\ (0} II(bIILp(Q)

(H6) If g = p, h, f fulfills the condition

mf (h(x) + lim

>>A15 .
Z—)O i ’p

f(x,2)

Zzp-1 )
The aim of this chapter is to discuss similar issues mentioned above (see Introduction, Section
1.1, Pages 6-7) about local existence, uniqueness, regularity and global behavior of solutions
to the doubly nonlinear and non-local equation (DNE). Up to our knowledge, (DNE) which
covers several PME and FDE models in the fractional setting has not been investigated in the
literature. By using the semi-discretization in time method applied to an auxiliary evolution
problem, we prove the local existence of weak energy solutions. The uniqueness of weak
solutions are obtained via the fractional version of the Picone identity (see below) which leads
to a new comparison principle and T-accretivity of an associated operator in L. Using the
comparison principle, we also prove the existence of barrier functions from which we derive
that weak solutions are global. We then show that weak solutions converge to the unique non
trivial stationary solution as t — oo. To achieve this goal, our approach borrows techniques
from the contraction semi-group theory.

2.1.1 Preliminaries and functional setting

First, we recall some notation which will be used throughout the chapter. Considering a
measurable function u : RN — R, we adopt
e Let p € [1; +ool, the norm in the space L (Q) is denoted by

1/p
||u||Ln(Q)::(L|u|de) .

e Set0 < s<1and p > 1, we recall that the fractional Sobolev space WP (RY) is defined as

5PNy ._ PNy . lu(x) — u(y)I?
W (R ).—{ueL (R )f fquN o y|N+sp dxdy<ooyg,

endowed with the norm

lu(x) —uy)? p
e [T I SR axdy| .
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 The space Wé’p (Q) is the set of functions
WP (@) i={ueW"’RY):u=0ae inRV\Q},

and the norm is given by the Gagliardo semi-norm

lu(x) — u(y)|P p
Iu”WSP(Q) (I;N‘[I;N |x y|N+Sl9 dxdy .

We recall that by the fractional Poincaré inequality (e.g., in [51, Theorem 6.5]; see also Theorem
2.1.3 below), || - lyysp @y, and | - IIWs,p(Q) are equivalent norms on Wg'p (). From the results in
0

[19], [51], we have that Wg’p (Q) is continuously embedded in L (Q) when 1 < r < NN—pp and
Np

compactlyfor1 <r < N=sp*
e Let x € (0,1], we consider the space of Holder continuous functions :

C¥Q) = {u €C(Q), sup M < oo},
x,y€Q, x£y lx =yl
endowed with the norm
[u(x) — u(y)|

” ullco,a(ﬁ) = ” u”LOO(Q) + SEp
X,YEQ,X£y

|x — y|«
e Let T > 0, and consider a measurable function
u:10,T[— W, (),

and we denote u(t)(x) := u(t, x). Let C([O,T],Wg'p (Q)) the space of continuous functions in
[0, T] with vector values in Wg’p (Q), endowed with the norm

Il o mrwsPan -= Sup (8 llysr -
(omwy” @)= 2ok Sd(®)

* We denote by d(-) the distance function up to the boundary 0Q. That means

d(x) :=dist(x,0Q) = inf [x—y|.
y€0Q

e We define for r > 0, the sets

M Q) :={u: Q>R :uel®(Q) and Ic>0s.t. ¢ d’ (%) < u' (x) < cd* (D)},

2.1
VI={u:Q— (0,00 : u"" e W, ()} &1

* We define the weighted space

u

Let ¢1,5,, be the positive normalized eigenfunction (|1 syl = 1) of (=A)3, in W” (Q)

associated to the first eigenvalue A; 5 ,. We recall that ¢y 5, € Co%(Q) for some a € (0, s] (see
Theorem 1.1in [83]) and ¢y 5 € /M;S (Q) (see [83, Theorem 4.4] and [50, Theorem 1.5]).

Next, we recall some results that will be used in the sequel.
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Proposition 2.1.1 (Discrete hidden convexity [25, Proposition 4.1]). Let1 < p <oo and 1<
q < p. For every uy, u; =0, we define

o) =[1-Dul () + tul V9, tef0,1],xeRN.
Then
|0:(x) — 0 (MIP < (1= Dlug(x) — uo(Y)IP + tlur (x) =y (Y)IP,  £€[0,1], x, y € RY.

Proposition 2.1.2 (Discrete Picone inequality [25, Proposition 4.2]). Let1 < p <oo and 1 <
r < p. Let u, v be two Lebesgue-measurable functions with v=0 and u > 0. Then

v(x)" vy

T T S 1MW - N T — P

lu(x) — u)IP 2 (u(x) — uy))

As we will see, Proposition 2.1.2 provides a comparison principle, barrier estimates and
uniqueness of weak solutions.

Theorem 2.1.3 ([19, Theorem 6.5]). Lets€ (0,1), p = 1 withN > sp. Then, there exists a positive
constant C = C(N, p, s) such that, for any measurable and compactly supported u : RN — R

function, we have
lu(x) —uI?
P
Iut?, gy =€ [ ]2 B dxdy,

where p; = the space W*P RY) is continuously embedded in L9 (RN for

qe[p,psl-

Theorem 2.1.4 (Aubin-Lions-Simon, [24, Theorem 11.5.16]). LetBy < B; < B, be three Banach
spaces. We assume that the embedding of By in By is continuous and that the embedding of By
in By is compact. Let p,r such that1 < p,r <oco. ForT > 0, we define

dv .,
Epr={veLl”(10,T[;Bo): T L"(10,T[; B2)}.

Then the following holds :
(a) If p < oo, then the embedding of Ep, » inLP(]0,T[; B;) is compact.
(b) If p=oc andr > 1, then the embedding of Ep, ; in C([0,T];By) is compact.
We now recall the definition of the strict ray-convexity.

Definition 2.1.5. Let X be a real vector space. Let C be a non empty convex cone in X. A
functional # : C — R will be called ray-strictly convex (strictly convex, respectively) if it satisfies

W (-t +tv) <A -W (v)+tW (v2),

v
for all v}, v, € C and for all ¢ € (0, 1), where the inequality is always strict unless v—l =c>0

2
(always strict unless v = v, respectively).

Remark 2.1.6. We observe that by Proposition 2.1.1, the set Vfr defined in (2.1) is a convex
cone, i.e. for A € (0,00), f,g € Vfr impliesA\f+ ge Vi.
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Proposition 2.1.7 (Convexity). Let1 < p <oco and 1 < r < p. The functional W :V — R,

defined b
ﬁ Y 1 |w(x)l/r_w(y)l/r|p
W(w)::—f f S dxdy,
p JrN JpN |x — y|N*sp

is ray-strictly convex on V.. Furthermore, if p # r, then W is even strictly convex on V' .

Proof. According to Definition 2.1.5, let us consider any w;, w, € V! and ¢ € [0,1]. Let us
denote w = tw + (1 — ) w,, we obtain by Proposition 2.1.1

W w)<stW(w)+AQ-0W(w,). (2.2)
If the equality holds, then
Jw = wmP = 1w (VT = wi VTP + (1= D w0 = wa ()71
a.e x,ye RN, If p =r, we obtain

[lallgr = 1bllgr

"=la-bl, ae x,yeRY,
where || - |- denotes the £"-norm in R?, and
a=((tw DY, (A= w2 M), b= (w7, (- Dwa(y)M7).

Since r > 1, there exists a constant ¢ > 0 such that w; = cw» a.e. x € RN. Then, # is ray-strictly
. . . . i

convex on V.. On the other hand, if p # r thanks to the strict convexity of T— 17 on R", we

obtain w; = w» a.e. xe RN and # is strictly convex on V. O

Lemma 2.1.8. Let1 < p <oo. Then, for1 < r < p and for any u, v two measurable and positive
functions in Q) :

r_ r r_ r
) = )12 () — () | L2L P MDY= V) ]

u(x)r—l u(y)r—l
(2.3)
v —u)" v —u)’

U(x)r—l U(y)r—l

+|v(0) = v ) - v()
fora.e. x,y € Q. Moreover, ifu,v € Wg’p(Q) and if the equality occurs in (2.3) for a.e. x,y € Q,
then we have the following two statements :
(1) ulv=const>0a.e. in.
2) Ifalsop #r, thenu=v a.e. inQ.

Proof. Let u, v be two measurable functions such that u,v >0in Q and 1 < r < p. Then by
using Proposition 2.1.2, we obtain for x, y € Q,

v v’
u(x)r—l u(y)r—l

lu(x) — u(1P~?(w(x) — u(y)) [ <lvx)—vWI"ux)—uP". (2.4

Let us start with the case r = p. By using the above inequality, in this case, we obtain

uP —v@P  u@?-vy)”
u(x)p-1 u(y)p-1 (2.5)

lu(x) — u() P (u(x) — u(y))

> |lu(x) —u)P —lvx)—v(ylP.
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By exchanging the roles of u and v, we obtain

v)P —u@)? vy —uy)?

lv(x) — v(IP 2 (v(x) — v(y)

v(x)P-! v(y)P! (2.6)
= |v(x) - v(IP = ulx) —um)”.
Combining (2.5) and (2.6), we obtain
B p-2 B u@)? —vx)"”  u@?P-vy?
lu(x) — u(N™ = (u(x) — u(y)) LOOP-1 w1
~ p-2 B v)P —ux)P vy —u@)?
+v@) —vIT (v -v(y) DT O
which concludes the proof of (2.3) for r = p.
We deal finally with the case 1 < r < p. By using Young’s inequality, (2.4) implies
r_ r r_ r
|u(x) — ()P~ (w(x) - u(y) u()z(x):(lﬂ B u(J:z( ):(ly) ]
i Y (2.7)
> P [lu(x) — uIP —vx) —v(IP].
Reversing the role of u and v :
r_ r r_ r
() - I 2w - p(y) | L PO~ 4y
v(x)’ v(y)’ 2.8)

T _ p_ _ p
_p[lv(x) vNI” = lu(x) —u|"].

Adding the above inequalities, we obtain (2.3).

Now, let us consider u©, v € Wg’p(Q), such that u >0, v >0 a.e. in Q and 0 € (0,1). Setting
w:=(1-0)u" +0v", one can easily check that w € V. Thus, by Proposition 2.1.7, it is easy to
prove that the function, defined in [0, 1],

0—PO):=# (W)= ((1-0)u" +0v")
is convex, differentiable and for 6 € (0,1) :

(@) =

1/r _ 1/r | p-2 1/r _ 1/r r_ r r_ r
f |w(x) w(y) TP (w(x) wy) ) (v —u)” ) —uly) dxdy.
[RZN\(QCXQC)

|x_)/|N+Sp w(x)l_% w(y)l_F

Finally, let us assume that the equality in (2.3) holds. By the monotonicity of @ : (0,1) — R, we
deduce that ®'(0) = constin (0,1). It follows that @ : [0, 1] — R must be linear, i.e.

OO) =% (w)=1-0)00)+06D(1)=1-0# (u")+6% (v),

for all 0 € [0, 1]. We conclude that u = const.v with const > 0 and if p # r, then u = v, thanks
to Proposition 2.1.7. O
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2.1.2 Main results

We consider the associated problem of (DNE),

v7710, () + (-N)v = h(t,)vT " + f(x,v)  inQr;

v>0 in ;
Qr ()
v=0 on I'r;
V(OJ ) =1 in Q.

Claim 1. Any bounded weak solution of the above problem is also a weak solution to (DNE).
To this aim, we introduce the notion of the weak solution to problem (E) as follows.

Definition 2.1.9. Let T > 0. A weak solution to problem (E) is any non-negative function
v € L°(0, T; W, " () nL®(Qr) such that v > 0 in Q, 9,(v%) € L*(Qr) and satisfying for any
te(0,T]:

t
ffat(v”’)vq_lcpdxdz
0 Ja

+ftf f lv(z,x) - v(z, Y)IP2(v(z,x) — v(z, 1) (@(z, %) — (2, )
RN JRN |x — yINTsp

dxdydz

t
=f f(h(z,x)v"‘1+f(x, v)pdxdz,
0 JQ

forany ¢ € L2(Qr) N L1 (0, T; W, 7 (Q)), with v(0,.) = vg a.e. in Q.
Remark 2.1.10. According to Definition 2.1.9, a weak solution of (E) belongs to L*°(Qr). Then,

we obtain
q

—1 9,(w*1 Y = 9713, (vY),
241 t( ) t(w7)
weakly, and we deduce that a weak solution to (E) is a weak solution to (DNE).
Our main result about existence and properties of solutions to (E) is as follows.
Theorem 2.1.11. LetT >0 and q € (1, pl. Assume that f satisfies (H1)-(H3), (H6) and

(H7) The map x — (pl s p(x)f(x $1,5,p(x)) belongs to L2(Q).

Assume in addition that h € L(Qr) satisfies (H4), (H5) and that vy € 4 },(Q) "W, (Q). Then
there exists a unique weak solution v to (E). Furthermore,

(i) ve C([O,T];WS’”(Q)) and satisfies for any t € [0, T] the energy estimate
- P
[ [ G araz+ Loon,,,

f(x,v)ov? p
ff d dz +ff9 o —d dz+—||v0|| WP @)

(i) If w is a weak solution to (E) associated to the initial data wy € M };(Q) mwg”’ (Q) and
the right hand side g € L*°(Qr) satisfying (H4) and (H5), then the following estimate
(T-accretivity in L?(Q)) holds :

39
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t
1?0 = w? (D) iz < 1w —wH iz + fo I(h(2) — g(2) " 2 dz (2.9)
foranyt€[0,T].

The T-accretivity in L? stated in (2.9) was proved for p-Laplace operators in [52] with
a different approach (by the study of properties of the associated sub-differential via the
potential theory) and for quasi-linear elliptic operators with variable exponents in [10] (see
also [9] and [17] for related issues). The uniqueness of the solution in Theorem 2.1.11 can be
also obtained by the following theorem under less restrictive assumptions about vy and h.

Theorem 2.1.12. Let v, w be two solutions of the problem (E) in sense of Definition 2.1.9, with
respect to the initial data vy, wy € L29(Q), vy, wo = 0 and h, h € L>(Qr). Then, for any t € [0,T],

t ~
w9 (6) - w2 < lvg — wllizq +f0 1h(2) = h(2)ll 2y dz. (2.10)

Using the theory of maximal accretive operators, we introduce the nonlinear operator
T4:1%(Q) > D(T,) — L*(Q) defined by

1- 1/q _,1/q p-2c,,1lq _1/q
Tau= uTq (ZP.V.f w T -u 7O N(u () —u 7y dy- f(x, ul’ (2.11)
RN lx — y|N*+sp

with
DI ={w:Q—R", w"’TeW,"(Q), wel*(Q),T,wel*Q)}.

Using the T-accretive property of 7, in L?(Q) proved below and under additional assumptions
on regularity of initial data, we obtain the following stabilization result for the weak solutions
to the problem (E).

Theorem 2.1.13. Assume that the hypothesis in Theorem 2.1.11 hold for any T > 0. Let v be
the weak solution of the problem (E) with the initial data vy € M}, (Q) mWS’p (Q). Assume in
addition that there exists ho, € L°°(Q) such that

IO 1h(t,) = hoolli2@q) =O(1) ast— oo (2.12)
with | continuous and positive on]sy; +oo[ and f:oo% < 400, for some s > sy = 0. Then, for
anyr=1,

109 (8,) = vl ) =0 ast— oo,

where v, is the unique stationary solution to (E) associated to the potential hy.
This Chapter is organized as follows : In Section 2.2, we study the stationary nonlinear problem
VI 4D 0= ho)vT +Af(x,0)  in
v>0 in Q

v=0 in RN\Q,

related to the parabolic problem (E) and establish the existence and the uniqueness results
in case hy € L*°(Q) [Theorem 2.2.2, Corollary 2.2.4] and in case hy € L2(Q) [Theorem 2.2.5,
Corollary 2.2.6]. Section 2.3 is devoted to prove Theorem 2.1.11. The proof is divided into
three main steps. First, by using a semi-discretization in time with implicit Euler method, we
prove the existence of a weak solution in sense of Definition 2.1.9 (see Theorem 2.3.1). Next,
we prove the contraction property given in Theorem 2.1.12 which implies the uniqueness of
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the weak solution stated in Corollary 2.3.2. The regularity of weak solutions is established
in Theorem 2.3.4 that brings the completion of the proof of Theorem 2.1.11. In Section 2.4,
we show the stabilization result (see Theorem 2.1.13) for problem (E) via classical arguments
of the semi-group theory. Finally in the appendix 2.5.1, we establish some new regularity
results (L bound) for a class of quasi-linear elliptic equations involving fractional p-Laplace
operator. Via the Picone identity, we also obtain a new weak comparison principle that
provides existence of barrier functions for stationary problems of (E).

2.2 p-—fractional elliptic equation associated with (DNE)

The aim of this section is to study the elliptic problem corresponding to (E). For this, we have
several cases.

2.2.1 Potential iy, € L*°(Q)
We consider the elliptic problem
Uzq_1+)\(—A)ZV: ho() v Y+ Af(x,v) in Q
v>0 in Q; (2.13)
v=0 in RY\Q,
where A is a positive parameter and hg € (L*°(Q))* satisfying the hypothesis
(H8) ho(x) = Ah(x) for a.e. in Q, where £ is defined in (H4).
We have the following notion of weak solutions.

Definition 2.2.1. A weak solution of the problem (2.13) is any non-negative and nontrivial
function v e W:= Wg’p (Q) N129(Q) such that for any ¢ € W,

_ lv(x) — v()IP2(0(x) — v(1) (@(x) — ()
2gq-1
.[Q Y (pdx”\fuw f[RN |x — y|N+sp dxdy

(2.14)
:f hovq_lcpdx+)\f fx,v)pdx.
Q Q

We first investigate the existence and uniqueness of the weak solution to (2.13).

Theorem 2.2.2. Assume that f satisfies (H1), (H2), (H6). In addition suppose that hy € L>°(Q)
and satisfies (H8). Then, forany1 < q < p and A > 0, there exists a positive weak solution v €
C(Q) NL (Q) to(2.13). Moreover, let vy, v> be two weak solutions to (2.13) with hy, hs € L®(Q)
satisfy (H8), respectively, we have (with the notation t* = max{0, 1}),

1T = o)l < 100 = ha)* . (2.15)

Proof. We divided the proof into 3 steps.
Step 1 : Existence of a weak solution. Consider the energy functional _# corresponding to the

problem (2.13), defined on W equipped with the Cartesian norm || - lw =1 - IIWsp(Q)+|| 240
by
_ L[ e lv(x) —v(IP 1 i
j(v)—2 f dx+— fRNfRzN = NP dxdy—gfgho(v ) dx—)\fQF(x,v)dx
(2.16)
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where

t
F(x, 1) = fo f(x,2)dz if0<t<+o0,
0 if —co<t<0.

We extend accordingly the domain of f to all of Q x R by setting

oF
flx, 0= a(x, 1)=0 for (x,1)eQx(—00,0).

From (H1) and (H2) there exists C > 0 large enough such that for any (x,z) € Q x R,
0<f(x,2)<CA+z71). (2.17)

Thus, we infer that :
o ¢ iswell defined and weakly lower semi-continuous on W.
e From (2.17), the Holder inequality and Theorem 2.1.3, we obtain

A 1
T4 _ = q -
FW) = ”U“m(m 1010 ) = 2 Mol 101 gy = CA fQ |vldx

- q
A— fIVI dx 2 [V 0 (@1l Vg ) = €2) + 10 g (sl w1, WePe) —ca),

where the constants ci, ¢2, ¢3 and ¢4 do not depend on v. Therefore, we obtain that _#(v) is
coercive on W. Therefore, _# admits a global minimizer on W, denoted by vy. Thus, adopting
the notation t = t* — t~, we have

_ gt if —\2q Aff (7)) — @ )WIP
f(vo)—j(vo)+2q Q(v) dx+p N =y dxdy

2\ l(v7)(x) = (wHWIP N
?\A‘QN\[I;{N = NP dxdy= _#(vg).

Therefore, vy = 0. In order to show that vy #Z 0 in QQ, we find a suitable function v in W such
that _#(v) <0 = _#(0). For that, we start by dealing with the case g < p. Let ¢ € CL(Q) be
non-negative and non trivial with supp(¢) c supp(h). Then, for any ¢ >0,

Z(tp)<c 2T+ tP —c3tY,
where the constants cj, ¢, and c3 are independent of t and ¢z > 0 thanks to /1o = Ak # 0. Hence

for ¢ > 0 small enough, _#(t¢) < 0. We now consider the remaining case g = p. Assumption
(H6) implies that for ¢ > 0 small enough there exists zy = zy(c) > 0 such that

AR(x) 2P+ A f(x,2) > A\, ps +0) 2P,

for all s < sp and uniformly in x € Q. Hence, for € small enough, we deduce that
€1,p,5) < || I 2"+5|| 12 s € = s+ D11l ”
j eq)l.p,s q)l p,s sz(Q) (bl,p,s Wé‘p(Q) p ILpsTC q)l.p,s LP(Q)e

cA p
= (—||<P1 p,s”sz(Q) - ?”(’)l.P,slle(Q)) <0.

