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Impact of fractional filter in PI control loop applied to induction motor speed drive 
 
Introduction. One of the main problems of electrical machine control systems is to obtain a satisfactory performance in the rejection of 
load disturbances, as well as in the set-point tracking tasks. Generally, the development of control algorithms does not take into account 
the presence of noise. Appropriate filtering is, therefore, essential to reduce the impact of noise on the output of the controller, in 
addition to the machine output. Recently, there has been a great tendency toward using fractional calculus to solve engineering 
problems. The filtering is one of the fields in which fractional calculus has received great attention. The importance of filters in signal 
processing and other engineering areas is unquestionable Novelty. The proposed work is intended to be a contribution in the recent 
works conducted on the influence of the fractional filtering on the control robustness of induction machines control. Purpose. The main 
contribution of this research is the application of fractional filtering to the standard PI control loop for an induction motor speed drive. 
Methods. In order to assess its impact and benefit, different structures for introducing the filters are investigated, A first order filter is 
considered in different positions, whether before or after the controller or even in both positions at the same time, with a noise source. A 
review of the index performance evolution (the Integral Square Error, Integral Absolute Error and Integral Time Absolute Error) has 
allowed a configuration design of the filter. Results. Intensive simulations were performed with a control setup using integer and 
fractional order filters, which permitted to conclude that the fractional filters give better performance indices compared to the integer 
one and thus improve the dynamic characteristics of the system. References 27, tables 4, figures 12. 
Key words: fractional filter, first order filter, index performance, induction machine, PI controller. 
 
Вступ. Однією з основних проблем систем керування електричними машинами є отримання задовільних характеристик при 
придушенні збурень навантаження, а також завдання відстеження уставок. Зазвичай, при розробці алгоритмів керування 
наявність шуму не враховується. Тому потрібна відповідна фільтрація для зниження впливу шуму на вихідний сигнал контролера 
на додаток до вихідного сигналу машини. Останнім часом спостерігається чітка тенденція до використання дробового 
обчислення для вирішення інженерних завдань. Фільтрація – це одна з областей, в якій дрібному обчисленню приділяється велика 
увага. Важливість фільтрів у обробці сигналів та інших галузях техніки незаперечна. Новизна. Запропонована робота покликана 
стати внеском у недавні роботи, присвячені впливу дробової фільтрації на надійність керування асинхронними машинами. Мета. 
Основним внеском цього дослідження є застосування дробової фільтрації до стандартного контуру ПІ-регулювання для приводу 
швидкості асинхронного двигуна. Методи. Щоб оцінити його вплив та користь, досліджуються різні конструкції для введення 
фільтрів. Фільтр першого порядку розглядається в різних положеннях до або після контролера або навіть в обох положеннях 
одночасно з джерелом шуму. Огляд розвитку показників ефективності (інтегральна квадратична помилка, інтегральна 
абсолютна помилка та інтегральна абсолютна помилка за часом) дозволив розробити конфігурацію фільтра. Результати. 
Значний обсяг моделювання був проведений з налаштуванням керування з використанням фільтрів цілочисельного та дробового 
порядку, що дозволило зробити висновок, що дробові фільтри дають кращі показники ефективності порівняно з цілочисельним і 
таким чином покращують динамічні характеристики системи. Бібл. 27, табл. 4, рис. 12. 
Ключові слова: дробовий фільтр, фільтр першого порядку, показник ефективності, асинхронна машина, ПІ-
регулятор. 
 

Introduction. In recent decades several scientific 
research efforts have focused on the use of fractional order 
systems in identification, modeling, and control 
engineering. Applications cover a wide number of physical 
science fields, including mechanics, electricity, chemistry, 
biology, economics, modeling, and notably control theory, 
mechatronics and robotics [1, 2]. Fractional order control is 
nowadays one of the emerging research topics gathering a 
growing number of works [3, 4]. The main reason is that 
fractional order systems allow more powerful control 
performances and robustness compared to classical integer 
order ones [5, 6]. 