Since _#(0) = 0, we deduce vy # 0. From the Gateaux differentiability of ¢, we obtain that v
satisfies (2.14).
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Step 2 : Regularity and positivity of weak solutions. We first claim that all weak solutions to
(2.13) belongs to L*°(Q). To this aim, we adapt arguments from [61, Theorem 3.2]. Precisely,

let vy be a weak solution. Then, it is enough to prove that
lvollroy =1 if lvpllr <8 for some 6 > 0 small enough. (2.18)

For this purpose, we consider the function wy defined as follows

wi () = (vo(x) = (1—2"%)* for k>1.

We first state the following straightforward observations about wy(x),

wr € Wy (Q) and wip=0ae inRV\Q,

and
Wis1(X) S wg(x) a.e.in RN,
(2.19)
vo(x) < M '+ Dwi(x) for x € {wpyq > 0}
Also the inclusion
(Wrs1 >0} S {wy > 27 %Dy (2.20)

holds for all k € N.
Setting Vi := || wkllfp Q) using (2.17), (2.19) and the inequality
|x+ _y+|p < |x—y|p_2(x+ ) (x—y)

for any x, y € R, we obtain
_ p
| W1 (X) — Wi (Y] dxdy

p _
M w1 ”W;'p(Q) - )\‘[I;ZN [I%N |x— y|N+Sp
|00 (x) — voIP 2 (W11 (X) — Wi 1 (D)) (Wo(X) — v (1)) dxdy

S)\fRNfRN |x — y|N+sp

< fQ(ho(x) vg_l +Af(x, vo)) Wir1dx

<C; [f wk+1dx+f vg_lwk+1dx
{Wg41>0} {wg41>0}

_1 _4
{wierr > O} PV P+ @8+ 1) {wpyy > 01TV

sl

—

<C;

where C; > 0 is a constant. Now, from (2.20) we have

Vi = f wldx zf whdx = 2" P wg, > 0}, (2.21)
Q {Wi41>0}

k+1 -1
lwill? o, < CoF 1+ 1P vy
W@

Therefore,
where C; > 0 is a constant. On the other hand, by the Holder’s inequality, fractional Sobolev

embeddings (Theorem 2.1.3) and (2.21), we obtain
Sp

Via= [ wfdes Calwa I (250,
T S0 K ’ Wo”(ﬂ)( )
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where Cs > 0 is a constant. Hence, the above inequality
Vie1 =CHVIY forallkeN
holds for a suitable constant C > 1 and a = %. This implies that

lim Vi =0 (2.22)

k—o0
provided that

_L
lwollfp gy = Vo= C ™o =: 87

as it can be easily checked. Since wy converges to (vp—1)" a.e. in RN from (2.22) we infer
that (2.152 holds as desired. Then, we deduce that vy € L*°(Q) and [83, Theorem 1.1] provides
the CO'“(Q)—regularity of vy, for some a € (0, s]. Now, we show that vy > 0 in 0. We argue by
contradiction : Suppose that there exists xg € Q, where vy(xp) = 0, then it follows that

0>2A

|vo (X0) — vo (1) 1P 2 (v (x0) — v (1)) J
Yy
RN |xp — yIN+sp

= ho(x) vo (x%0) ™" + A f (0, 0 (X0)) = Vo (x0)*T ' =0

from which we obtain a contradiction. Thus vy > 0 in Q. Finally, starting with the case
q = p, the Hopflemma (see [50, Theorem 1.5]) implies that vy = k d*(x) for some k > 0. Next,
supposing g < p, we have that for € > 0 small enough, €, is a sub-solution to problem
(2.13). Indeed, for a constant € > 0 small enough, we have

(€d1,5,p) 97+ A(=0)5,(€d1,5p) < ho(X) (€d1,6,p) T +Af(X,€15p) INQ.

From the comparison principle (Theorem 2.5.4), we obtain € 5, < vo. Then, we deduce that
Vg = kd®(x) for some k > 0. Again by using [83, Theorem 4.4], we obtain that vy € .4}, (Q).

Step 3 : Contraction property (2.15). Let v, v, € ./%53 (Q) be two weak solutions of (2.13)
associated to h; and h; respectively. Namely, for any ®, ¥ € W we have

—_ p-2 _ _
f qu_1®dx+)\f f [v1(x) = v1 (WP (V1 (%) = v1(P) (D (x) = D(Y) dxdy
Q RN JRN |x — y|N+sp

:f hlvf_1<l>dx+)\f f(x,v1)®dx
Q Q

and

_ p—2 _ _
f qu—lwdxﬂ\f f [v2(x) — v2(y)] (vz(x)N v2() (W (x) —¥(y) dxdy
Q RN JRN |x — y[N+sp

:f hgvg_l‘l’dx+)\f flx, v)¥dx.
Q Q

Since v, Vs € ./%;S Q) mWé’S(Q), we obtain that
Wl -v)t W -v]”
B q-1 "’ B q-1
vy Uy

are well-defined and belong to W.
Subtracting the two expressions above and using (H2) and Lemma 2.1.8, we obtain

f((uf—u;’ﬁ)zdxsf (h - ha)(v] - v dx.
Q Q

Finally, applying the Holder inequality we obtain (2.15). O

44



Chapter 2. Existence and global behaviour of weak solutions to (DNE)

Remark 2.2.3. Inequality (2.15) implies the uniqueness of the weak solution to the problem
(2.13) in the sense of Definition 2.14 in .4} (Q).

From Theorem 2.2.2, we deduce the T-accretivity of 7 (see (2.11)) as follows.

Corollary 2.2.4. Let A >0, g € (1,p], f: QxR" — R" satisfies (H1), (H2), (H6). Assume in
addition that hy € L*°(Q) satisfies (H8). Then, there exists a unique solution u € C(Q) of the
problem

u+AJ u=hgy in;
u>0 ing; (2.23)
u=0 inRV\ Q.

Namely, u belongs to sz N J%;iq(ﬂ), and satisfies

f uWVdx
Q
1-q

)\f f 19 () — 119 (3| P2 (9 (x) I/q(y))((u T W) (x) — (u 7 ‘P)(y))
+
RN JRN

|x — yIN+sp dxdy 224

/ 1-q
:f ho‘I’dx+)\f fe,ut’Nu vdx
Q Q

for any V¥ such that
1M e L3 (Q) nW, P (Q). (2.25)

Moreover, if uy and u, are two solutions of (2.23), corresponding to hy and hy respectively, then
I — u2)* Ml < N (21— w2 + AT () — T (2)) Nl 2 (2.26)

Proof. We define the energy functional £ on VY NL?(Q) as £(u) = _# (u'/9), where _¢ is defined

in (2.16). Let vy be the weak solution of (2.13) and the global minimizer of (2.16). We set
—,9

up = v,. Then

o e VYN ).

Let ¥ = 0 satisfy (2.25), then there exists ) = fH(¥) > 0 such that for 7 € (0, tp), up + t'¥ > 0.
Hence, we have

0SE,(L£0+I“P)—E,(L£()) (f (t¥Y) dx+2tf uo\de)—lf thoWdx+

AU f |(u0+t‘l’)l/q(x)—(uo+t\I’)”q(y)Ipd p _/ f |(uo)”q(x)—(uo)”q(ynpdxdy
RN JRN |x — y|N+ps RN JRN |x — y|N+Ps

—)\(f F(x,(uo+t‘lf)”‘7)dx—fF(x,(uo)l/q)dx).
Q Q

Then dividing by ¢ and passing to the limit £ — 0, we obtain that u satisfies (2.24). On the

other hand, consider u, € VY n.« 1/‘7(9) a solution satisfying (2.24). Thus v, = ui/ satisfies
(2.14), by Remark 2.2.3, we deduce v1 = vy. Finally, (2.26) follows from (2.15). O
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2.2.2 Potential /1y € L*(Q)

In this subsection, we extend the existence results above.

Theorem 2.2.5. Assume that f satisfies (H1), (H2), (H6). Then, forany1 < q < p,A >0
and hy € 12(Q) satisfies (H8), there exists a positive weak solution v € W to (2.13). Moreover
assuming that hy belongs to L” (Q) for somer > %, v € L*°(Q). Moreover, let vy, v, be two weak
solutions to (2.13) associated with hy, hy € L?(Q), respectively, satisfy (H8). Then, we have

I = v Iz < 1(hy = ha) Fll 2. (2.27)
Proof. Let fzn € C%(Q), fzn >0 with fzn — hp in L?(Q), we take h,, = max(I:Ln,)\ﬁ). By Theorem

2.2.2, for any n = ny, define v, € C**(Q) n.#},(Q) as the unique positive weak solution of
(2.13). Then, for any ¢ € W,

_ p—2 _ —_
f Uf,q_ltpdx+)\f f [V (x) Vn(J/)| (Vn(X) = v (M) (P(x) — (1) dxdy
Q RN JRN

_ y|N+sp
Sl (2.28)
:f hy, UZ_lcpdx+)\f f(x,vy)pdx.
Q Q
One has
(a-b)*" <(a"-b")* foranyr=1,a,b=0 (2.29)

from which together with (2.15) it follows for any n, m € N*,

/ /
In = vm) ¥ ligza < N = Vi) 15T < 10— R 13,7,
Thus we deduce that (v,) converges to some v € L?7(Q2). We infer that the limit v does not
depend on the choice of the sequence (h,). Indeed, consider h,, # h;, such that h, — hg in
12(Q) and #,, the positive solution to (2.13) corresponding to &, which converges to 7. Then,
forany n e N, (2.15) implies

Iy = oD 2 < 1y = ) T2

passing to the limit we obtain 7 = v and then by reversing the role of v and #, we obtain 7 = v.
For n € N*, let h,, = min{hg, nAh}. So, it is easy to check by (2.15), (v;) nen is non-decreasing
and for any n € N*, v,, < v a.e. in Q which implies

vx)z21r1(x)=cd’(x)>0 inQ (2.30)

for some c independent of n. We choose ¢ = v, in (2.28), by the Hélder inequality and (2.17),
we obtain

|vn(X) = vn ()P q
f[RNf[RaN x— yN+sp dJCdJ/SC[” Un”qu(Q)(”hn”LZ(Q)+1)+” Unlli2a(q) (2.31)

where C does not depend on n. Then, we deduce that (v,),en is uniformly bounded in
W, (Q). Hence,

N+sp

x—yl ¥

— p—2 — !
{ 102 (X) = Un W77 (W () = Un(y)) } is bounded in L” (RN x RY)
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where p’ = p 1 and by the point-wise convergence of v, to v, we obtain

|V (%) = v (WIP 2 (0 (x) — vr (1)) v - vNIP2(w(x) — v(y) ae in RN xRV,

Nesp Nesp
lx—yl ¥ lx—yl »
It follows that
[0 (0) = vaWIP 2 Wn () =02 (1) 10(0) = v(IP2 (0(x) = ()
lx—yl # lx—yl #

weakly in L” (RN x RN). Then, since ¢ € W =W, "” (Q) N L*7(Q), we obtain

1V, (X) = v (NP2 (1, (%) — v, (1)) (@(x) — @(1))

,111_1}30 RN JRN |x — y|N+sp dxdy
— p-2 — _
:f f [lv(x)—vMIP = (v(x) —v()(@x) — () dxdy.
RN JRN |x — yINFsp

With similar arguments by the Holder inequality, (vn )neN and (h,vi~ )neN are unlformly

bounded in LZq 1(Q). By (2.17), we infer that f(x, v,;) are uniformly bounded in L‘f T (Q) and
fx,vn) = f(x,v) ae. in Q. Since ¢ € W = W” (Q) nL?9(Q), we obtain

lim viq_lcpdx:f 20-1pdx, 11mf hovl~ (pdx:f hv? lodx,
Q Q

n—oo Q

1imff(x,vn)q)dx:ff(x, v)pdx.
Q Q

n—oo

By passing to the limit in (2.28), v is a weak solution to (2.13). Finally, the fact that v € L*°(Q)
follows from Corollary 2.5.3. O

From Theorem 2.5.4, we obtain the following result.

Corollary 2.2.6. LetA >0, g€ (1,p], f: QxR* — R* satisfy (H1), (H2), (H6). In addition
suppose that hy € L2(Q) nL"(Q), for some r > % and satisfies (H8). Then, there exists a unique

solution u of problem (2.23). Namely, u belongs to Vj NL>(Q), satisfies (2.24) for any ¥
satisfying (2.25) and there exists ¢ > 0 such that u(x) = cd*?(x) a.e. in Q. Moreover, if u; and u;
are two solutions to the problem (2.23) associated with hy, hy € 12(Q) satisfy (H8), then

[| (r = u2)* ;2 = || (ua = w2 + AT (1) = T () || 2.« (2.32)

Proof. The existence of a solution v in Theorem 2.2.5 can be obtained by a global minimiza-
tion argument as in Step 1 of the proof of Theorem 2.2.2. Therefore, we deduce from Theorem
2.5.4 that v is a global minimizer of ¢ defined in (2.16).

As in the proof of Corollary 2.2.4, we can define the energy functional £ on V/ NnL2(Q) as &(u) =
Z Wl 9). We set ug = v . Then, ug belongs to V nL®(Q). By (2.30) we obtain ug(x) = cd*?(x)
a.e. in Q. Let ¥ satisfy (2.25), then for ¢ small enough, &(uo + t'V) — (1) = 0. By using the
Taylor expansion, we deduce that u satisfies (2.24). Finally, (2.27) gives (2.32). O

2.3 Existence of a weak solution to parabolic problem (DNE)

In light of Remark 2.1.10, we consider problem (E) and establish the existence of weak solution
when vy € ./%;s Qn Wg’p (Q). In this section, we prove Theorem 2.1.11. We begin the next
subsection with some auxiliary results.
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2.3.1 Existence and regularity of a weak solution

We divided the subsection into three main parts concerning : existence, uniqueness, and
regularity of solutions.

Existence of a weak solution

Theorem 2.3.1. Under the assumptions of Theorem 2.1.11, there exists a weak solution v to
the problem (E) (in sense of Definition 2.1.9). Furthermore, v belongs to C([0,T];L" (Q)) for any
1 < r < oo and there exists C > 0 such that, forany t € [0,T] :

Cld’x)<v(t,x) <Cd*(x) a.e inQ. (2.33)

Proof. We use the time semi-discretization method :

T
Letn*eN*and T >0. Weset A; = pes and for n€{1,...,n*}, we define t,, = nA;.

We perform the proof along four main steps.

Step 1 : Approximation of /. For n € {1,...,n*}, we define for (¢, x) € [t,,_1, t;;) X Q,
1 In
ha,(t,x) = h"(x) = — h(z,x)dz.

tJtp—

The Jensen’s inequality implies that

a2 < 1Rll2 Q-

Hence hj, € 12 (Qm), h" € L2(Q). Itis easy to prove by density arguments that
ha, — h  inL2(Qr).

On the other hand, we obtain
ha, i@ = 1BllLeo@Qp)-

Step 2 : Time discretization of problem (E). We define the following implicit Euler scheme :

% = vy and for n = 1, v,, is the weak solution of

UZ - UZ—]_ q—l s n q—l . .
A Uy +(=A)pupn=h"vy + fx,vn) in Q;
t
3 , (2.34)
v, >0 in Q;
v, =0 inRY\ Q.

The sequence (vy) =1, »* is well-defined. Indeed, existence and uniqueness of v; € cC)n
/Més (Q) follow from Theorem 2.2.2 with hy = A;h! + vg € L®°(Q) and Akl + vg > A;h. Hence
by induction we obtain in the same way the existence and the uniqueness of the solution v,,
for any n=2,3,...,n* where v, € C(Q) n.4(Q).

Step 3 : Existence of sub-solutions and super-solutions. In this step, we establish the
existence of a sub-solution w and a super-solution w such that v, € [w,w] for all n €
{0,1,2,..., n*}. First, we rewrite (2.34) as

Rl 4 A=) un = (AR + v vl T+ A (x, ). (2.35)
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As in Theorem 2.2.2, we prove that for any p € (0, 1], the problem below admits a unique weak
solution w,, € C(Q) N4 (),

-A)yw=phw?™ + fx,w)) inQ;
w=0 in Q; (2.36)
w=0 inRN\Q,

where h is defined in (H4). B
Let u; < g2 <1and w,,w,, € C(Q) n .}, (Q) be two weak solutions of (2.36). Then

f f lw,, () -w, WP, ) -w, (M@ -2(y) I
RN JRN |x — y|N*sP Y

— -1
= ulfg(ﬁyﬂl + [, w, )Pdx

and

w,, () = w, MIP2w,, (0 -w,, (M) -¥()
f f dxdy
RN JRN |x — y|NFsP

= UZfQ@ﬂﬁz_l +f(x,yp2))‘¥ dx.
Subtracting the above expressions and taking

oo Wil Wit (i, - w)”
h q-1 ’ B q-1 ’
ﬂpl wllz
we deduce that ( yp)p is non-decreasing. From [83, Corollary 4.2 and Theorem 1.1], we obtain
for some pp >0and 0 < a < s that

IIQHIICO,(X@ < C(pp) foranyp<po and ”HHHLOO(Q) —0aspu—0.

Furthermore,_ by using [83, Theorem 4.4], we can choose p < 1 small enough such that there
exists w € C(Q) N .4}, (Q) satisfies 0 < w:= w u < Vo. We infer that w is the sub-solution of the
problem (2.35) forn=1, i.e.

_ p-2 _ _
f&zq_l@derAtf f lw(x) — wIP~*(wx) — w) (@) — @) dxdy
Q RN JRN |x — y|N+sp

sAtf (hlyq_1+f(x,y))(pdx+f vl wipdx,
Q Q

for all € W and ¢ = 0. We also recall that v, satisfies

2g-1 lv1(x) = 1 (WP 2 (1 (x) = 11 () (W(xX) =W ()
fﬂvl qjdx+AtfRNfRN Xy N dxdy

:Atf (hlvf_1+f(x, vl))qjdx+f vgvf_lwdx,
Q Q

for all w € W. By Theorem 2.5.4, we obtain w < v; and then by induction 0 < w < v, in Q for
n=0,1,2,...,n*.
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Next, we construct a uniform super-solution. We start with the case g < p for which we
consider the problem

(—A); w=1 in Q;
(2.37)

w=0 inRV\Q.
As above, we can prove that there exists a unique weak solution w € C(Q) n.#},(Q) to (2.37).

1
We easily check that for some K > 0 fixed, wx = KP-! w is the unique weak solution of the
problem

-Aywxg=K inQ;
wxg =0 inIRN\Q,

and . )
¢ d(x)°KPT < wi(x) < cd(x)°Kr T, (2.38)

where ¢ > 0 is a constant. Again by using [83, Theorem 4.4], we obtain w = wx = v, for K large
enough. By (2.17) and (2.38), it is easy to prove that w is the super-solution of the problem
(A w = |hllio@w?™ + f,w)  inQ;
w>0 in Q; (2.39)
w=0 in R\ Q.

We now study the case g = p. Using (H3), we can choose for any € > 0, ry = r¢(€) > 0 large
enough, such that for r = ry,
flx,r)<erP™L, (2.40)

Let w be the solution of the problem
(A w=C+pwP™  inQ;
w>0 in Q;
w=0 inRN\Q,

with C > 0 and < Ay 5. Then, by a similar proof as in Theorem 2.2.2 step 2, we obtain
w € L*°(Q). On the other hand, by [50, Theorems 1.4 and 1.5, p. 768], we obtain that w >0
in Q and satisfies w = kd*(x), for some k = k(C,p) > 0. Finally, using [83, Theorem 4.4], we
obtain that w € J%;s (Q). By (2.40), (H5) and for C > 0 large enough and f close enough to
A1,p,s, We obtain

(=A)5(w) =C+PwP™" = Al w? ™" + f(x, w).

Hence, w = w is super-solution of (2.39). Again using [83, Theorem 4.4] and taking C > 0 large
enough, we obtain vy < w.
Then, since w = vy, w is the super-solution to (2.35) for n =1, i.e.

fwzq_l(de+Atf f [w(x) - wIP2@(x) - wy) (ex) - o)
Q n n

|x_y|N+sp

dxdy

> A, f (KW' + fx, W) pdx + f vlw pdx
Q Q

for all ¢ € Wand ¢ = 0. From Theorem 2.5.4, we obtain w = v; and then by induction we have

w= vy, foralln=1,2,3,...,n*. Finally, we conclude that w < v, <w forn=0,1,2,3,...,n%,

i.e. c1d*(x) < v,(x) < c,d®(x) in Q, where ¢, ¢; are positive constants independent of 7.
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Step 3: A priori estimates. For n € {1,2,3,...,n*} and t € [t,,_1, ;) let the functions v,, (¢) and
U, (1) be as follows :

v, (1) = Up,

- (t—th-1)

Up, (1) = —nl(vf{ - vZ_l) + vZ_l.
Ay

One can easily check that
10D
g-1YVA; _ q-1
Us, 5 =h"vy =+ f(x,va,). (2.41)

We observe now that as A; — 0, the discrete equation (2.41) converges to (E). We further point
out that there exists ¢ > 0 independent of A, such that for any (¢, x) € Qr,

¢ tdS(x) < va,, ﬁi/tq < cd®(x). (2.42)
67 _ 9
Now, multiplying (2.34) by = f Le Wé’p (Q) NL*®°(Q) and summing from n=1to n’ < n*,
v
we obtain !
i’ f W 2B} dx+ f f 10 (%) = va(NIP2(0n(x) = va (1)
=1Ja e 1 RN JRN |x — y|N+sp
qa_.4q q
UVy— U, vyl
“|[F 1)”) - (FA | dxdy
Vn Ul’l
n!
= h"(vZ - I}Z_l) dx+ Z fo _Vln) (vn UZ_l)dx.
n=1JQ n=1JQ UZ
Since v, € [w, w] c A} (Q), we have that (f(J;,_Uln) (V,Z — VZ_l)) is uniformly bounded. By
Ul’l

Young’s inequality, we have

Z

— p—2 _
) dx+ Y f f |V (%) = v (MNP~ (05 (%) = v ()
n=1JRN JRN |x_y|N+sp
q q
vn_vn_l vy—v
( Uq_l ) (x) — (q—) (y)
n Un

1 n'
Ael Rz g + 52]

X

dxdy

q_yq 2
Ay

i.e.

lifﬂ M Zd +i[ f [Un (%) = U (NIP 2 (0 (%) = va (1))
2 q ! A, X = JrN JgN |x — y|N+sp
[ dxdy

q q q q
v,—U vV, —0U
x (%) (x) — (%) )
U” Un

1
. Z”hn”LZQ
2= Q)
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where C is independent of n’. Then by step 1, we obtain

-
( g?t ) is bounded in L?(Qr) uniformly in A,. (2.43)

Now, from Proposition 2.1.2 and by Young’s inequality in the case q < p, we have

Up—1(x)7 _ Un—l(y)q
()71 vy (a1t
< | vp-10) = vpc1 | [wn () = v () |71 (2.44)
pP—4q

|V (X) = v NIP 2 (0 (%) — vp (1))

S%|Vn—1(x)—vn_1(y)|p+ |vn(x)—v,,(y)|p.

Next, for p = g we obtain

Vn1(0)P  vpa ()P
vn()P~1 wu(Pt (2.45)

1V (X) = U (WIP 2 (0p(x) = v, (%))

<|vp_1(x)— Vn—l(.V)|p-

Then, for any n’ = 1 and p # g we obtain

n'
Z (1B 2 +C

f f Vn () = vn WP _g[ f Vn1() = UnaOI”
RNJRN  x— y|NFSP Y p Jry JpN |x — y|N+sp Y

_P—clff |U"(X)_V"(y)|pdxdy].
p JrNvJry  |x— y|N+sp

For p = g, we have
f f v, (x) = Un(_V)lp dxdy
RNJRN  |x— yIN*sP

_f f |Un—l(x)_vn—l(y)|p dxdy] .
RN JRN |x — y|N+sP

!/ —_ / p _ p
cs1 ff [V (%) = v ()] dxdy—f f |vo (%) — vo(y)] dxdy]
p lIrvJry  |x— yIN*sP RNJRN  |x — y|N*sP

(vas) is bounded in L (0, T; W, ¥ () uniformly in Az. (2.46)

NI»—!

1 n'
EZ Aclh™ g, +C

Finally, we obtain

1 I’l
n
E Z |h ||L2(Q)

which implies that

l'_
Since ﬁAt:€UZ+(1—€)VZ_1,where§: n-l

537 (x) - ~“"(y)|f9d .
[I%N \/RN |x y|N+Sp X y

[V, (x) = v, (WIP |Vp—1(x) = vy (MNP
safRNfRN i +(1—a)fRNfRN p
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Then, we conclude that

(7,,7) is bounded in L(0, T; Wy” (Q)) uniformly in At. (2.47)
Thus, va; X vand ﬁi’tq X pin L°°(0,T;Wg’p (Q)). Furthermore using (2.29), (2.43),

~1/ 2 - 2
sup || vmq — VAt”qu(Q) < sup ||Das— th”LZ(Q) <CAt—0 asAtr—0. (2.48)
t€[0,T] t€[0,T]

It follows that v = 7.
Now, from (2.43), (2.47) and since Wg’p (Q) — L7 (Q) compactly forall 1 < r < py, using Theo-
rem 2.1.4 we obtain that (7;) is compact in C([0, T];L" (2)). Then from (2.48),

oar— v inC([0,T;L(Q), forl<r<p;.
Using 7, € L*°(Q2) with the interpolation inequality with p; < r < oo,
-l <Nl - II;EO‘, with a€ [0, 1],

we obtain that

ornr — v9 inC([0,T];L"(Q), forallr=1. (2.49)
Hence, from the estimate
sup llug = a, lliz) < CAN'2, (2.50)
€[0,T]
we have
var— v inL*°([0,T);L7(Q)), forallr=1. (2.51)

Hence, (2.42) implies (2.33). From (2.43) and (2.49), we obtain

q
Aj-mmmy (2.52)

Step 4 : v satisfies (E).

¢ First, from (2.46), we have

{ |va, (£, %) — va, (£, PIP2(va, (£, X) — v, (1, 1)
Nesp
x—yl *

is bounded in L (0, T; L”' (RN x RN)), where p’ = %, and by the point-wise convergence of
va, to v, we obtain as A, — 0* and for a.e. t € [0, T],
lva, (8,%) = va, (5, MIP 2 (WA, (85,X) — va, (1,1))  |v(t,X) = v(E, YIP2((t, x) - v(t, )

N+sp N+sp
x—yl ¥ x—yl ¥

a.e.in RN x RN it follows that as A; — 07,

|va, (6, %) = va, (6 VIP2 a, (6, X) = va, (6,)  10(5,0) = v PIP 2w, x) - v, y)
N+sp N+sp

=yl 7 lx=yl 7
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weakly in L”' ((0,T) x R?N). Then, we conclude that for any ¢ € C°(Qr),

foNfN |vAt(r,x)—vAt(r,y)lp—Z(vAt(r,x)—vA,(r,y))(cp(r,x)—ap(r,y))dxdydt
R R

|x — |N+sp
Y (2.53)

_)foNfN lv(t, x) — v(t, YIP2(v(t, x) — v(t, ) (9, x) — @2, 1)) dxdydr,
R R

|x_y|N+sp

¢ Next, from (2.29), (2.48) and (2.50) we have

-1 -1 -1
o = v e )—T2||V = 0T iz

< THQP v - v 2.
! L (0,T;L 91 ()
q-1
<T? |Q|2q I UA: - Uq”L"O(OTLZ(Q))
l q__l
< T% Q|2 9 _ g vn, —v9 7 0
=T21QI%7 |lvy, = Oa oo, m12e) + 108, = Vo020 | —
(2.54)

as A; — 0. By the Holder inequality, for all ¢ € C2°(Qt) we have

ov ovd
-1 Ar 1
( Uy, 2~ v~ E)(p(t,x)dxdt‘

e 1(617At ov?

A,

q-1 q-1
i 2
H ot

ot

t,x)dxdt|+
)(P( vdx L2(Qr)

L2(Qr)

and

T
ff(h”vz_l—th_l)(pdxdt
0 Ja !

T T
:f fh”(vg_l—vq_l)(pdxdt+f f(h”—h)vq_lcpdxdt
0o Ja g 0 Jao

-1

= H ' 2ol vt - v v o llizgnl 2" =l g -

L2(Qr)

Then from (2.43), (2.51), (2.52), (2.54) and Step 1, we obtain

617 v
f f(Atl - q_l—aut)tp(t,x)dxdtqo, (2.55)
ff(h"vzt_l—hv"_l)(p(t,x)dxdt—>0 (2.56)
0 JO

as Ay — 0. From (2.51), we have f(x,va)¢p — f(x,v)p a.e. in Qr, (up to a sub-sequence).
Furthermore from (2.17) and (2.42), (f(x, va;)) is bounded in L2(Qr) uniformly in At. Then,
by the dominated convergence Theorem, we obtain

T T
fff(x,vm)(pdxdtﬁf ff(x,u)(pdxdt, asA;— 0. (2.57)
0 Ja 0 Jo

Finally, gathering (2.53), (2.55), (2.56),(2.57) and passing to the limit in (2.41) as A; — 0%, we
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conclude that v satisfies (E), i.e.

T
ff@t(vq)v"_lcpdxdz
o Ja

+fo f lv(z,x)— v(z, PIP2(0(z,x) — v(z, )@z, X) —@(z,7))
o JrNJRN |x — y|N+sp

dxdydz (2.58)

T
:f f(h(z,x)v"_l-i-f(x, )pdxdz
o Jo

for any ¢ € C(Qr). Since C(Qr) is dense in L?(Qr) N L' (0, T; W, " (Q). Hence, we conclude
that (2.58) is satisfied for any ¢ € L(Qr) L' (0, T; W, ” (). O
Uniqueness

Proof of Theorem 2.1.12. We again use the Picone identity. Let v and w be two weak solutions
to (E) with % and h respectively. For € € (0; 1), we set

. (v+e)9—(w+e)d . (w+e)9—(v+¢e)?

2.
(v+¢€)q-1 ’ (w+¢€)q-1 (2.59)
® and ¥ belong to L?(Qr) N L' (0, T;W,” () and for any ¢ € (0,T],
t
ffat(vq)vq_lq)dxdz
0 JQ
t _ p—2 _ _
+ff f lv(z,x) —v(z, PIP = (v(z,x) — v(z, ) (P(z, x) — D(z,y)) dxdydz
0 JRN JRN |x — y|N+sp
t
=f f(h(z,x)vq_1+f(x, V)Ddxdz
0 JQ
and
t
ffat(w")wq_l‘lfdxdz
0 JQ
t _ p—2 _ _
+ff f lw(z,x) —w(z, PIPF=(w(z,x) —w(z, y)(¥Y(z,x) - ¥(z,) dxdydz
0 JrN JRN |x — y|N+sp

t
:f f(ﬁ(z,x)wq_1+f(X, w)¥dxdz.
0 Jo

Summing the above equalities, we obtain I = Jc where

(0Dt (w ) wi ! . ,
Ie_fo fQ( (v+e)d1  (w+e)dl )((v+e) —(w+e)Ndxdz

+ftf f lv(z,x) — v(z, PIP 2 (v(z,x) - v(z,))
0 JRNJRN |x — yIN+sp

w+e9(z,x)-(w+e)9(z,x) w+6)(z,))-(Ww+e)(zy)

— — dxdydz
(v+€)971(z,x) (v+e)971(z,y)
+ftf f |w(z,x) - wiz, IPF>(wiz,x) - w(z,y)
0 JrNJrN |x — y|N+sp
q - q q - q
(w+¢€)7(z,x) _(V+€) (z,x) (w+e)¥(z,y) _(V+€) (z,¥) dxdydz
(w+€)77(z,x) (w+€)77(z,y)
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and
hyd1 hw1
(w+ed-1 (w+ed1

fv)  flw)
(v+€)d! (w+ed!

e[ ),
L),

. ) . v
First, we deal with I.. Since —,
V+E W+E

)((v+e)"—(w+e)") dxdz

) (v+e)?—(w+e)Ndxdz.

<land v, w e L*®°(Qry),

o,(vHvi 1 B, (whHwi!

(v+e€)d-! (w+e)d-1

|(v+e)7—(w+e)T| < C(|0, (D] + 0, (w))

where C does not depend on €. Moreover as € — 07,

(at(v")v"‘l 0, (whHwi1

1
- 9- 7y 29, (v9 — w)?
(U+€)q—1 (w+€)q_1 )((V+€) (w+¢e)7) Zat(y we.

Therefore, by the dominated convergence Theorem and Lemma 2.1.8, we obtain

t
liminfl, = — f f@t(vq—w")zdxdz.
0o Ja

e—0

Next, dealing with J., dominated convergence Theorem implies

li ho?™ hwd q Yaxdz= [ [ (h-R)w" - whdxd
eg%ff T (w+€)q_1)((v+e) —(w+e))dx z—fo fQ( —hWw"—-wdxdz.

Moreover, by using Fatou’s Lemma, we have

t
liminff f v (w+e)‘7dxdzzf f(x,_v) wldxdz,
(v+ed-1 -1

€—0 oJa v

t
liminff f fx,w) (v+e)”’dxdzzf f(x,_w) vidxdz.
=0 o (w+edt 0 Jo wit

Hence gathering the three limits above and from (H2), we obtain
t ~
liminfJ, < f f (h-h)w!-wdxdz.
€—0 0 JO

Since I =Je, using Holder inequality we conclude that for any ¢ € [0, T],

1 t t _
—f f@t(v"—wq)zdxdzsf Ih= Al llv? — w2 dz
2Jo Ja 0

and by Gronwall Lemma [28, Lemma A.5], we deduce (2.10). O

The uniqueness of the weak solution in sense of Definition 2.1.9 in Theorem 2.1.11 is a
consequence of Theorem 2.1.12. Precisely, we have the following Corollary.

Corollary 2.3.2. Let v, w be weak solutions of (E) in sense of Definition 2.1.9 with the initial
data vy € L?9(Q), vg = 0 and h € 1>(Qr). Then, v = w.

We use Theorem 2.3.1 and Corollary 2.3.2 to infer the existence result concerning the
parabolic problem involving the operator 7.

56



Chapter 2. Existence and global behaviour of weak solutions to (DNE)

Theorem 2.3.3. Under the assumptions of Theorem 2.1.11, for any the initial data uy such that
”q €M, L@n Wg'p (Q), there exists a unique weak solution u € L>°(Qr) of the problem

oru+Iau=h inQr;
u>0 inQr; (2.60)
u=0 onT; '

u0,)=uy inQ.
In particular,
e ul'7e1®(0,T;Wy" (), 8,u € L?(Qr);
* there exists ¢ > 0 such that for any t € [0, T];

cl'ds(x) < uV9t,x) <cd’(x) ae inQ;

e foranyte€[0,T], u satisfies

t
ffatu‘l’dxdz+
0 Jo

te Mz 0 - ut 9z, P2 (Ul (2, x) — ut 9z, y))((ul_Tq W)(zx) - (1 7 )z, )
_[ jl;zN |x—y|N+3P

dxdydz

¢ t -
:f f h(z,x)‘I’dxdz+f ff(x,u”q)uTq‘dedz,
0 Ja 0 Ja

for any ¥ € L?(Qr) such that
1|19 e L0, T; Wy P () nL®(0, T; L ().
Moreover, for any 1 < r < oo, u belongs to C([0, T];L" (Q2)).

Proof of the above theorem follows straightforward from Theorem 2.3.1 and Corollary 2.3.2.

Regularity of weak solutions

Theorem 2.3.4. Under the assumptions of Theorem 2.1.11, the weak solution v, of (E) obtained
by Theorem 2.3.1, belongs to C(0, T; Wy” (Q)) and for any t € [0,T] satisfies

L avq 2 q p
f f(ﬁ) dde'l‘—”U(t)”Ws,p(Q)

f(x,v)ovd p
ffh(—)dxd +ff p —d dz +—||v0|| WP ()"

Proof. Since v e L™ (O,T;Wg'p(Q)) NL*®(Qr) and 0,v9 € LZ(QT), by Theorem 2.1.4, we obtain
that v belongs to C([0, T];L" (Q2)) for any r = 1. From the Sobolev embedding (Theorem 2.1.3),
we have that Wg’p (Q) is compactly embedded in L (Q2). So we deduce that v: [0, T] — Wg’p Q)
is weakly continuous. Therefore, for any ¢, € [0, T],

” U(tO) ”WS’p(Q) = h?—l»ltglf” v(t) ”Wé'p(Q)‘ (2.61)
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51
Multiplying (2.34) by

q
-V

= 11 Lew, integrating over RN and summing from 1 < n =N’ to
v
N"” < n*, we obtain "

NZ” dx+ f f |V (X) = (NP2 (0 (X) = v (1))
= o JRN JRN |x — yIN*+sp
q q q
Un =V, U, —U
(T) (X)—(q—)(J/)
n n
NN

N’ vy—v'_ f(x,vy) vl — vl
_ n n n—1 »Vn n n—1
= E Atfgh (—At )dx+At E — ( A, dax.

1
n=N'vQ UZ

dxdy

<{
{Q

Now, from (2.44) and (2.45), we obtain

2
N q _ Uq p p
Z A—t X + P ” UN/ ” sp(Q) ” UN"-1 ”Wg'p(Q)

n=N (2.62)
q

/ q
% Atf 0" Un=Vy 4
n=N" Q A¢

For any t € [fy, T], we choose N’ and N” such that N'A; — t and N"A; — fy. By (H7), then
(2.62) gives

- p
[ [ Grrazaz+ Livont,,

f(x,v)ov9 p
ftofh(—)dxd +ftofﬁ_d xdzt T g

Taking limsup in (2.63) as t — t; and by (2.61), we obtain

IA

N” q_ q

X,V v v, _

dx+0; ) I q_ln)( - x L 1)dx.
n=N'JQ v, t

(2.63)

v (o) ”Wg’p(Q) = [lir?* lv(t) ”WS’F’(Q)
0
and hence the right-continuity of v : [0, T] — W, " (Q) follows.
Now, for proving the left continuity, consider 0 < n < ¢ — fy, multiply (E) by
Uq(+n’)_ Vq( )

3 ) 2 1y TSP
W= " € L(Qr)NL (0, T; W, " (€))

and integrate over (1, t) x Q. Using Proposition 2.1.2 and Young’s inequality again, we obtain

t

(IIV(Z+n)II” —llv@)|P dz

”’(Q))

t
a-13 (1,4 q
ftofgv 0;(v )Tnvdxdz+p SP ()

NJeg

t t
2[ fth_lTnvdxdz+f ff(x,v)rnvdxdz.
o JQ o JQ
It follows that

! q-1 q q o o P
ftofgv 0;(v )TanXdZ-i_ﬁ(ft lv2)? Sp(Q) [t lv(2)l sp(Q)dz)

0
t t
2[ fhv"_l'rnvdxdz+f ff(x,v)'rnvdxdz.
o JQ o JQ
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By the right continuity of v: [0, T] — Wg’p (Q2) and by dominated convergence Theorem, as
n— 0" we have

t+1)
4 f l@I?, %uvmn’”

> ”(9) Py’

to+
q o+1

@17,  dz— %n vl

(o)) @’

4]

Hence as 1 — 07, (2.64) yields

q
ff(a” ) dxdz+z||v(t)||ps,p
" WP (@)

q q
f f (61/ )d dz+f Mav dx dz+—||l/(to)||p
to fo

o vl or W@’

From the above inequality, we deduce that the equality in (2.63) holds and the left-continuity
ofv:[0,T] — Wg'p(Q) follows. O

2.4 Stabilization

2.4.1 Existence and uniqueness of the solution of the stationary problem
(St) related to (E)

In this subsection, we deal with the stationary problem in order to determine the asymptotic
behavior of trajectories to (DNE). Precisely, we consider the following problem :

(-A)v=bx) v+ f(x,v)  inQ;
v>0 in Q; (St)
v=0 inRY\Q,
where b € L*°(Q2) and non-negative. We define the notion of a weak solution as follows.

Definition 2.4.1. A positive function v € Wg'p (Q) NL>(Q) is called a weak solution to (St) if

f f lv(x) — v(N)IP2(0(x) — v(P) (@(x) — ()
RN JRN

— q-1
|x_y|N+sp dXdy = L(b(x)v +f(X, v))(pdx

(2.65)
for any ¢ e W, 7 (Q).

Theorem 2.4.2. Assume that f satisfies (H1)-(H3). Let g € (1, p]. In addition if q = p suppose
that |blleo < A1,p,s. Then, there exists a unique weak solution v € C(Q) N A Q) to (St).

Proof. By following the same arguments as in Theorem 2.2.2, we deduce the existence of a
non-negative global minimizer to the following energy functional

—v)IP
Pw=L f f lv(x) —vI? dxdy—l[ b(v*)"dx—fF(x,v)dx,
RN JRN qJao Q

|x y|N+ps

where F is defined in (2.16). Then, as in the proof of Theorem 2.2.2 step 2, we infer that
v € L*°(Q)). Furthermore, by using [83, Theorem 1.1], there is a € (0, s] such that v € Co(Q).
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Next, by [50, Theorems 1.4 and 1.5, p. 768], we obtain that v > 0 in Q and satisfies v = k d*(x)
for some k > 0. Finally, [83, Theorem 4.4] implies that v € ./, (Q).

q q q q
-V v, —v
! q_12 and —2 q_ll as test
Uy )
functions in (St) satisfied by vy, v, respectively. Then adding the equations, we deduce from

Lemma 2.1.8 and (H2),

v

Let vy, v, € C(Q) N4}, (Q) be two solutions of (St), we choose

ff 01 (0) = v IP 201 () — v () [ (0] = vF - vy - vf W)
RN JRN |x — yIN*sp vf_l g v! Y

1
q_ .49 q_ .4
(Uz L )(x)—(”2 q_’fl)(y)
Vs $)

Again by Lemma 2.1.8, for 1 < g < p, we obtain v; = v, in RN. While for g = p, we have
v1(x) = kv2(x) a.e. in RN, for some k > 0. Without loss of generality, we can assume that k < 1.
Then from (H2) we obtain

e - V(NP2 (02(x) — v2 (1))
Ix_y|N+sp

) dxdy=0.

(=A)5 (k) = kP~ (=A)5 (v2) = kP (b vy~ + fx, v2)) < b)) (kv) P~ + f(x, kva)

= (=), (1)
which yields a contradiction. Hence k =1 and v; = v. O
Next, as in the proof of Corollary 2.2.4, we obtain the following result.

Corollary 2.4.3. Under the conditions of Theorem 2.4.2, there exists one and only one weak

solution ue VY n J%;S/q (Q) to the following problem

Tqu=>b inQ;
u>0 inQ; (2.66)
u=0 inRN\ Q.

Furthermore,

f |9 (x) — M9 () |P~2 (w9 (x) - u”‘uy))((ul_Tq\P) (x) - (ul_Tqu))
n Rn

|xx — y[N*+sp axdy

1-q
:f b‘I’dx+f fooutDu™a Wdx
Q Q
for all V¥ satisfies (2.25).

2.4.2 ProofofTheorem2.1.13

We are ready now to prove our stabilization result by using the same approach as in the proof
of [75, Theorem 3.10].

Proof of Theorem 2.1.13. We consider two cases.
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Case 1: h = ho,. We introduce the family of operators {S(¢) : ¢ = 0} defined on V7 n ./%;iq

as w(t) = S(f)wy where w is the unique solution (obtained in Theorem 2.3.3) to

Q)

0w+ T yw = hoo in Qr;

w>0 in QT;
3 (2.67)
w=0 onlIr;

w(0,-) = wy in Q.

Thus, we claim that {S(#) : £ = 0} defines a semi-group of contractions in L2(Q). Indeed, from
the uniqueness and above properties of solutions to problem (2.67) we infer that for any
wo VI N9,

S(t+2)wy =S(1)S(2) wy,
(2.68)
S (0) Wwo = Wy.

From (2.49) and (2.51) the map [0,00) 3 t — S(£) wy is continuous and T-accretive L?(Q). Note
that ¥ = (S(£)wy)'/9 is the solution of (E) with h = h., and the initial data wé/q.
Let us denote v the solution of (E) with h = h,, and the initial data vy. Hence we obtain
u(t) = v =S(t)ug with uy = vg. Let w = w, be the solution of (2.36) and w = w or the
solution to (2.39) if g = p. Then, w,w e /%(}ls(Q) and for p small enough and K large enough,
w is a sub-solution and w a super-solution to (St) with b = hy, such that w < vy < w. We
then define u(t) = S(¢f) w9 and u(r) = S(t)w’ the solutions to (2.67). Therefore, u:=(v)9and
u := (v)¥ are obtained by the iterative scheme (2.34) with vy = w and vy = w. Hence, by
comparison principle the maps ¢ — u(f) and ¢ — u(#) are respectively non-decreasing and
non-increasing. In the other hand, (2.9) ensures that for any ¢ = 0,

w=u(t) < u() <) <w. (2.69)

Weset u = tlim u(t) and U, = tlim u(t). Then from (2.68), we obtain
—00 —00

U= lim S(r+ 2w =S(1) lim (S(2)(w?) = S(Nu,

Too = lim S(t+ 2)w? = S(r) lenc}o(S(z) W) = S(1)Uoo-

Z—00

This implies that u__ and U, are the stationary solutions to (2.66) with b = h,. By uniqueness,
we have Ustat 1= U, = Uoo Where Usa is the stationary solution to (2.67). Therefore from (2.69)
and by dominated convergence Theorem, we obtain

||u(t)—ustat||Lz(Q) —0 as t — oo.
Thus using (2.69) and the interpolation inequality with 2 < r < oo,
< DSl 157,

we obtain, the above convergence for any r = 1.

Case 2: h # hy. From (2.12), for any € > 0 there exists ) > 0 large enough such that
Ja izdt <eand forany t = 1,

I(ONIh(t,) = hoollz@q <M for some M > 0.
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Let T > 0 and v be the solution of the problem (E) obtained by Theorem 2.3.1 with & and the
initial data vy = ué/q and set u = v9. Since v satisfies (2.33), we can define #(f) = S(t + ty) ug =
S(f)u(ty). Then, by (2.9) and uniqueness argument, we have for any ¢ > 0,

t
et + to,-) — (e, ')||L2(Q) 5[ lh(z+ to,") — hoo||L2(Q)dZ
0

+oo ]
< Mf ——dz<Me.
to l(Z)

By Case 1, we have #i(f) — ugiqr in L2(Q) as t — oco. Therefore, we obtain
” u(t) - ustat”L2(Q) —0 ast—oo.

Using again the interpolation inequality above, we conclude the proof of Theorem 2.1.13. O

2.5 Appendix

2.5.1 Regularity results

The first one is obtained by a similar proof as in [61] (see also [75]).

Proposition 2.5.1. Letu € Wg'p (Q) satisfying

f f lu(x) — w(P)IP~2(w(x) — u()) (P (x) =¥ ()
RN JRN

x— y[N+sp dxdy=fﬂf(x, WY dx (2.70)
forall'¥ e W, (Q), where f satisfies for all (x, 1) € Q xR,

If(x,Dl<C+t]"™"), VxeQ, 1<r<p.
Then u e L°(Q).

Proposition 2.5.2. Let 1 < q < p. Assume that u € W and non-negative satisfying for any
YeW,

f f lue(x) — w(y) P72 (u(x) — u()) (¥ (x) = ¥ ()
RN JRN

— -1
|x_y|N+sp dXdJ’—thuq Ydx (2.71)

where h € 12(Q) N L7 (Q) with r > max{1, %} and h=0a.e. inQ. Then ueL>*°(Q).

Proof. We follow the main steps in the proof of [27, Theorem 3.1]. For every 6 > 0, we define

us = u+ 0. Given f§ = 1, we insert the test function y = ug — 8P in (2.71), then we obtain

f f l(x) — w(x) P2 (u(x) — u(x)) (us (0P — us ()P
RN JRN

-1,P
N dxdysfﬂhuq us dx.

By using the inequality in [27, Lemma A.2], we obtain

( )[5+p—1 ( )ﬁ+p—1 p

uslx P —Us ¥y p

p

Lf f dxdysf hut'uP dx.
B+p—1)P JpNJpN |x — y|N+sp Q 5
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By Theorem 2.1.3, we obtain

Brp-l  pep-1)P5
fg(us(x) P -3 7 ) dx <CNspf fRN X =y dxdy.

By the triangle inequality, the left-hand side of the above inequality, can be estimated as

ptp-1yPs p/ps p+p-1 Bip-1 ps p!ps o1 Ip*
f(u6 P ) dx < f(u6 P8 » ) dx + 8PPl QP Ps
Q Q

On the other hand, we use the inequality ugw i

> §P~ 4 u§+q_1, Holder and interpolation
inequalities, for r > % and with the observation that p < pr’ < p;, where r’ = -5 to obtain

ptp-1\ PT
fhuq‘lugdxsfsq"’f hul Pt dx < 8Tl (f (u5 P ) dx)
Q Q Q

(2.72)

pa

p+p-11 Ps Py . 1-a
<877 P|h|yr (f (u6 P ) dx) (f u§+ﬁ_ dx)
Q Q

1 a l1-a
Where—,:—+ "
pr-p Ps

and 0 < a < 1. Using Young’s inequality,

pepet\ P\ PIPS
e(f (uS P ) ) dx—i-Cef u§+ﬁ_ldx
Q Q

f Bt~ dx <877 |kl
Q

. N
with C¢ = € a1, it is easy to see that

[3 p Q

Taking
= >0,
ZCN,s,p”h”L’ p+6_1
we obtain
Brp-1 p!ps C +B—-1 P
W, ” Widx| < N‘”’(p P )p[ﬁq—P||h||ch€+|Q|vé‘ [ w1,
Q 5 § p q )

We then choose
L (L1

= (Cell hllLr) TP 7107 7 5 0

and set v= 0+ p — 1. Then the previous inequality can be written as

( fQ ué%J“dx)@s UU(%)M( fQ ugdx)l/v

with C = C(N, s, p) > 0. We now iterate the previous inequality, by taking the sequence of

exponents
x4\ n+1
vo=1 and v,4; = (ps)vn—(&) .
p p

A |

ClQ|»
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We have

I L
n=0 VY =0\ Ps ps—P
105"
[T{=] <oo
n=0\ P
By starting from 0 at the step n we have

P

ClQ|7s

Z?Oul n i £
H( ) |u8||L1(Q)

By taking the limit as n approaches oo, we finally obtain

lusllona @) <

/ !

lusllio) < — lluslliiq < — Ulullyiq) + 6120

for some constant C' = C'(N, p, s) > 0. 0O
Combining Proposition 2.5.1 with Proposition 2.5.2, we have the following corollary :

Corollary 2.5.3. Letl < q < p. Assume u € W, non-negative and satisfying for any non-negative
YeW

_ lu(x) — u(y) P2 (w(x) — u(y) (¥ (x) - ¥)
2q-1
fgu ‘I’dx+fRNf[RN dxdy

|x_y|N+sp
sf (f(x,w) + hut Hwdx
Q

wheref satisfies for all (x,1) € Q xR, | f(x,1)| < CA+ 7)) and h e 12(Q) nL"(Q) with r >

max{l, Sp} Then u e L°(Q).

2.5.2 Comparison principle

Following the proof of [10, Theorem 4.3] and using Lemma 2.1.8, we have the following new
comparison principle.

Theorem 2.5.4. Assume f satisfies (H1), (H2). Let v,v € WN L*°(Q) be non-negative functions
respectively sub-solution and super-solution to (2.13) for some hy € (L" (Q))* withr = 2. Then
vV=T.

Proof. For any non-negative pair ®, ¥ € W we have

fvzq—lq)dx_i_)\f f 200 — 2P @) (@) -2 dxdy
Q- RN JRN

|x y|N+sp

s[ hqu_1®dx+)\f flx,)®dx
Q Q

and

f TN gy A f f V) -T2 @) - PGNP P
Q RN JRN |x — yIN+sp Y

zf hoi"_l\l’dx+)\f fx,)¥dx.
Q Q
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Subtracting the above inequalities with test functions

_((y+e)"—@+€)q)+ _((v+e)q—(y+e)‘f B
- (v+e€)d-1 ’ B (v+e)d-!
with € € (0,1), we obtain

U2q—1 3251—1

f{yﬁ} ((£_+ S (7+e)q‘1) (w+e)-@w+ehdx

o f f lv(x) — v(MIP2(v(x) - v(3))
{v>7} J{v>7}

|x_y|N+sp

) +e)-wx)+e)1 Wy +e)-(wy) +e)1
(v(x) +€)9-1 (v(y) +€)9-1

— = p_z =
+Af f [v(x) —v(MIP = (W(x)—v()
{v>7} J{v>7}

|x_y|N+sp

]dxdy

@) +e)1-wx)+e)1 @y +e)-(v(y) +e)1
(V(x) +e)971 @(y) +e)9-1

]dxdy

Bq—l vq—l
<

B £2>3} ho((y+e)q—1 B (T +e)d-!

+)\f ( fx,v) fx,7) )((y+e)‘7—(i+e)‘7)dx.
{v>7}

) (v+e)9-@+e)Ndx

W+ 1 (T+e)d]

. v v . _ .
Since —— < —— < 1in {v > 7}, we obtain
v+e T+e -
p24-1 224-1 B
= - — (v+e)?—-w+e)
v+ 1 (w+ed 1| =

- (zq((zjvr e))q_l _vq(@i e))q_l) (v+e)T-W+e)7

<vli((v+e)T-@+e)NH <vi@+1)1.

In the same spirit, we infer that

pa-1 971
0<hy (v: 91 Groid (v+e)T—W+e)?) <hy(v+1)9.
Moreover, as € — 0, we have
U2q—1 qu—l
((v_-l-e)q-l - (me)q—l) (w+e)?-@+e)) — @' =797,

yq—l vq—l
0 _
v+e)dt (W+edl

)((y+e)q— @+e)? —o0.

Then, by the dominated convergence Theorem, we have

U2q—1 qu—l 5
lim = - — ((v+€)q—(?+e)")dx:f (w7 -vN%dx
€=0J{r>7} ((K"‘e)q_l (U+€)q_l) - >

(2.73)

(2.74)
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and
vt !

lim

=0 {2>?}ho((y+€)‘7‘l (?+e)q—1)((3+€) (v+€)")dx=0.

Then by Fatou’s Lemma and (H1), we have

. flx,v)
—liminf _
e—0  Jys7) (U+€)7] v
f(x,v)

X,V
—liminf _f(—)_l(v+e)qus—f ——vdx,
€e—0 v>v} (v+e)d— — >} v4 -

T 30 41,

@+e)dx< —f

wsm vI71

lim f,v)(v+e)dx= fx,vvdx,
e~0J@>u) {r>v}

lim fx,v)(v+e)dx= fx,vvdx.

e=0Jw>p} w>v}

From Lemma 2.1.8, we have

f f lv(x) — v P2 (v(x) — v(y))
w>u Jiv>7} |x — y|N+sp

v +e)1-x)+e)1 Wy +e)9-wy) +e)1
(v(x)+€)9-1 (v(y) +e)a-1

s f f 7(x) — 7P (0(x) - V()
{v>v J{v>1}

|x_y|N+sp

]dxdy

T +e)T1-wx)+e) @Y +e)T-(wy) +e)1
(w(x)+e)q! @(y)+e)d-!

dxdy=0.

Therefore, plugging (2.74)-(2.80) and taking limsup in (2.73), we obtain from (H2),

e—0

(f(x’g) _ f(x)v)

05[ T -1vN%dx <\
(> va-1 7971

)(y"—?q)dxs 0

{v>7}

from which v < v follows.

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)
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CHAPTER 3

DISCRETE PICONE INEQUALITY AND
APPLICATIONS TO NONLOCAL AND NON
HOMOGENENOUS OPERATORS

This chapter includes the results of the following research article :

¢ J. Giacomoni, A. Gouasmia; A. Mokrane; Discrete Picone inequalities and Applications to
non local and non homogenenous operators, submitted to Rev. R. Acad. Cienc. Exactas Fis.
Nat. Ser. A Mat. RACSAM.

Abstract :

In this chapter, we prove new discrete Picone inequalities, associated to non-local elliptic
operators as the fractional p—Laplace operator, denoted by (-A),, u and defined as::

w0 — w7 (i) - uy)

(—A); ux) := 2P.V.f dy,

RY |x~y|

where p > 1, 0 < s < 1 and PV. denotes the Cauchy principal value. These results lead to
new applications as existence, non-existence and uniqueness of weak positive solutions to
problems involving fractional and non-homogeneous operators as (—A)y, + (=A),’, where
s1,52 € (0,1) and 1 < g, p < co. For this class of operators, we further obtain comparison
principles, a Sturmian comparison principle and a Hardy-type inequality with weight. Finally,
we also establish some qualitative results for nonlinear and non-local elliptic systems with
sub-homogeneous growth.

keywords : Picone inequality; fractional (p, g)—Laplace equation; positive solutions; non-
existence; uniqueness; comparison principles.

3.1 Preliminaries and Main results

3.1.1 Notation and function spaces

We recall some notations which will be used throughout the chapter. Let us take 0 < s < 1,
p>1and Q c RN, with N = sp an open bounded domain with boundary of class C!.
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Chapter 3. Discrete picone inequality and applications

First, for the reader’s convenience, we denote [a— b]P 1 :=|a— b|”~? (a- b).

The Banach norm in the space LP(Q) is denoted by :

P
Nl = ( f Iul”dx)
Q

We recall that the fractional Sobolev space WP (RY) is defined as follows :

lu(x) — u(y)I?
P Ny .— PN _ 7
W*P(R ).—{ueL (R™), fRNfRN PRI dxdy<oo}

endowed with the Banach norm :

1
lu(x) — u(y)|” »
”u”WS,P([RN): (”u”Lp(RN) LNLN - y|N+SP dxdy)

The space Wg'p (Q) is set of the functions defined as :
WP (@) :={ueWs’(RY) | u=0 aein RN\Q}

and the Banach norm in the space Wé’p (Q) is the Gagliardo semi-norm :

1
lu(x) —u(y)I? [z
lellysr ) = (fRNfRN N dxdy

We recall that by the fractional Poincaré inequality (e.g., in [51, Theorem 6.5]), there exists a
positive constant ¢ > 0, such that

-1
¢ llullwspgyy < ||u||W(‘§’p(Q) < clullywsr gy

forallue Ws'p (). We recall that Ws’p (Q) is continuously embedded in L (2) when 1 < r < p;
Np 5 (see [51, Theorem 6.5] for further details).

and compactly for 1 < r < p;, where p; :=

Moreover, we denote by d(x) the distance from a point x € Q to the boundary 0Q2, where
Q =QuoQ is the closure of Q, i.e.

d(x) :=dist(x,0Q) = inf [x-yI.
y€0Q
Setting a € (0, 1], we consider the Holder space :

Co’a(ﬁ)::{ut‘C(ﬁ), sup M<oo}
x,y€Q, x£y |x_y|

endowed with the Banach norm

|u(x) — u(y)|
Il oy =l + sup  ————5—-.
X,yeQ,xty |x -yl

For 1 < r < oo and a given function m, € L}(Q), d1,5,r(m;) denotes the positive normalized
eigenfunction (|| ¢y, (m/) ||L°°(Q) = 1) of (-A)§ with weight m, in Wy () associated to the
first eigenvalue A; g .(m;). We recall that ¢, s (m,) € C%%(QQ), for some « € (0, s] (see [83,
Theorem 1.1]).
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Chapter 3. Discrete picone inequality and applications

We defineforl<g<p:
p
||(bl,s,qllwg,p(9)

Brn, =
my, * 1
p p
” mp (bl,s,q ”LP(Q)

By definition of Ay 5 ,,(m}), we have that ﬁ;‘np = A1,5,p(Mp).

We recall the embedding of ng'p Q) in Wgz’q(Q) for suitable powers and orders, in the follow-
ing Lemma (see [78, Lemma 2.1] for the proof) :

Lemma 3.1.1. Letl1 < g < p <ooand0 < s, < s; <1, then there exists a constant C =
C(Q,N, p, g, 51, $2) > 0 such that

” u”w;Z'q(Q) <C ” u”w(‘;l'p(Q)

forallue ng’p(Q).

Remark 3.1.2. The embedding in Lemma 3.1.1 when sy = sp, with p # q does not hold, see [93,
Theorem 1.1] for the counterexample. We then use the framework W:= ng’p (Q), in the case
0<s,<s1<1,andifs=s; = sy, weset W:= Wg’p(Q) ﬂWS’q(Q), equipped with the Cartesian
norm|-|lw:= ||'||ngp(9) + ||'||W3ﬂ(9) .

3.1.2 Statements of main results

We first extend the Picone inequality (1.17) (see Introduction) to the discrete case :

Theorem 3.1.3. Letl < p<ooandl < q< p. Let u, v be two Lebesgue-measurable functions
inQ, withv=0andu>0, then

v(x)P v(yP

U(X)p_q+1 U(y)p—q+1
u(0)PL u(y)p1 -

u(x)pP—4q u(y)P—‘f

[u) - u()]’™ < v - o] (3.1)

Moreover, the equality in (3.1) holds in Q if and only if u = kv, for some constant k > 0.

The next main result in our Chapter is the following nonlinear discrete version of Picone
inequality :

Theorem 3.1.4. Letl1 <p<ooandl < g < p. Let u, v two non-negative Lebesgue-measurable
functions such that u > 0 in Q and non-constant. Also assume that f satisfy the following
hypothesis :

) f:R" —R* is acontinuous function and positive on R*\ {0}.
®) f(z)=z9"1, forallzeR".

(t2) The function z— % is non-decreasing in R\ {0}.
z

Then

v®)7 vy
flux)  fluy)

[u(x) - uy)]”™ < |[v@) - v |7 Jux) - u)|”7. (3.2)

Moreover, the equality in (3.2) holds if and only if v9 = k uf (u), for some constant k > 0.
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Chapter 3. Discrete picone inequality and applications

Example 3.1.1. An example of function f satisfying (f)-®) is : f(z) = azP~ 1 +pz97L, with
a=0andfp=1.

Remark 3.1.5. Taking f(z) = azP ' +pz97!, witha = 1 andp = 1 in Theorem 3.1.4 and observ-
[)
ing vP = (v4)9, we obtain :

~ p-1 v(x)P _ v(y)” ] P
[u0) -~ u(y)] au(X)P 1 +Pu(x)971  au(y)P~t+Pu(y)! = |U(x) v(y)|
and
_ g-1 v(x)P _ v(yP ] pooopo 4
[u0 -uy)] au(X)P 1 +Pu(x)971  au(y)P~+Pu(y)! = ‘Uq(x) vq(y)‘ '

Then, we get the following discrete Picone’s inequality which can be used for problems involving
fractional (p, q)—Laplace with non-homogeneous nonlinearities :

v(x)P ~ v(y)P
au(x)P 1 +Pu(x)971  au(y)P~1 +Pu(y)9-1

([u(x) —u)]" "+ [ux) - u(y)]q_l)

p |2 pqd
<|v@-vy|’+ vq(x)—vq(y)‘ .

The following Corollary is a consequence of Theorem 3.1.4 :

Corollary 3.1.6. Let0<s<1,1<p<ooandl < q< p.Assume that f satisfies (fp)-(,). Then
for any u, v two non-constant measurable and positive functions in Q, the following inequality

[u(x) - u(y)]”‘l uw(x) f (W) - v uy)fu) - v

fu(x) fu(y) (3.3
B p-1 (V) fW) —u@)T v f) —u?) '
*lr vl @) foyy )7

holds for a.e. x,y € Q. Furthermore, if the equality occurs in (3.3), then there exist positive

1
constants ki, ko such that v = kyuf(u), u? =kvf(v) and kv <u < T
1

vae. inQ.

Now, we give a series of applications of above discrete Picone’s identities :

Application 1. We consider the following nonlinear problem involving fractional (p, g)—Laplace
(—Apu+(-NFu=gxuw, u>0 inQ u=0, nRN\Q; (P1)

where0<s;<sj<land1<g<p<oo.

« First, we assume the following hypothesis on the function g :

(H1) g: QxRY*—{0} >R"isa non-negative continuous function, such that g(x,0) =0and g
is positive on Q x R*\{0}.

g(x,2)

zdq-1

(H2) Fora.e.x€,z— is non-increasing in R*\{0}.

(H3) Uniformlyin x € Q, lim,_ o+ % =oo forallxeQ.
z
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Chapter 3. Discrete picone inequality and applications

Example 3.1.2. A prototype example of the function g satisfying (H1)-(H3) is g (x, z) = h(x) 2" -1
with r < g and h € C(Q) a positive function.

We define the notion of a positive weak solution to problem (P1) as follows :

Definition 3.1.7. A non-negative function u € WnL>*(Q) is called a weak solution to (P1) if,
for any ¢ € Wwe have :

[ux) - u]” ™ (9x) - () [u(x) - u()] 7 (@) - ()
fuqu,[;qu dxdy

|x_y|N+Slp dxdy f[RN RN |x_y|N+32q

= f g(x, updx.
Q
(3.4)
In addition if u satisfies u > 0 throughout Q), we call u positive weak solution.

The result regarding the existence and uniqueness of the weak solution to (P1) states as follows

Theorem 3.1.8. Assume that g satisfies (H1)-(H3). Then, there exists a unique nontrivial weak
solution u to (P1). In addition, u € C*%(Q), for some a € (0,s,) and for any o € (0,s;) and
o' > s1, there exists a positive constant c = c(0,0") > 0, such thatc™'d° <u<cd® inQ.

» Next, we investigate (P1) in case of asymptotically homogeneous growth, i.e.
g, u)=Aax)uPt+ A1,s,,4(D)b(x) ui=1

with a, b e (L*°(Q))" \ {0} and A is a positive real number.

For this class of nonlinearities, the following result states both nonexistence and existence
results to (P1).

Theorem 3.1.9. Let0< sy, <s;<1andl<q<p<oo. Then, we have :

1. IfA <Ay, p(a), then (P1) has no nontrivial weak solution. Furthermore, if

q)l,S],p(a) # Cq)l,SZ,q(b) (3.5)

for every ¢ > 0, then (P1), with A = Ay 5, p(a) has no nontrivial weak solutions. Assuming
that s;(p—q) < sap+1 and A > B}, then (P1) has no positive weak solution.

2. If Ay 5, p(a) < A <P holds, then there exists a positive weak solution u € L*(Q) to (P1).
Moreover, any non trivial weak solution u to (P1) belong to Co%(Q), for somea € (0, s1)

and for all o € (0, s1) and o' > sy, there exists a positive constant ¢ = ¢(0,0’) > 0, such that
c'd® <u<cd® inQ.

In frame of (P1), we finally give a weak comparison principle for positive weak solutions in
the special case :
gx,u) = h(x)u’™!

with 1 < g < p and h € L*°(Q) a non-negative function. Precisely, we have

Theorem 3.1.10. Let u;, uy in W be positive weak solutions of (P1), with hy, hy in L>°(Q),
respectively, verifying0 < h; < hy a.e. inQ. Then, u; < u, a.e. in Q.

Application 2. In the following result, we give an extension of the Sturmian comparison
principle in the context of fractional p—Laplacian operators :
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Chapter 3. Discrete picone inequality and applications

Proposition 3.1.11. Let a;, a, be two continuous functions with a; < a,. Let f, a Lipschitz
function, satisfy (f)-(E2). Suppose in addition that u € Wy (Q) verifies

(—A);u —aq(0uPl, u>0 inQ; u=0 inRV\Q;
where0 < s <1 and 1 < p <oco. Then any nontrivial weak solution of the problem :
(A v=a(X)fW), inQ; v=0, nRV\Q; (3.6)
must vanish in Q.

Application 3. The following result establishes a non-local and weighted Hardy inequality,
complementing in the non-local setting results in [25] and [60].

Lemma 3.1.12. Let f, a Lipschitz function, satisfying (f)- (). Assume that v € C*(Q) verifies
(A),vzAgf); inQ v>0 inQ

where0 < s<1,1< p <oo, A >0 and g is non-negative and continuous. Then for any
S,p +
ue(W,"(Q)", we have

u(x) —uy)|”
)\fglulpdx<fRNfRN| - Nf:p' dxdy. 3.7)

Application 4. Finally, we deal with nonlinear fractional elliptic systems :

Theorem 3.1.13. Assume that f a Lipschitz function, satisfies (fy)-({.). Let (u,v) be a weak
solution to the following nonlinear system :

(—A)fou:f(v), u>0 inQ; u=0 nRYN\Q;
2 (3.8)
v
(—A);UZM, v>0 inQ; v=0, inRV\Q,
up-1

with0< s<1andl < p <oo. Then, there exists a constant k > 0 such that vP = kuf (u).

3.1.3 Organized of the chapter

In Section 3.2, we give the proofs of new Picone inequalities stated in Theorems 3.1.3, 3.1.4
and Corollary 3.1.6. Finally, Section 3.3 is devoted to the proof of results stated above as
applications of the new Picone identities.

3.2 Proof of main results

We begin this section with the proof of Theorem 3.1.3. To this aim, we need the following
technical Lemma :

Lemma3.2.1. Letl<p<ooandl<q<p. Thenforall0<t<1andAeR", wehave:
Q-7 AP - <|A- 1|72 (A- AP T ). (3.9)

Moreover, (3.9) is always strict unlessA=1 or t = 0.
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Proof. Since the case p = ¢ is covered by [60, Lemma 2.6], we assume that 1 < g < p. First, for
t =0, (3.9) is obviously satisfied. Let us assume ¢ > 0.

o Let us start with the case A” < t, this implies that A < 1. We distinguish three cases :

(i) Suppose that AP~9*! >t we obtain A>AP~9"! > t > AP, then (3.9) follows from

AP —r<0 and (A-nNAP 91 _p>o0.

(i) If £=A>AP~9%1 thisimplies that £ > A > AP~9%! > AP Hence, (3.9) again follows.

(iii) Finally, if A> > AP~9%1 we observe that (1 - 17! = (A— )9 ' and A? — t <AP~9*! —t <0.
Then, by multiplying the previous two inequalities, we conclude (3.9).

* We now assume A” > ¢ (note that if AP = ¢, (3.9) is obvious). Since ¢ < 1, this implies that
A > t. We then define g as below :
(A-n9'@Aar-7* - g

AP — ¢ '

gA) =

After straightforward computations, the derivative of g with respect to A, denoted by g'(A),
verifies

g
(@-DA-DT2[AP T - (AP — 1) = (A D)(AP7T— AP D] + pt(A— T (AP - AP79)
B (AP — 1)

t(g-DA-0DT2[AP9AP -AT— )+ t] + pr(A— T (AP~ - AP79)

(AP —1)?

p_
r(A-1)972 [(q -1) (%) (AP —A7) + p(A—1) (AP~1 - AP7Y)

(AP — 1)?

Now, we note that g’(A) is positive if A > 1 whereas it is negative if 0 < A < 1. Noting g'(1) =0,
we get that A =1 is a global minimum point of the function g. Then

gA)=g)

1
for all A > ¢7. The proof is now complete. O
From Lemma 3.2.1, we deduce the proof of Theorem 3.1.3 :

Proof of Theorem 3.1.3. First, note that if p = g, then (3.1) is obviously satisfied from (1.18)
(see Introduction). Therefore, since the inequality (3.1) is invariant under the permutation
(x,y) — (¥, x), we can suppose in the sequel that u(x) = u(y) together with p > q.

Now, the left-hand side expression of (3.1) can be written as :

vP  wy)?
u(x)P~1 u(yp-1

1- 202"ty
u(x) v(y)u(x) u(x)

|w(x) — ()] W) - uy) [

v)?
u(y)

= u(x)q(
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and the right-hand side

V(x)p—q+1 V(y)p—q+1
u(x)P=1  u(y)p-a
v(y))” (V(x)u(y)) _u)|7? ((v(x)u(y)) ~ u(y)) ((V(x)u(y))”"’“ ~ M)
u(y) v(yux))  ulx) vux))  ul)) \\vy)ulx) u(x))’
v(x) u(y) . u(y)

v ulx)  u)
On the other hand, since ¢ # 0, we remark that the equality in (3.1) holds ifand only A=1, i.e.

lv(x) - v 7% W) - v(y)

= u(x)q(

Setting A = , and applying Lemma 3.2.1, we obtain the desired conclusion.

u®) _ uy)
v(x) vy)
from which we get u = kv a.e. in Q for some k > 0. O

Proof of Theorem 3.1.4. First, by observe that if u(x) = u(y), then (3.2) is obviously satisfied.
So, since u is non-constant function, we can take u(x) # u(y). In this case, we note that (3.2)
is equivalent to the following inequality :

v vy
fux))  fuy)

Since the inequality (3.10) is invariant under the permutation (x, y) — (¥, x), we can suppose
without loss of generality u(x) > u(y). Now, the left-hand side expression of (3.10) can be
rewritten as :

| () — u()] 7% w(x) - uy)

] <|vx) - vyl (3.10)

v(x) v(y1 v®)7 vy

q-1
|u(x) — u)| 7 () - uy) _ u(x)q—l(l_M)

u(x)

fw®)  fuy) fux) fuy)

_v@Tu@)! (1_ u(y))”"l_ v()Tu@)”! (u(x) _1)"‘1
C fu) u(x) fwy)  \uy) '

Setting ¢ = %, the previous statement shows that (3.10) holds if the following inequality is
u(x

proved :

qyy(x)q-1 - 1 Tu(y)7!
Ms(l_n(M)ﬂ(M) @11

fu(x) 1-n4 t9 f(u(y))
from (f;) and (f,), we obtain
u(x)9-1 )% (u(y)q—l)% (u(y)q—l)%
- < - < - )
( Fa) v(x) a0 v(y) o) (wx) —v() < |vx) - v
Then, thanks to the convexity of T— 19 on R*, we get (3.11) and then (3.2).

Next, we first note that if u(x) = u(y) then the equality holds for all function v. On the other
hand, the function u is non-constant, we can suppose u(x) > u(y). Now, if the equality holds,
again since the function 1 — 1 is strictly convex on R* and arguing as the previous part, we
infer that

v —v)|  (um)T 1\ vy
1-1t _(f(u(y))) t
Plugging this relation in (3.11), we deduce that
v U@ g v@Tu T
Juy) fux)

Then, by straightforward computations, we obtain the second statement of the Theorem. [
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Proof of Corollary 3.1.6. From Theorem 3.1.4, we have

q q
- s ] b
By reversing the role of u and v, we obtain
~ p-1| u@9  u B q _ p-aq
[v(x) - v(p)] Foo) Faw) < |ux) —u)|’ v - vy |" 7. (3.13)

Assume first g = p. From (3.12) and (3.13), we then obtain

u(@) fux) —v@)?  uy) fw@)-vy”
fux)) fuy)

[u(x)—u(y)]p_l( )2|u(x)—u(y)|p—|v(x)—V(y)|p

(3.14)

and

v fx) —uP vy fO)-up?
fv(x) flw)

[wm—mwﬁ*( %ﬂmm—mwﬁ—hurﬂwW?

(3.15)

Combining (3.14) and (3.15), we get

[u(x) - u(y)]P—l (u(x)f(u(x)) ~v(P ) fwuy) - y(y)P)

fu(x)) fu(y)
_ p-1(vX)fwx) —u@)? v fwy)—u@?
[ -v)”| W) fomy )7

We finally deal with the case 1 < g < p. By Young’s inequality, (3.12) and (3.13) imply

v(x)? vy

_ p-1 _
(1) - up)] faue)  fuw)

5%|V(X)—v(y)|p+¥Iu(x)—u(y)|’” (3.16)

and reversing the role of v and v

ux)? uy
fw&)  fwO)

[v(x) - v(y)]p_1 v(x) -vy)|”. (3.17)

q p p—q
<—lulx)—-uly)| +——
p| y| p |

Adding (3.16) and (3.17), (3.3) follows. Now, let us assume that the equality in (3.3) holds. By
Theorem 3.1.4, we deduce that
vi=kiuf(w) and u9=kvf(v)

for some constant kj, k, > 0. From (f}), we finally get that k, v9 < u9 < kl_l v7a.e. in Q. O

3.3 Applications

In this section, we prove some applications to the Picone identities proved above. First, from
[69] and [70] we have the following remark about regularity of weak solutions to fractional
non-homogeneous equations that we will use several times in the sequel :
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Remark 3.3.1. Let uy € W a nontrivial weak solution to (P1). Then, from [70, Theorem 3.5], we
obtain uy € L°(C)). Moreover, Theorem 2.3 in [70] and Corollary 2.4 in [69] provide the C¥*(Q)-
regularity of uy, for somea € (0, s1). By [70, Theorem 2.5], we infer that uy > 0 in Q. Finally, by
the Hopf’s Lemma [70, Proposition 2.6] implies that uy = k d*'*¢(x) for some k = k(€) > 0 and
foranye > 0. Again by using [70, Proposition 3.11], we get that, for all o € (0, s1) there exists a
constant K =K(o) > 0 such that ug < Kd° (x) in Q.

Proof of Theorem 3.1.8. Consider the energy functional _# corresponding to (P1), defined on
Wby :

|u(x) - u(y)Ip |ux) - u@y)|”
j(u) LNLN |x y|N+51P LN_LN |x y|N+qu T Nesmg 4Xd _fG(x u)dx

where

t
Glx, 1) = j(; gx,z2)dz if0<t<+oo,
0 if —co<t<0.

We extend accordingly g to whole Q x R by setting :

oG
glx, 1) = E(x, =0 for(x,t) e x(—o0,0).

Itis easy to see that _¢ is well-defined on W. Furthermore, _# is weakly lower semi-continuous
on W. Indeed, from (H1) and (H2), there exists C;,C, > 0 such that for any (x,z) € Q x R* :

0<G(x,2)<C;z2+Crz1 (3.18)

and W is continuously embedded in ng’p Q), Wgz'q (Q) and compactly embedded in L7(Q).
JZ is also coercive on W. Indeed, for u € W, using (3.18), the Holder inequality and the Sobolev
embedding, we obtain

Fw) = ul? —||u||’”

W(‘;l’p(Q)

—Ci llully. -G

51 ) WS1 P(Q)

where constants C;, C; are independent of u. Thus, we conclude that _# (1) — +oo as | ullw —
+o00. Then, ¢ admits a global minimizer, denoted by u.

On the other hand, we have :

- g+t
j(uo)—j(uoprRNfRN

2 |(ud) (0) = (ug) |7 2 | ) () = () ()| .
;fRNfRN ~Nesip dXderEfRNfRN —Neeq dxdy= #(uy).

Therefore, without loss of generality, we can assume 1 = 0. Now, in order to verify that ug #Z 0
in Q, we look for a suitable function u € W such that _#(u) < 0 = _#(0). To this aim, (H3)
implies for a given M > 0, there is a constant zy; € (0,00) small enough, such that

|(u5)(x)—(ug)(y)|”dxdy+1f f I(ua)(x)—(uo—)(y)|‘7dxdy
RN JRN

g(x,2)=Mz% ! holds forall(x,2) € Q x [0, zm] . (3.19)

Consider ¢ € CL(Q) an arbitrary non-negative and nontrivial function. Then, by (3.19) and for
t € (0,1] small enough, we obtain :

1 p 1 q q
S 21 [0 4 [P~ M [Pl |

76



Chapter 3. Discrete picone inequality and applications

Choosing M > 0 large enough, we obtain _# (¢1}) < 0. Thus, up # 0. From the Gateaux differen-
tiability of _#, we have that uy satisfies (3.4) i.e. up is a weak solution to (P1).

From Remark 3.3.1, we infer that uy € C%%(Q), for some « € (0, s1) and for any €y > 0 there exists
a constant K = K(ep) > 0 such that K™1d*17% < 15 < Kd* =% in Q. Let us show the uniqueness
of the positive weak solution. Let v € W be a weak positive solution of (P1). Now, let € > 0,
Ue = Uy +€, Ve = V+€ and set

ud - v 91

-1 -1 -
ul g

® =

It is easy to see that ® and ¥ belong to W. Then, we have :

[t10(x) = uo(N]" ™ (®(x) — D)) [t10(x) = uo(N] T (@ (x) — D))
f dxdy+f
RN JRN RN JRN

|x_ y|N+51p |x_ y|N+52q dxdy
:f g(x, up)ddx
Q
and
f f [v() - v)]" " (P(x) - ‘I’(y) f f [v0) - v (Y0 - ()
dxdy
RN JRN |x — y|N+sip RN JRN |x — y|N+s24

:f gx,v)¥dx.
Q

Then adding the above expressions and from Corollary 3.1.6, we deduce

0< f () — uc ()"~ (@(x) - W) " [te(x) — ue ()] T (@(x) - W)
<[ are [ f

|x— y|N+51p |x — y|N+szq

dxdy

+f [Ue(x)_ve(y)]P (W (x) - \y(y)) +f [ve(x)—ve(y)]q (Y(x)— ‘I’(J/))
RN JrN |x — y|N+s1p Xy RN JRN | — yIN*ea
:f (g(x,_v) g(x, uo))( v~ uhdx. (3.20)
Q yg 1

In order to pass to the limit in the right-hand side of (3.20), we use uy, v € L*°(Q) and
g(x, up), g(x,v) € L*°(Q). Therefore, according to boundary behaviour of uy and v (given
by Remark 3.3.1), we have

(ﬁ)q <20-1 [(%)q + 1] eL}(Q).

Ve

Indeed, from the Holder inequality and the fractional Hardy inequality [25, Theorem 6.3], we
obtain :

p—q

q
q P p P
f(@)quscf (L) dx<C f; Yoy
alv a\dsi+e(x) Q gra% (x) a d1P(x)

p=q q
p _ p D
deqo(x) RN JRN I-x_yl 1P
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for g small enough and C = C(gp) > 0. Similarly, we have for €y small enough

q q
(ﬁ) <2471 (i) +1
Ue Ug
Finally, passing to the limitase — 01in (3.20), using Fatou’s lemma, the dominated convergence
Theorem and (H2), we obtain

e Ll Q).

OSfN N [140(x) — 1o ()] "™ (ug(X)—V"(x) ~ ug(y)—v"(y))dxdy
RN JR

-1 -1
|x_y|N+31P u(‘)f (x) ug (u)

+f f 140 (x) — up ()] 7™ ug(x)—v”’(x)_ ud () - vy dxdy
RNJRN  |x — y[Ntsdq ul ") ul " ()

+f1 (v - v ““x{fuguﬂ__wﬂyﬁ-uguﬂ dxdy
RNJRN  [x — y|NTsip vi=1(x) vi-1(y)

+/T (v - v wux%fuguo__wNy{fugun dxdy
RNJRN  [x — y|NT24 vi~l(y) vi-1(y)

pa-1 ql

—f (g(x v)  8x, uo))( q._ q)deO.
Q

From Corollary 3.1.6, we infer that 1y = k v, for some k > 0. Without loss of generality, we can
assume that k < 1. Since 1 < g < p and by using (H2), we obtain

_ p _ q

ff |4 (x) 1zjo(y)| dxdy+ff o (%) — uo ()| dxdy
RNJRN  |x— y|NtSP RNJRN  [x — y|N+824

|v(x)—v(y)|” o) v’

—————dxdy
RN JRN |X — yIN”lp RN JRN  |x — y|N*s24
:kqf glx,v) vdx:f k1 g(x,v) kvdx
Q Q

~ | o (x) — uo (y)|” | o (x) — uo ()|
<j;)g(x,uo) uodx—fRNfRN PRSYITE dXder‘[,;NfRN PRIy dxdy

which yields a contradiction. Hence k =1 and u = v. O

< k1

Proof of Theorem 3.1.9. We first investigate non-existence of nontrivial solutions to (P1).
Assume that u € W is a nontrivial solution to (P1) and suppose that A < A; g, ,(a). Taking u as
a test function in (3.4) and by the definition of A; s, ,(a) and A 5, 4(b), we have that

I
o<lul? g, —A “’“E”H <Ml
lallygorp gy = Asip(@ i < 1 hyar g “lira
=A b ”bqu I =0
1,82, q( ) La(Q) ” ” Sz q(Q)

which yields a contradiction. If A = Ay 5, ,,(a), then from above u is an eigenfunction associated
to A1, p(a) and Ay 5, 4(b). Hence ¢y 5, p(a) = cdy s, 4(b), for some constant ¢ > 0, which
contradicts assumption (3.5).
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. . o . 52,q(D
Consider again u, a weak positive solution to (P1). Sete€ >0 and u. = u+¢€. Then %Z—:’() €
L*®(Q). Choosing M

€ W as a test function in (3.4), we obtain
f f [ue(x) — ue(y)]”’_1 P1,5,0 (D)7 (X)) P1,5,,4(D)P ()
RNJpN  |x — yNtip Ue(x)P~1 Ue(y)P~1
N f f [4e@) = uc ] [PL5,4DP D) d1,q(B)P ()
RNJRN  |x — y|N+24 U (x)P~1 ue(y)”‘1

u
A [Law (2] cplw(b)f’dxmszq(b)f b O 1B,

p)p-a+l1 . . .
% € W as a test function for the eigenvalue problem associated to

dxdy

dxdy (3.21)

Next, we choose

(-A) in w,2(Q) :

|x_y|N+szq

fN ) [(bl,sz,q(b)(x) _(-pl,sz,q(b)(y)]q_l [(bl,sz,q(b)p_qul(x) ¢1,sz,q(b)p_q+1(J/) dxdy
RN JR

ul”(x) - ul~(y)
—A1s2q(b)f b(x )de.

ul ™7

By Theorem 3.1.3 and (3.2) (in case p = gq), we obtain

s2,q(D)P .
Mg ®) [ 500 P e [ )00 0P (1
Uu

€

_f [$1.6,4 D0 = P15, YD) [ 1,6y S2q(b)l7 A2
= RN JRN |x—y|N+3267 uf_q(x) q(y)
+f f |¢1,sz,q(b)(x)—cﬁifz,q(b)(y”pdxczy
RN JRN |x_y| 1P
>[ [ue(x)—ue(y)]q—l P1,55,4(D)P (x) ~ $1,5,4(D)P () e
= RN JRN |x_y|N+52q ue(x)p—l ue(y)P—l y

q)l,sz,q(b)p(x) B (bl,sz,q(b)p()/)
Ue(x)P~1 Ue(y)P~1

+ff [e(0) — ue)]”~
RNJRN  |x— yN*tap

By (3.21) and (3.22), we conclude :

dxdy. (3.22)

(b)
My5r,q(D) f b(x )('”Ld X+ f a(x) d1,5,,4(D)P (x)dx
Lt

q-1
>Afa(x)( ) cplw(b)”dxmszq(b)f b(x) ey ()P dx.

€

Applying Remark 3.3.1, we have that u = kd*1** (x) for some k = k(eg) > 0, and for any €y > 0
Finally, since s,(q — p) + s2p + 1 > 0, for €y small enough and passing to the limit as e — 0*

thanks to the dominated convergence Theorem and Fatou’s lemma, we conclude the proof of
assertion (1) of Theorem 3.1.9.
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We now prove assertion (2). Suppose that Ay 5, »(a) <A <f;. Hence, from [97, Theorem 1.1]
the following problem :

(—A);}w+(—A)ffw:f)[a(x)w’”_l+b(x)w"_1], w>0 inQ; w=0, inRN\Q;

with f > max{A, A1 s, 4(b)}, has at least one solution. From Remark 3.3.1 again, we obtain
w € CO%(Q), for some a € (0, s;) and for any € > 0 there exists a constant K = K(ep) > 0 such
that K™ 1d1*% < 1 < Kd*1 7% in Q. Then, we infer that

Ny w+(N)Zw=pa@)w’ +bx)wT™| = Aa(x) wP™" +Ay,5,q(D)b(x) wI ™.

Hence, w is a super-solution to (P1). Next we introduce the truncation g of the right hand
side of equation in (P1) by :

Aa(xX)wP™t 4+ hy,q,5DDXWT™ if 2> w),
g(x,2) =3 Aa(0)z" 1+ X1 45, b(X)271if 0<z<w),
0 if z<O.

Let ¢, the associated energy functional defined on W as :

1 |u(x) up|” Ju) —u@)|? u(y)Iq u@

Thus, we infer that ¢ is well-defined, coercive and bounded from below on W. Moreover, it
is easy to see that ¢ is weakly lower semi-continuous. Then, ¢ admits a global minimizer
up € W. By the weak comparison principle (noting that w is a super-solution), we conclude
that ug € [0, w]. Finally, with similar arguments as in Theorem 3.1.8, we deduce ug # 0. From
Remark 3.3.1, we infer that 1y € C>*(Q), for some « € (0, s1) and for any € > 0 there exists a
constant K = K(gy) > 0 such that K~1d%1+% < 3y < Kd*1 7% in Q. O

Proof of Theorem 3.1.10. Let u;, uy be positive weak solutions to (P1) associated to hy, hy in
L*°(Q), respectively, i.e.

f [ul(x)—ul(y)]p_l(GD(x)—q)(y))d J +f [t12(0) = s ()] T (@) - cI>(y)) dxdy
RN JRN |x — y|N+s1p RN JRN |x — yIN+24
= f mul ddx (3.23)
Q
and
- P (w(x) - W - T wx) -
f [t2(X) — (M ]" (P () (y))dxder [tz () —u2(]? (P (x) (y))dxdy
RN JRN |x — yN+ts1p RN JRN |x — y|N+s24
= f ho(xu ' Wdx (3.24)
Q

for any @,V € W. Now, let€ > 0, u; ¢ = u; +¢€, Uz ¢ = Uy + € and choose

6]) _qu,e ug,e_uiie
o=— \P:TEW
ul,e u2€
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as test functions in (3.23) and (3.24), respectively. Then, summing the above equations, we
deduce

p-1
€ - € ® -0
f [11,6() — 13, (y)]N+s( (x) — ®(y)) dxdy
RN RN |x—y| 1P

q-1
- [0 -O
. fRN I [U1,e(0) — U1 (V] (@) - DY) dxdy

|x_y|N+32q
N f (19,6 () — 112, ()]~ (P (x) — P (1) dxdy
RN JRN |x — yIN*tsip
. f f [19,6(x) — 112, ()] T (P (%) - P (1) dxdy
RN JRN |x-y|N+32q
q-1 q-1
u u
sfg(hl(x) ;l—hz(x)%)(uie—uge)dx.
ul,e uz,e

Passing to the limit as € — 0* with the dominated convergence Theorem and Fatou’s lemma,
we obtain
o< [t (0) — ) [ul 0 -uf 0wl () -ud
CJrvJRy [x— yINTSIP

ul ™ () ul™(y)

dxdy

+f (i@ -] [0 -wfo Wy -uy] dxdy
rVJRY x-yINTR 0 ul "'y |
+f (e —w]" [ -uf 0 W) -uly] dxdy
RYJRN - yINEP | 07 wl 'y ]
-1
+f [uz(x) = ua ()] Ltg(x)_—1 ul(x) u;’(y)_—1 ul () dxdy=0.
RNJRN  |x— N+ ug (%) ui] »

From (3.2), we then get u, = ku;, for some constant k > 0. If k = 1, then we are done while for
k <1, since 1 < g < p, we obtain

|tz (x) — ua () |” |2 (x0) — uz ()]
foN —Nesp dxdy+foN —Nend dxdy
RNJRN [x— Y] RNJRN [x— Yl
_ p _ q
ff |u1 (%) — w1 ()] dxdy+ff |1 (%) — w1 ()| dxdy
RNJRN  [x— y|N+Sp RNJRN  [x — y|N+S24

Sk"f hi(x) u?dxsf hy (x) ugdx
Q Q

< k9

which contradicts that u; is a solution (with potential h,). Hence k =1 and u; < u». O
Finally, we prove applications to Theorem 3.1.4 extending [3] and [14] in the non local setting :

Proof of Proposition 3.1.11. Assume that the weak solution v in the problem (3.6) does not
vanish. From regularity theory v € C**(Q), for some a € (0,s) and v > O in Q. Using f?_li)
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with ve = v +¢, for € > 0, as test function in (3.6) and thanks to regularity theory, u € L>°(Q).
Therefore, since f is Lipschitz, we have for any x, y € RN and for some suitable L > 0 :

ub(x)  uPy) _
fwdx)  fwdW| [fwx)  fve) )
3 u”(x)—u”(y)

f (ve) (x)

uP(x)  uP(y) ub(y)  uPy)

fwe) () f(Ue)(y)

Ve) (X) f(Ve)(y) ‘
Fwe) () — f(ve) (x)

uP
(y)'f(

— |uP () = uP ()| + uP(y )‘

f( €) fWwe)(x) f(ve) ()
Ll oo
< — e _
f( = i, |ux) - u()] + ICE lvx) - v(y)|

< C(L¢, p, lullpeoy) (| ulx) — u()| +|vx) — v())).

€ W, ”(Q). Then, from (3.2), we obtain

|u(x) - uy)|”
——dxd
.[IRN\[;QN |x_y|N+sp X

Hence,

uP
f(ve)

‘f f |ve®) = v W) = ve) [ u@®)?  uly)? p
n Jan = |7 fwetn ~ Faeaon |
= f a;(x)uPdx— f as (x) f@ uPdx.
Q f( e)
Passing to the limit as € — 0" and using Fatou’s lemma, we obtain :
0 sf (a1 (x) —ax(x)uPdx <0
Q
which is a contradiction. Hence, v must vanish in Q. O

Proof of Lemma 3.1.12. Let (9,) nen a sequence such that ¢, € C3°(Q), ¢, > 0, with ¢, — u
in Wé'p(Q), sete> 0 and v, = v +e€. Then, by (3.2) (with g = p), we obtain

|(pn(x)_(Pn(.V)|p
OSfRNfRN —New dxdy

B |2 = ve)|” ™ (we() = ve (1)
Jou

|x_y|N+sp

|9n () = @u(]” f
szNfRN N dxdy—)\fﬂgf(ye)(pndx.

Passing to the limit as € — 0" and using Fatou’s lemma, we obtain :

|q)n(x)_(Pn(.V)|p p
szNfRN |x—y|N+Sp dxdy—)\fgg(pndx.

Pn()P  @n(y)”
Fwex))  f(ve(y)

dxdy

By taking the limit as n goes to oo, we finally obtain (3.7). O
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Proof of Theorem 3.1.13. Let (u, v) be aweak positive solution of (3.8). Namely, for all @;, D, €
W, (Q), we have

p—2
- - ®1(x) - D
f |u(x) = u()|”™" (u(x) Nu(y))( 10 =210 iy f F)ydx, 3.25)
RNJRN |x—y| +sp Q
p—2
- - @y (x) — D
f lv0) — v (W) = v() ([ @2(x) — D2()) dxdy = f (f(v)) D, dx. (3.26)
RN JrN |x_y|N+sp 0
Choosing @, = u and @, = 700 with ve = v +¢, for alle > 0, in (3.25) and (3.26) respectively,
we obtain )
p
f f |u(x) - L;(y)l dxdy
RN JRN |x_y| +sp

ve(@) = veW|P P W@ = ve ) [ WPx)  uPW)
_fquNfRN | | — Y dxdy

|x -y fwe®)  fwe(y)

~ (fw)?
_L(uf(v)—u 70 )dx.

By passing to the limit as € — 0" and using Fatou’s lemma and (3.2), we obtain :

f f |u(x) - L;&y”pdxdy— |v(x)—v(y)|p_;£v(x)—v(y)) uP(x)  uP(y) dxdy=0.
[RN RN |x y| sp |x_y| S2P2 f(v(x)) f(U(J/))
From Theorem 3.1.4, we get vP = kuf(u) in Q, for some constant k > 0. O
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CHAPTER 4

NONLINEAR FRACTIONAL AND
SINGULAR SYSTEMS : NON-EXISTENCE,
EXISTENCE, UNIQUENESS AND HOLDER
REGULARITY

This chapter includes the results of the following research article :

* A. Gouasmia; Nonlinear fractional and singular systems : Non-existence, existence, unique-
ness, and Holder regularity. Math. Methods Appl. Sci., (2022),1-21.

Abstract :
In the present chapter, we investigate the following singular quasilinear elliptic system :
S1 1 . . N
Ay u=——7, u>0 InQ; u=0, InR \Q
P o b1
S
_ S2 — . . — . N
( A)pzv —yazuﬁz’ v>0 inQ; v=0, inR"\Q,

where Q < RN is an open bounded domain with smooth boundary, s;,s2 € (0,1), p1,p2 €
(1,+00) and ay, a2, B1, P2 are positive constants. We first discuss the non-existence of positive
classical solutions to system (S). Next, constructing suitable ordered pairs of sub- and super-
solutions, we apply Schauder’s Fixed Point Theorem in the associated conical shell and get
the existence of a positive weak solutions pair to (S), turn to be Hélder continuous. Finally,
we apply a well-known Krasnoselskii’s argument to establish the uniqueness of such positive
pair of solutions.

keywords : Fractional p—Laplacian equation; quasilinear singular systems; non-existence;
regularity results; sub and super-solutions; sub-homogeneous problems; Schauder’s fixed
point Theorem.

4.1 Introduction and statement of main results

Let Q < RN be an open bounded domain with C! boundary, sy, s; € (0,1), p1, p2 € (1, +00)
and a3, ag, B1, P2 are positive constants. In this Chapter, we are interested in the following
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non-local quasi-linear and singular system :

(AN u= u>0 inQ; u=0, inRN\Q;

u* Uﬁl ’

S)

(=A)%2 -1 v>0 inQ; v=0 inRY\Q
p2 _va2uﬁ2, ) — Y .

For this problem, we discuss non-existence, existence, uniqueness and Hoélder regularity
results. Here we follow the approach in [66] and [74] to get non-existence and existence of
positive solutions pairs to (S). To this aim, we use a weak comparison principle inherited
from [11, Theorem 1.1] from which non-existence results follows and suitable sub and super-
solutions. Using Schauder’s Fixed Point Theorem together with the sub and super-solutions
method, we prove the existence of a pair of positive weak solutions. In this goal, we introduce
the nonlinear operator 9 define as:

T (u,v)—~I W) =T1W),92W) :€—€ 4.1)
where :

Q) v—T(v):=1€ Wls;(':p 'Qandu— J(w):=ve Wlsjép ?(Q) are defined to be the unique
positive weak solutions of the Dirichlet problems respectively :

1
A g T . . - . N
(A = —opp #>0 in &y a=0, in R\, 4.2)
A2 = — = ; R - N
(CIAVES ﬁoizuﬁz’v>0 inQ; 7=0, inR"\Q. (4.3)

(ii) % is a suitable closed convex subset of (Wlsgép Q) N C(Q)) x (Wls(fép 2(Q) N C(Q)), that
contains all positive functions which behave suitably in terms of the distance function

up to the boundary.

Under some conditions to be defined later, we infer that the mappings 9, 9, are order-
reversing (see in this regard [11, Theorem 1.1]). Therefore, we obtain the (point-wise) order-
preserving of the following mappings :

u— (J109z)(w) and v— (F209)(v).

On the other hand, we remark that any fixed point of the operator 9 is a positive solutions
pair to (S) and conversely. Then, we shall prove that 9 satisfies the following conditions :

I (€) < ¥, T is continuous and compact.

To prove the compactness of 9, we use boundary asymptotic behavior and regularity of
solutions thanks to [11]. Finally, to establish the uniqueness of a positive fixed point, it is
essential to take into account the homogeneity of the two mappings 97 095 and 93 09;. In
this regard, we have for A €]0,1[:

B )
TiO\v) = AT Fi(v),  Ta(\w) = APras T 5 (w)

and
BB
(1 0 T2) At) = NPT T (I 0 T53) () > M (T 0 T3) ()
B B
(T30 T1)(Av) = NFZFeT PIReiT (T30 97) (1) > A (T30 T7) (0).
This means —b— . —P2__ <1 Then, it is not difficult to get that the mappings 97 0 9, and

p1+(Xl—1 p2+0(2—1 K .
9,097 are sub-homogeneous under the following condition :

(p1+a1—1)(p2+az2—1)—P1P2>0. (4.4)

As we will see, this condition ensures also the existence of a positive solution to (S).
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4.1.1 Functional setting and notations

e Letustake 0 < s < 1and p > 1, we recall that the fractional Sobolev space W*? (RN) is defined

as follows :
— 14
Ws’p(RN)::{ueLp(lRN), ffdedy<oo}
RN JRN  |x — y|N+sP

endowed with the Banach norm :

1
lu(x) — u(y)|”? »
”u”WS,P([RN): (”u”Lp(RN) [I;QN‘[[RN - y|N+sp dxdy)

 The space Wé’p (Q) is the set of functions defined as :
W, P (@) :i={ueW"RY) | u=0 aein RV\Q}.

The associated Banach norm in the space Wg’p (Q) is given by Gagliardo semi-norm :

1
lu(x) —u(y)I? P
lellysr ) = (‘[RNfRN N ———dxdy| .

The space Wg’p (Q2) can be equivalently defined as the completion of C°(Q2) in Gagliardo
semi-norm if 0Q2 is smooth enough (see [58, Theorem 6]), where

CPQ):={p:RN—>R: e C®RY) and supp(p) € Q}.
+ Now, we define
loc P(Q):= {uel’(w), [ulwsr) <oo, forallw e Q}

where the localized Gagliardo semi-norm is defined as

1
lu(x) — u(y)I? b
[U]Ws,p(w) = (f Wd)(:dy)

e Letax € (0,1], we consider the Holder space :
_ — u(x) —u(y)
CO’“(Q):{uEC(Q), sup M<oo}
x,y€Q, x£y |x_y|
endowed with the Banach norm

|u(x) - u(y)|
||u||C0a(Q) lullpo+ sup ———g—.
xyEﬁ,x;éy |x_y|

* We denote by the function d(x) of the distance from a point x € Q to the boundary 0Q,
where Q = QU 0Q is the closure of Q, that means

d(x) :=dist(x,0Q) = inf [x—y|.
y€0Q
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4.1.2 Preliminary results

In this subsection, we collect some results concerning the following fractional p—Laplacian
problem involving singular non-linearity and singular weights :

K(x)
A u= —,
( )pu u“

u>0 inQ; u=0 inRY\Q (EQ)
where s€ (0,1), p € (1,00), a > 0 and K satisfies the following condition : for any x € Q

adx) P <Kx) <cdx) P (4.5)
forsomefp € [0, sp) , and ¢y, ¢ are positive constants.

Now, we introduce the notion of weak sub-solutions, super-solutions, solutions to problem
(EQ) similarly asin [11] :

Definition 4.1.1. A function u € Wls(’)’z (Q) is said to be a weak sub-solution (resp. super-solution)
of the problem (EQ), if

u® EWS'p(Q) forsomex=1 and i%fu >0 forallKeQ

and
|u(x) — u|" ™% (ux) - u) (P(x) - () K(x)
fRN _A;N |x — y|N+sp dxdy < (resp. 2)[97([)(1)6 (4.6)

forallpe |J WP (.

QeQ
A function which is both weak sub-solution and weak super-solution of (EQ) is called a weak
solution.

In [11], the authors have studied (EQ), under the condition (4.5), and obtain the existence
of a weak solution via approximation method. They also investigate the non-existence, the
uniqueness, Holder regularity and optimal Sobolev regularity for weak solutions, for some
range of a and P. In the following theorem, we recall some results there, that are used in the
present chapter :

Theorem 4.1.2. ([11])

i) If E +a < 1, then there exists a unique weak solution u € Wg’p (Q) to problem (EQ), and
satisfies the following inequalities for some constantC >0 :

Cl'd*su=Cd** holdinQ
for every € > 0. Furthermore, there exist constant w € (0, s) such that

. C¢(Q) foranye>0if 2<p<oo,
C1(Q) if 1<p<2.

1
(ii) IfE + o> 1 withP < min { sp,l+s—— }, then there exists a unique weak solution in the
S p

sense of definition 4.1.1 to problem (EQ), which satisfies the following inequalities for
someC>0:
Cld” <u<cd” inQ
sp—p
a+p-1

where o* := . Furthermore, we have the following (optimal) Sobolev regularity :
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@ ueW,"(Q) ifand only if A <1

and
®) u® e WP (Q) ifand only if6 > A =1

(sp—-D(p-1+0a)
p(sp—p)

where A\ := . In addition, there exist constant w, € (0,0(*) such that

C¥(@ if 2sp<oo,
C2(Q) if 1<p<2.
(iii) Ifp = ps, then there is no weak solution to problem (EQ).
Proof. Seein [11] Theorem 1.2, Corollary 1.1, Theorem 1.3, Theorem 1.4 and Corollary 1.2. [

Remark 4.1.3. We can conclude the results of non-existence in Theorem 4.1.2 (iii) for the
problem (EQ) by a similar proofin [11, Theorem 1.3] when K satisfies the following condition :

adx) ™ <K@ <cdx) forany x € Q

where ps <P <P, and ci, ¢, are positive constants. Precisely, by contradiction, we suppose that
there exist a weak solution u € Wlsl;f (Q) of the problem (EQ) and 0 = 1 such that u® e Wg’p Q).
Now, we can chooseT € (0,1) and Pg < sp such that a function K’ satisfies the growth condition

Ardx) P <TK W) < ldx) P < dx)™ <K(x) forany xeQ

where ¢}, ¢, > 0 and the constantT is independent of By for o = Py > 0. Then, we can follow
exactly the proof of [11, Theorem 1.3] to get the desired contradiction.

4.1.3 Statement of the main results

Before, stating our main results, we introduce the notion of the weak solutions to system (S)
as follows.

Definition 4.1.4. (u,v) in Wlséép '(Q) x Wlsjép *(Q) is said to be pairs of weak solution to system
(S), if the following holds

(i) for any compact setK € Q, we have

infu>0 and infv >0,
K K

(ii) thereexistsx =1, such that

(W*, v) e Wy"'PH(Q) x WP (Q),

(i) forall (p,w) e [J W,""" (@ x J W () :

Qe QeQ
_ p1-2 _ _
f f |u(x) — uy)| (WL U ) —9(y) | dy= oW
RN JRN |x_y| +s1p1 o u® ph1
4
_ p2=2 _ _
ff lv(x)—v(y)| (v(x)NHv(y))(w(x) W(y))dxdy: yo
RNJRN |x—y| 2p2 q vz b2
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Remark 4.1.5. This definition introduces the non-local counterpart of notion of weak solutions
with respect to [74, 71]. Moreover, the condition (ii) in the above definition is motivated by the
lack of the trace mapping in Wlséép '(Q) and Wlsjép 2(Q).

We then define the classical solutions to system (S) :

Definition 4.1.6. We say that a pair (u, v) is classical solution to system (S), if (u, v) is a weak
solutions pair to (S) and (u, v) € C(Q2) x C(Q).

Next, we introduce the notion of weak sub-solutions and super-solutions pairs to system (S):

Definition 4.1.7. (u,v) and (@,7) in W, "' (Q) x W,2*(Q) are said to be sub-solutions and
super-solutions pairs to system (S), respectively, if the following holds

(i) for any compact setK € Q, we have
infu, infv>0 and infu, infv>0,
K— K-~ K K
(ii) there existsKi,K» = 1, such that

W, v eWg" Q) x WP Q) and (@, 7) e Wi (Q) x WP (),

(i) forall (9, w) € |J W,""' (@) x |J W27 (Q), with,y =0inQ,

Qe Qeq

_ p1—2 _ —
[ sl w0~ 0000 [ Dy
RN JRN |JC—J’|N+S”g1 o u® v

dx, Vue|uu]

_ p2—2 _ _
f lv@) - v |7 @) — v W) —w() dxdy< f (%)
RN JRN Q

|x_ y|N+32P2 2“2 uﬁ2
that is equivalently
_ p1-2 _ _
f |ux) - uy)| (g(x)N UM -9 iy < f LGN
RNJRN |x_y| +51p1 Qﬂ(xlvﬁl
(P) :
_ p2—2 _ _
f lv@) - v @& - v W) - () dxdy < f LACIP
RNJRN |x—y|N+sgp2 Q poegP?
and
T+ — T (NP2 () T _
fN NIu(x) u(y)| (u(xLHllt;ly))(cp(x) (p(y))dxdyz _tgl(xél Ve w7l
RNJR |x—y| Qu 'ty
— = p2—2 — = _
fN N|v(x) v(y)| (”(X)MZZ”“"(” VoD dy> _xgz(xéz % Vue[wT]
RNJR |x_y| QU U

that is equivalently
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f f @) — a7 @) - Ty e - 9() dedvs [0
RN JRN |x_y|N+Slp1 y_ Qﬁalzﬁl ’
(ﬁ):<
f f |5(x)—?(y)|p2_2(5(x)N—+?(y))(w(x)—w(y)) dxdy= [ Y9 g,
RN JRN |x—y| S2p2 Qv zﬂﬁz

Our first result concerns the non-existence of positive classical solutions to (S) and is
given in the following theorem :

Theorem 4.1.8. Assume that the numbers ay,02,p1,P2 , together with € > 0 small enough,
satisfy one of the following conditions :

(0 @ +ay < 1andpy(si —€) = pasa,

1

s
2) @+a251and61(52—8)2p151,
$2
S s —P1s 1
(3) M+o(1 >1 and P2(s171 = P152) = poSo, WithP1so <148 ——,
s1 oa+pr—1 p1
s s —P2s 1
4) %+O{2>1 and ﬁl( 2P2 ﬁz ) = p1S1, with6281<1+82——,
AY) o+ p2—1 p2

B2s1p1

1
<min{szp2,1+32——} and
ap+pr1—

S
G) a1 >1, Pr> ——(a1 + p1 - (1 — ),
S1p1 p2

Bi(s2p2(ay +p1—1)=P2sip1) = s1p1(og + p1— Doz + p2—1),
1
M <min{slp1,1+sl ——} and

o2+ p2—1 p1
Ba(sipr(az+p2—1)=P1S2p2) = s2p1(02 + p2— (o + p1 — 1).

S
6) ap>1, B> ——(az + p2— (1 —a),
S2p2

Then, there does not exist any classical solution to system (S).

To prove the above result, we use a comparison principle given in [11, Theorem 1.1]
together with the boundary behavior of suitable sub- and super-solutions to problem (EQ)
deduced from Theorem 4.1.2, as detailed in Proposition 4.2.1 and Lemma 4.2.2 below.

The next result states our main existence and regularity result :
Theorem 4.1.9. Assume that the positive numbers oy, &2, 1, P2 satisfy the condition (4.4).

s s
(1) Let Pis: +o; <1and Pzs1 + a2 < 1. Then problem (S) possesses a unique positive weak

S1 So
solution (u, v) € Wy (Q) x WP (Q) satisfying for any € > 0 the following inequalities for

some constantC=C(e) >0 :
Cld%<u<Cd"® and Cld%<v=Cd®® inQ.
In addition, there exist constants w1 € (0, s1) and w; € (0, s2) such that :

v CHERN) x C2¢RY) if2<p<oo,
u,
CO1(RN) x C¥2(RN) ifl<p<2.
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&)

3

Let
_ pi1si(az+p2—1) = piPi1s2 an _ p2s2(aq + p1 —1) — p2Pas;
(a1 +p1 =D+ p1—1) —P1P2 (a1 +p1— Do +p2—1)—P1f2
1
Now assume that% + o1 > 1 with &P <min{p131,1 + 81— p—} andYS—[32 + 0y > 1 with
1 1 2

1
YP2 < min { p2S2, 1+ 85y —— } Then problem (S) possesses a unique weak solution (u, v)

in sense of Definition 4.1.4,2 and satisfies with a constantC >0 :
C'd"susCd' and C'd*sv=Cd" inQ.
Furthermore, we have the optimal Sobolev regularity :
o (u,v) eW,"PH(Q) xW"P*(Q) ifand only if Ay <1 and A, < 1
and

o (u%,u%) e ng'pl Q) x Wgz’pz (Q) ifand only if6, > Ay =1 and 0, > A, = 1,

where A1 := (s1p1=D(p1—1+a) and A, = (Szpz—l)(P2—1+(x2).

p1(sip1—&P1) p2(s2p2 —YP2)
In addition, there exist constants ws € (0, Y) and w4 € (0,8) such that :

CYRN) x CS(RN)  if2<p<oo,
(u,v) .
CO3RN) x C*RY) ifl<p<2.

Let :
_sip1—Pis2
(X1+p1—1.
S2—€ !
]f—ﬁl( 2=¢) +ay > 1 for somee >0, withP; s, <min{p181,1+51——} “”d@‘“& =1
$1 p1 $2

hold, then, the problem (S) possesses a unique weak solution (u, v) in sense of Definition
4.1.4, satisfying the following inequalities for some constantC >0 :

Cld¥<u<Cd' and Cld2<v<Cd® ¢ inQ.
Furthermore, ve W, (Q) and :

o ueW,"P'(Q) ifand only if A3 < 1
and
o uWeW,"P'(Q) ifand only if6 > A3 > 1

-1 -1
where A = (s1p1—D(p1 +cx1).
p1(sip1—P1s2)

In addition, there exist constants ws € (0, Y) and wg € (0, s2) such that :

v CY(RN) x C2¢(RN) if2<p<oo,
’ Co®N) x C@®RN) ifl<p<2.
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(4) Symmetrically to Part (3) above, let

_ S2p2—P2s
aw+pr—1
S1—€ 1
]f—ﬁz( 17€) +ap > 1 for somee >0, with P25 <min{p252,1+52— —} d”d%*‘o‘l =1
$2 p2 1

hold, then problem (S) possesses a unique weak solution (u, v) in sense of Definition 4.1.4,
satisfying the following inequalities for some constant C >0 :

Cld"<u<Cd® ¢ and C'dé<v=<cCd® inQ.
Furthermore, u€ W,""'(Q) and :

e veW,"P(Q) ifand only if Ay <1

and
o WeWP(Q) ifand only if6 > Ay = 1
_(2p2—1(p2—1+a))

where Ay :=
p2(s2p2 —P2s1)
In addition, there exist constants w7 € (0, s1) and wg € (0,&) such that :

CHERN) x CE(RN) if2<p<oo,
(u,v) .
CYTRN) x Cs(RN) ifl<p<2.

4.1.4 Organization of the chapter

The chapter is organized as follows : Section 4.2 is devoted to prove Theorem 4.1.8. Next,
we prove the existence, uniqueness and regularity of positive weak solutions contained in
Theorem 4.1.9 in Section 4.3. The proof is divided into three main steps. First, we need to
fix the invariant conical shell under the operator 9 defined by (4.1), containing all positive
functions between pairs of sub- and super-solutions. Next, thanks to the regularity contained
in Theorem 4.1.2, and applying Schauder’s Fixed Point Theorem, we prove the existence of a
positive solution in €. Finally, to complete the proof of Theorem 4.1.9, we apply a well-known
argument due to Krasnoselskii [86, Theorem 3.5 (p. 281) and Theorem 3.6 (p. 282)] to prove
the uniqueness of the positive solution.

4.2 Non-existence of positive classical solutions

In this section, we prove Theorem 4.1.8. To this aim, we need the following new technical
results. First, by comparison principle [11, Theorem 1.1] together with Theorem 4.1.2, one
can derive the following proposition for sub- and super-solutions to the problem (EQ) :

Proposition 4.2.1. Let u (resp. i) be a weak sub-solution (resp. super-solution) of (EQ) in the
sense of definition 4.1.1. Then, there exists a positive constant C > 0 such that :

(i) u<Cd* ¢ foreverye>0, and ii = C~'d® holds inQ, if% +a<1l.
(i) u<Cd* andi=C'd*" holdsinQ, if% +a>1with0<pP< min{sp, 1+s— %}

sp—pP
a+p-1°

where o™ :=
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Next, we have the following result about the behaviour of classical solutions to (S) :

Lemma 4.2.2. Let (u, v) be a pair positive classical solution of system (S). Then, there exist two
positive constants Cy,Cy such that :

u=Cid" andv=Cyd® holdsinQ. 4.7
Proof. Let wy, w, be respectively positive solutions of the following problems:
(M, wi=1,w;>0 inQ; w;=0, inRY\Q,

(MR w, =1, w2>0 inQ; w,=0, inRN\Q.
By using ES?), Theorem 1.1], there is o € (0, s1] and a3 € (0, 5] such that w; € C*(Q) and
w, € C*2(Q). In addition, by [50, Theorem 1.5, p. 768], we obtain that
w; =2Kd*(x) and w»=Kd*%(x),

for some K > 0. Finally, since (u, v) is a pair of classical solution of system (S), we obtain
_1 _1

NS u=cr =N (" Tw) and (AR vz = (AR w) inQ

for some constants cj, ¢c; > 0 small enough. By the comparison principle [11, Theorem 1.1],
we then deduce (4.7). O

Proof of Theorem 4.1.8. Suppose that there exists (1, v) a positive classical solution of system
(S). We distinguish the following cases according to the statement of Theorem 4.1.8 :

Cases (1)-(4) : Assume conditions in (1). By using the estimates in (4.7), u is a sub-solution of
the problem :

(=A% w= , w>0 inQ; w=0, inRV\Q,

where the constant C, is defined in equation (4.7). Since ﬁlsg

we obtain for everye > 0:

+a; < 1 and by Proposition 4.2.1,

ClaP179 < P2 < C@ P2t holdinQ

for some constant C > 0. Then, from Remark 4.1.3 (since P2(s; —€) < f2s;1) the following
problem:
uP2

v92

(-NEv=——0o, v>0 inQ v=0, inRV\Q

has no weak solution if 2 (s; — €) = p2s2. Analogously, we get the same conclusion for (2).

512

Consider case (3). Since + a; > 1 with ;52 <min {slpl, 1+s— —} then by Proposition

4.2.1, we have :
—B2(s1p1-B152)

Cla  wwit <uP<cd P holdin Q

B2(s1p1—P1s2)

for some constant C > 0. Again from Remark 4.1.3 (since o =
1+p1—1

problem :

< P2s1) the following

5 u_BZ . . N
(_A)pZU:_az’ v>0 inQ; v=0, INnNR'\Q
v
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has no weak solution if %pfllm > p,s,. Analogously, we obtain the same results for (4).

Cases (5)-(6) : Let M = min { v } . Then, we have
Q

in case (5), u is a super-solution to the problem :

(—A);}lw: . w>0 inQ; w=0, inRVN\Q.

w™

By using Proposition 4.2.1 (since a; > 1), there exists a positive constant C > 0 such that :
S1P1 .

u=Cdu+rn-t holdin Q.

Hence, v is a sub-solution to the following problem :

_ Basim
s d «1+p1-1 . . N
(—A)pzzw:—, w>0 inQ; w=0, inR"\Q.
Cﬁ2w0‘2
Since —P291PL_ 4 o0 > 1 and 2921 < min{ s, py, 1+ s, — L | by applying Proposition 4.2.1
s2lag+pi—-1) T 2 o +pr—1 2P2 2~ p, ( DY applymng rrop L

and the estimates (4.7), there exists a positive constant C > 0 such that :

—B1(sppa(ay+p1-1)—P2s1p1)

Cld™ @inmnarn <y Pr<cd P holdin Q.

B1(s2p2(ay+p1—1)—P2s1p1)
(a1 +p1—1D) (02 +p2—1)

Finally, by Remark 4.1.3 (since
problem :

< P152), we obtain that the following

51 _ U_Bl . ) B . N
(—A)p1 = , u>0 inQ; u=0, InR"'\Q
u™

has no weak solution if

Bi(s2pa(ay +p1—1)=P2sip1) = s1p1(a1 + p1 — Dz +p2—1)

Analogously, we get the same results for (6). O

4.3 Existence and uniqueness results

Proof of Theorem 4.1.9. We perform the proof along four main steps :
Step 1 : Existence of a pair of sub- & super-solutions, invariance of the associated conical shells.

We decline this step through four alternatives according to the boundary behavior of solutions
to nonlinear fractional elliptic and singular problems of type (EQ), as described in Theorem
4.1.2:

S S
Alternative 1. If M +07<1and @ + a2 < 1. So, we consider the following problems :
S1 S2
s d(x)—ﬁlsz N
(=A)p, U= —5— uy>0 inQ; uy=0, nR\Q,
u
0
d(x —P1(s2—€)
(—A)IS[}1 u = ()—oq’ up>0 inQ; wu;=0, inRV\Q,
u

1
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and 6
d(x)~P2%1
(—A)f,z2 UO:%, V>0 inQ; =0, inRYV\Q,
Yo
d X _ﬁZ(sl_e)
(—A);:,Z2 v = ()—, 1 >0 inQ; v,=0 inRVN\Q,

(0
v’
for every € > 0. Then, from Theorem 4.1.2 (i) there exists unique solutions uy, u; € W,"”' (Q) n

C(Q) and Vg, V1 € Wgz'p 2(Q) N C(Q) to above problems, respectively, and one has for some
constant C>0:

Clad® <up, u;<Cd™ ¢ and C'd%2<uvy v1<Cd® ¢ inQ.

Now, we define the following convex set

€ {(u, V) eCQ) xCQ); mu; <u<Mpuy and myv < stgvo}

[my uy; My ugl x [mpvq; Mo 0]
where 0 < m; < M; <oo and 0 < my < M, < oo are such that € is invariant under
T () — T (u,v):= (1 (1),T2(Ww) : € — C(Q) x C(Q)

where 9 defined in (4.1), thatis I (€) c €.

Hence, we need to check the following inequalities :
T1Mavg) Z2miuy and  J(myup) <Mpug (4.8)

IoMiug) =myv; and J7(movy) <Mjup. (4.9

Thus, it suffices to show that (m; uy, movy) (M 1y, Mavy) are respectively sub-solutions and
super-solutions pairs to (S) by using comparison principle [11, Theorem 1.1]) for appropriate
constants my, my, M1, M. Precisely,

1 1
and (-A)% (M,vg) =
()™ (M vg)P! P2 F270

(=A)y, (myuy) < ing,

in
(M v0)%2 (myup)P

1 and (-A)2 (mov) < !
(M up)™ (movy)P P2 B

in sense of Definition 4.1.7. Then, we have the following conditions :

(=A)p, M) = inQ

i
(Mo v1)® (myuy)P

m(1!(1+P1—1C[51M§1

(myu)® (Mapvp)P1

M2 TPl m?z

(M2 vp)®2 (my uy)P?

(—A)p, (myuy) < and (—A)2 (Mavp) 2

ME PGB g mo2 P2 B gPe
2 and (=A), (may) < 2 L

(=A)y My up) = :
PEEETE My 1) (g )P (mav1)® (M ug)P2

We look for m, My, my, M; satisfying inequalities (4.8) and (4.9). To this aim, by the condition

(4.4) there exists o € (0; +o0) such that

+o0;—-1
p1 1 S0 > B2

B1 p2+oax—1
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or, equivalently,

]91+O(1—1>0'ﬁ1 and ()'(]92+0(2—1)>52. (4.10)
We choose m; =A~Y, M; = A, my, =A™ and M, = A, where A € [1;+00) is a sufficiently large
constant, we get :

cPr < n’ll_(qurm_DM;ﬁl ie., CcPr < pntp1-1-0fy
chr < M(1X1+p1—1m51 ie., ch1 SAoq+p1—1—cf>1’
CBZ < mz—(a2+P2—1)M1—ﬁz ie., Cﬁg SAo(a1+p1—l)—[’)2,
chz < Mgz+P2—1m[152 ie., P2 < pO(@+p2-D—P2

Hence, by using the inequalities (4.10), we conclude that all inequalities above are satisfied
for A € [1; +00) large enough.

Alternative 2. Now, we consider the following auxiliary problems :

d X _‘iﬁl
(—A);l1 Uy = %, u>0 inQ; up=0, inRV\Q
u
0
s d(x)~YP2 . N
(—A)pz2 VW=—g V>0 inQ =0 InR\Q

a
Vo

where 0 < y < 51 and 0 < ¢ < s, are some suitable constants to be determined. In this
1
regard, we consider @ +a; > 1 with &f; < min{plsl, 1+s— —} and Y_ﬁz + o, > 1 with
S1 pP1 82

1
YP2 < min { p2S2, 1+ 82— —} and by using assertion (ii) in Theorem 4.1.2, there exists unique

p2
minimal weak solutions uy and vy respectively to the above problems and satisfying with

some constant C >0 :

_1 anh 51P1-861 _q ,S2PavBp sap2=YB2
Cidunt =syy<Cdu+n-l! and C dx*r2-l <yy<Cdxetrz-l  in Q.

Then, setting
_ S2p2—YP2
f=2re IFe
ax+p2—1

_sip1—&P

and =
o +pr—1

we obtain the following equivalent system :
§az+p2— 1) +YP2=s2p2
&Pr1+yl@r+p1—1) =s1p1.
Under the sub-homogeneity condition (4.4), the system above is then uniquely solvable and

__Psatpr-D- p2P2si
(a1 +p1— Doz +p2—1) —P1P2

__ st p—1) -pifis,
(01 +p1—Dop+pr—1)—Pif2

Arguing as in Alternative 1, we define the following set :

€: = {(u,v)(—:C(ﬁ)xC(ﬁ);mluosuleuo and mZUQSUSszo}

= [myug; Myugl x [mve; Mavg]
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where 0 < m; < M; <oo and 0 < my <M, < oo are such that € is invariant under 9 . Hence,
we need to fulfill the following inequalities :

TJ1Mavg) =miuyg and Ir(miup) <Mooy (4.11)

IoMiug) =mevy and J7(movg) <Mjup. (4.12)

Thus, it suffices to show that (m; uy, movy) and (M; ug, M2 vg) are respectively sub-solutions
and super-solutions pairs to (S) with appropriate m, my, M, M, i.e.

1 1

_ A1 A2
(=A)p, (Myup) = e My o) and (-A)p, Mavo) =

in Q,
(M2 )% (my up)P!

1 and (A2 (mavp) < !
(M )™ (1 vg)P! P2 -

in sense of Definition 4.1.7. Equivalently, one has

in Q,
(M2 v0)®2 (myup)P

(—A)3, M up) =

M2 TP, m[132

(M2 vg)®2 (my ug)P?

Aoy

(myu)® (Mpvp)P

(=), (my 1) < and (-A)y, Mav) =

MO PB4, mgz+P2—1CﬁZM§1

S1 m2 $2
(=A)p, Miug) = and (-A4)p, (Mavg) <

(M1 1) (m2v9)P1 (M2 v0)% (M1 u0)P2

Now, we recall inequalities (4.10) to conclude that all inequalities above are satisfied by
choosing m; =A™1, Mj = A, my = A~% and M, = A° with A € [1; +00) taken sufficiently large.
B1(s2—¢€)

Alternative 3. Consider the case where
S1

+ a1 > 1 for € > 0 small enough, with §; s, <

1
min { sip,1+s—— } Then by using assertion (ii) in Theorem 4.1.2, the following problems:

— d(x)~Prs . B . N
(=), Up = —— uy>0 inQ; up=0, inR \Q
u
0
d(x —PB1(s2—€)
(—A);ll u = ()—0(1’ up>0 inQ; wu;=0, in RN\ Q
u

1
have unique positive weak solutions denoted respectively by uy and u; satisfying :

1 51P1-B152 5171152 1 s1P1-B1(s2—€) s1P1-B152 .
C'dunt =syg<Cdxu*rn1 and C 'd xu*rn1 <y <Cd =+ in Q

where C is a positive constant large enough. Now, we consider the scalar auxiliary problem :

d X _ﬁZY
(=A)p, Vo = % >0 inQ; vp=0, inRV\Q
v
0
s1p1—Pis
with y = 1]?_5112 If f)z_Y + oz < 1, by assertion (i) in Theorem 4.1.2, there exists a unique
0+ p1— $2

2,P2

solution vy in Wé (Q) N C(Q) to the above problem which satisfies for some constant C>0:

Cld%2<yy<Cd® ¢ inQ.
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Set
€: = {(u, 1) eCQ) xCQ); mu; <u<Mjuy and myvg < USszo}
= [myuy;Myugp] x [mave; Mavg].

Following the approach as in Alternatives 1-2 and by using the inequalities (4.10), we can
infer the existence of m,,M;, my and M, with 0 < m; < M; <oo and 0 < my < M> < oo such
that % is invariant under 9~

[52(51 €)

Alternative 4. Symmetrically to Alternative 3, we assume ~—— +ay > 1 for € small enough,

1
with f,5; < min { p282, 14+ 85— — } Hence, again by using assertion (ii) in Theorem 4.1.2, the
p2

following problems :
d(x) P : N
(- A)p2 0% 1p>0 inQ; vy=0, InR\Q
v
0
d(x) P(s1-©
(Mpn=——g— n>0 InQ n=0, in RN\ Q

1

admit unique positive weak solutions vy and v; in sense of Definition 4.1.1, that satisfy
respectively :

L B2s1 s2p2=P2s1 1 %22 B2 (s1-¢€) $2P2 P21 .
C'd 2tr2l <spyy<Cd ®tr2-1 and C 'd «tre! <yp; <Cd %2l in Q

where C is a positive constant, large enough. Now, we consider the following problem :

d X 515
(—A)fgl1 ( )(x L Up>0 inQ; uy=0, inRVN\Q
u
0
—P2s1 _ P1€ o . .
where { = ———.If — +«; < 1, from assertion (i) of Theorem 4.1.2, there exists a unique

oz + Pz -1 5
solution ug € Wsl’p '(©Q) N C(Q) which satisfies for some constant C >0 :

Cld <suy<Cd"¢ inQ.
As in cases Alternatives 1, 2, 3 and using (4.10), we can prove that

€: {(u, V) eCQ) xCQ); mup<u<Mpuy and myv; < VSle)o}

= [myuo; Myupl x [mavi; Mavgl,

is invariant under the operator J .
Step 2 : Applying Schauder’s Fixed Point Theorem.

Along the different Alternatives 1-4, we aim to show that 9 : € — %€ is compact and continu-
ous. In this regard, for any (u, v) € €, we infer the following statements :
Alternative 1. Applying assertion (i) in Theorem 4.1.2 with

s=s,p=pr,a=a; and K(x)= v P for xeQ
(4.2) possesses a unique solution i € WS1 'P1(Q). Furthermore, one has (with uniform bound
depending on my, my,M;, M, and €) for some constant w; € (0, s1) and for everye >0:

C" Q) if 2<p<oo
c Q) if 1<p<2.
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Analogously, we get 7 € W,”"*(Q) unique solution to (4.3) with
§s=$,p=p2,a=ay and K(x)= u‘ﬁz, for xeQ
and there exists a constant w» € (0, s») such that

S C2¢Q) if 2<p<oo
v —
C*2(QQ) if 1<p<2

(with uniform bound depending on m;, m,,M;, M, and ¢€) for every € > 0.

Alternative 2. Applying assertion (ii) in Theorem 4.1.2 with
s=s,p=pr,a=a and K(x)= v P for xeQ

there exists a unique weak solution to the problem (4.2). Furthermore, we have the sharp
Sobolev regularity result :

« 1eW,""(Q)ifand onlyif A; <1

and

e #°eW,"P'(Q)ifand onlyif 0> A; = 1

S -1 -1+«
where A; := (5191 = D(p1 1), and there exist constant w3 € (0, y) such that

p1(s1p1—¢EP1)

. CYQ) if 2<sp<oo
C»(Q) if l<p<2.

Analogously, we get 7 a unique weak solution to the problem (4.3). Furthermore, we have :
e 7eW,"”(Q) ifand onlyif Ay <1
and
« ¥ eW,?”(Q) ifand onlyif 0> Ay =1

(S2p2—1)(p2—1+ay)

, and there exist constant w4 € (0, &) such that
p2(s2p2 —YP2)

where As :=

e C'Q) if 2<sp<oo,
C™(Q) if l<p<2.

Alternative 3. Similarly to Alternative 2, applying assertion (ii) in Theorem 4.1.2 with

s=s,p=p,a=a; and K(x):v_ﬁl, for xeQ

there exists a unique weak solution # to the problem (4.2). Furthermore, we get the optimal
Sobolev regularity :

e 7€ W, (Q) ifand onlyif A3 <1
and

« @%eW,""(Q) ifand onlyif 0> A5 =1
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sip1—1 -1+«
where A3 := 1o~ Dipr 1), and there exist constant ws € (0, y) such that

p1(s1p1—s2P1)

. CVQ) if 2sp<oo
C»s(Q) if l<p<2.
In the same manner, analogously to Alternative 1, applying assertion (ii) in Theorem 4.1.2

with
s=S,p=p2,a=ay and K(x)= uP2 for xeQ

we obtain the existence of 7 € Wéz’p #(Q) such that for some wg € (0, s2) we have :

e C27¢(Q) if 2<p<oo,
v —
C»(Q) if 1<p<2.

Finally, Alternative 4 is treated analogously, by combining the arguments from Alternative 3.

» Compactness of 7 : Let (u, v) € 6. Since I (u, v) = (@I, D) € €, from above results there exist
constants n; € (0, s7) and 2 € (0, s2) , such that

ieC"(Q) and TeC™(Q)

for all Alte_rnativei 1-4 and wi_th unifoim bounds in €. Now, the compactness of the embed-
ding CM (Q) — C(Q) and C"?(Q) — C(Q) ensures that J is compact.

« Continuity of 9 : Now, let us consider an arbitrary sequence {(u,, V,)},,en € €6 Verifying :
(un, vn) — (g, vp)  InC(Q) x C(Q)

as n — oo. Setting (i, V) := 9 (U, vy,) and (i, Do) := T (uy, vp). Since I is compact there
exists a sub-sequence denoted again by {(,, )} ,,en Such that :

(@ty, Dp) — (i, D)  inC(Q) x C(Q). (4.13)
On the other hand, from Definition 4.1.1 we have (i, 7,,) € Wlsolép Q) x Wls sép *(Q) satisfying :
it, € W' (@) and infa, >0 forallKeQ,

D5 eW,*"*(Q) and info,>0 forallkKe€Q,

for some k =1, and

f f |ﬁn(x)—an(y)|p1_2(ﬁn(x)—lftn(y))(cp(x)—cp(y))dxdy_ @(x)
RN JRN |x_y|N+S1p1 Qﬂ;xll UEI )
(4.14)
A 5 p2—2 A A _
f f |0(x) = 0] (vn(a;)H DN - W) dy= w(xé ix
RNJRN |x_y| 2p2 Qﬁgzun2

forall (p,y) e J Wy (@) x [J WP (.

Qe Qe
We now pass to the limit in (4.14) as n — oo. For this, we distinguish along above Alternatives
1 to 4. Precisely,
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Alternative 1 : By taking (¢, W) = (i, 0,,) € W,""' (@) x W,"*(Q) as a test function in (4.14),
we have that

A _ P1
f |un(X) un(J/)| dxdy:f 1 dxsfd(x)—sl((xl—l)—ﬁlszdxsc
RNJRN -  polyh Q

N _h p2
f 2.9 ;n(J/)| dxdy=f : —def d(x)~ e D Psigy <,
VRN [ — | NP apptu Ja

Therefore, {#1,}, and {Dp}, are uniformly bounded in W;""' (Q) and W,""*(Q), respectively.
Hence, taking into account (4.13), we have

up — 0t weaklyin W,"”'(Q) and v, — 9 weakly in W,*"*(Q),
u, — i strongly in L”*(Q) and v, — ¥ strongly in LP?(Q),
Uu,—taeinQ and v,— D a.e. in Q.

Now, for any ¢,y € C(Q) :

p1— ) —
lim f f |0 (x) = 2 ()| un(ﬁ)ﬂ (1) (@) — (1)) dxdy
n—o0 JpN JrN |x—yl 1P
a(x) — () |P 7 (2 - 2) (9(x) — ()
f f | | )~ 1) ) dxdy
RN JRN |x — y|N+sipm
and
_ p2— _ 7 _
i f f |0n(x) = Dn ()] Vn(xN)HVn(y))(w(x) v () dxdy
n—o0 JpN JpN |x hd 2P2
_ p2— — —
f f |0(x) - 2(p)| v(x)NHv(y)) (W) -w®) dxdy.
RN JRN |x — y|N*+s2p2
Next, using
¢ <cdx) NP e Q) and dC) < crd(x) e 5P e ()
a P 52Uy’

where cj, ¢ > 0 and for any ¢,y € C°(Q2), and by the dominated convergence theorem, we

obtain :
lim f ¢ dx:f ¢ dx and lim W(x) x:f \p(x)
Qn Q Q

n—oo A(Xl ﬁl I:\t(xl vgl n—oo Q A(Xg [32 V(xz uﬁZ

Finally, passing to the limit in (4.14) as n — oo, we obtain :

N PN p1-2 -1 —
ff |a) —a)|™ ™ @) - ay) (@) cp(y))dxdy_f ¢,
RN JRN Q

|JC—J’|N+SIPl % yﬁ1
(4.15)
|00x) - 2|72 (D(x) — D) (W () —w(3) w(x)
fN N N+s2p2 dxdy = - 2 d
RNJR |x— y| Q P2y

for any @,y € C2°(Q2). By density arguments, we then conclude that (4.15) is satisfied for any
@ € W,"P(Q) and y e W (Q).

Alternative 2. We distinguish the following cases :
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(i) If Ay, Ap < 1. By using (@, ) = (i, D) € W37 (Q) xW,>"*(Q) as a test function in (4.14),
we obtain

N o p1
f f b fﬁ”(”' dxdyzf l—dxffd(x)‘Y(“l‘”‘ﬁlﬁdxsc
b ey oag <o

A _H p2
f f |05 (x) 1l\;z(y)I dxdyzf 1 dxsfd(x)—a(az—n—ﬁzvdxsc_
RN JRN - 52p2 a ety Q

Then, {i1,}, and {D,}, are uniformly bounded in ng'p '(Q) and Wgz'p ?(Q), respectively.
Now, as above, passing to the limit in (4.14), (4.15) holds.

(i) If Ay, Az = 1. Using (¢, ) = (@2, 05) € Wy"P1(Q) x Wp»P?(Q) with k' > max{Aj, Az}, as a
test function in (4.14), and using the inequality in [27, Lemma A.2], we obtain :

ik (x) — a<(y) | 1 :
C’f f | n(¥) NZEJ}” dxdysf—, dxsfd(x)_“o‘l_“)_ﬁladxsc
RN JRN _ 1P1 Qgsx UEZI Q

~K _ K p2
C'f f [23.09~ 05| dxdy<s | ————dx sf d(x) e )=Pr gy < C
RN JpN |x_y~N+82P2 Q ﬁgz—K u[rjzz Q
where k = "'+_5‘1 >land C' = (K’fp—p—pl)p' Then, {@}}, and {?}}  are uniformly bounded

in ng’p '(Q) and Wgz,p ?(Q), respectively. Moreover, by using Fatou’s Lemma, we have

I LA‘K”WSI"”1 @ = ﬁ,gE},I,}fll LA‘E”WSI"”I @ <C

and

|0 ”Wg?”’2 @ = h,?_l,g}f” ﬁﬁllw;m @ <C

Since i1, ¥ € C(Q) and by virtue of the strong maximum principle, for all K € Q there
exists pg, such that :
u(x),0(x)=px>0 forae xek.

From the proof of Theorem 3.6, in [39], we obtain :

|a(x) - ;t(y)l” 3 ﬁ_KrlaK(x)—aK(y)l’”l

=y |x -yl
4 x,y€K, Ke&Q.
|0(x) - 0(3)|"* — D% (y)]"

|x_y|N+82p2 — FK |x_y|

N+s7 P1

N+82p2

This yields
neW'P(Q) and e W2

loc

Finally, we can follows exactly the proof of [39, Theorem 3.6, p. 240-242] in order to
pass to the limit in the left-hand side (4.14). For the right-hand side, we obtain for any
Q€Q,and ¢ e W7 (Q) and w e W7 () :

@

! vgl

v

A(XZ

<d(x) VPl el (@) and
P2
vl’l un

< d(x) %2 P2Y |y| e LY (),
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we conclude that

a(x) - a(y)|" % (@) - 2 @) — (1)
foN| ¢ | N+81P1y . — dXdy: (p(X)
RNJR |x—y|

D(x) — 0|72 (0(x) = (1) (W (xX) — ()
foN N+s2p2 dXdy: A 2
RNJR |x—y| Q P2y

forall (p,y) € |J W,""' (@) x [J Wy (.
QeQ QeQ

Q% ygl

v (x)

dx

(4.16)

dx

Alternative 3 and Alternative 4. Using the same approach as in Alternatives 1 and 2, passing
to the limit in (4.14), we get ## and » weak solutions to (3.7) in the sense of Definition 4.1.1.

From Theorem 4.1.2, we infer that :

(@1, 0) = J (uo, vo)

which implies that 9 is continuous from C(Q) x C(Q) to C(Q) x C(Q). Finally, applying
Schauder’s Fixed Point Theorem to 9~ : € — €, we obtain the existence of a positive weak

solution pair (¢, v) to problem (S).

Step 3 : Uniqueness by strict sub-homogeneity.

Here to prove uniqueness, we apply a well-known argument due to M. A. Krasnoselskii [86,
Theorem 3.5 (p. 281) and Theorem 3.6 (p. 282)]. Precisely, arguing by contradiction, we sup-
pose that (u;, v1), (U2, v2) € € are two distinct positive weak solutions pairs to (S) belonging
to the conical shell € = [u, 7] x [u, 7], where u, 7 are given in Step 1. This means that

I (uy,v1) =(u,v1) and I (up, v2) = (U, v2)

this equivalently :

(T1092) (u1) =uy, (J2097) (1)) =v; and (J7097) (uz) = up, (F2097) (12) =12

respectively. Now, we define :
Cmax:=SUp{ceRy, cup<u; and cv,<v;}.
We have :
1. 0 < cmax <00, since (11, V1), (U, v2) in the conical shell €.

2. If one can show that ¢, = 1, then we are done, as this entails :
m<u and vi<v, in Q.
Thus, by interchanging the roles of (u;, v;) and (u», v»2), we have
w<u and v <v; in Q.

To this aim, we suppose by contradiction that 0 < ¢yax < 1. Then

(4.17)

_bk __Ba
tof—l(cmaxvl) = (Cmax) pi+ar-l LOTI(VI); toj—Z(CmaXul) = (Cmax) pata=l toj—l(ul)
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and
P2 B P2 B
(T2097)(CmaxV1) = (Cmax) P2+%271 P1ra171 (950 97) (V1) = (Cmax) P22~ Pra1-l pg
$51 B2 B1 [$2)

(T10932) (Cmax1) = (Cmax) P11 P2+2~T (F] 0 F) (Uy) = (Cmax) P11 P2¥a2-T gy,

Furthermore, by using the weak comparison principle [11, Theorem 1.1], both mappings
109>, and 9, 0 97, being (point-wise) order-preserving mappings, we get that

B B2
up = (J1092)(u1) = (91 0°92) (Cmax2) = (Cmax) 11 172 Uy

B B2
V1 = (J2097) (V1) = (F2097) (CmaxV2) = (Cmax) 7 1+92 vy

from 0 < ¢jax < 1 combined with (4.4), we deduce that

B1 . B2
(Cmax) 1™ %92 > Cpax

from which we get a contradiction thanks to the definition of cipax in (4.17). Then, cpax = 1.
This ends the proof of uniqueness for problem (S) and the proof of Theorem 4.1.9. O
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PERSPECTIVES

In conclusion, we refer here there are many basic open questions for a non-local, non-linear
problem driven by the fractional p—Laplacian operator, for instance, C1**-regularity (for some
a € (0, s]) up to the boundary for the weak solutions. We face, in particular difficulties related
to getting counterpart of methods and technical results for the local case.
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