Actually, one of the main issues in machine control 
systems is often to achieve a satisfactory performance in 
the load disturbance rejection and in the set-point 
following tasks, simultaneously. The PID algorithm is the 
core function in low-level controllers. The majority of 
design strategies ignore measurement noises [7, 8]. 
Filtering the control loop signals is one possible solution 
to this problem. In [9], authors investigate how filtering 
the observed signal affects unwanted control actions 
caused by measurement noises, the load disturbance 
response and process uncertainty. The analyses are 
reduced to a set of design rules. 

In another work, Hägglund has proposed a signal 
filtering in PID control loop [10]. Set-point, process output, 

and measurable load disturbances are the three basic analog 
input signals for the controller. Before entering the PID 
controller, these signals should be filtered. The process 
output filter is used to remove unwanted components from 
the signal such as measurement noise and to compensate for 
undesirable process dynamics.  

With the successful implementation of non-integer 
order fractance devices, interest in using fractional order 
filters has grown. Seminal works on fractional order 
filters presented in [11, 12], were concerned with 
applying filter design theory to the fractional-order 
domain. Since then, several studies on the design of 
fractional order filters have been conducted, including 
[13, 14]. In [15] discussed the design and optimization of 
fractional filters, as well as their use in adaptive control of 
industrial processes [16]. 

Recently, the concept to «fractionalization» was 
proposed in [17]. It consists in replacing the classical 
integrator in a control loop by a combination of two 
fractional order integrators, which adds in fact fractional 
order filters in the feedback control loop, hence, improving 
the robustness against noises. Consequently, fractional 
order filters better approximate the ideal response than the 
classical ones; this fact makes their generalization for 
industrial control systems very advantageous. 
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This present work aims for the improvement of the 
induction machine speed control robustness applying 
fractional order filters in a simple PI feedback control 
scheme. Different structures of introducing the filters are 
investigated, whether before or after the controller or even 
in both positions at the same time (see Fig.1). 

 
Fig. 1. The basic feedback loop with process, controller and the filters 

 

Fundamentals of fractional calculus. Definitions. 
The concept of fractional calculus has been there since the 
inception of regular (integer-order) calculus, with the first 
reference most likely attributed to Leibniz and l'Hopital in 
1695 [18], where the half-order derivative was discussed. 
The generalization of integration and differentiation is 
fractional calculus.  

Fractional-order fundamental operator aDt
 is 

defined as in (1), where a and t are the limits and α is the 
order of the operation [19] 
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The most commonly used definitions for fractional-
order integral and derivative are Grunwald-Letnikov 
(G-L) and Riemann-Liouville (R-L) definition. 

Definition of Riemann-Liouville (R-L). The 
fractional-order integral, in the sense of Riemann–
Liouville, is defined as 
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and the fractional order derivative is expressed as 
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with the Gamma function given by  
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where Γ(x) is the Euler’s Gamma function; t0 and t are the 
operation bounds; α is the number identifying the 
fractional order;  is the time constant 

In this paper, α is taken as a real number that 
satisfies the restriction 0 <  < 1 [2, 19]. Besides, it is 
assumed that a = 0 and the convention aDt

 = Dt
 is used.  

Definition of Grunwald-Leitnikov (G-L). The 
fractional-order integral, in the sense of Grunwald-
Leitnikov, is defined as [19, 20]: 
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and the fractional order derivative is expressed as 
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where h is the sampling period.  

For many engineering applications, the control laws 
are implemented in the frequency domain, using the 
Laplace transform method. The Laplace transform of the 
G-L and R-L fractional derivative/integral, under zero 
initial conditions for order α is given by [21]: 

                      ( ( )) ( )tL D f t s F s   . (7) 
Approximation methods. One of the most difficult 

aspects of dealing with fractional order operators and systems 
is figuring out how to implement them using rational 
functions. Many researchers have concentrated on this 
problem and many approximation strategies, such as 
Oustaloup’s recursive algorithm and Charef’s singularity 
Function approximation method, have been presented [18, 22]. 

The Oustaloup approximation algorithm is based on 
the approximate transfer function of a continuous filter for 
sα with rational functions as follows [23] by a rational 
function: 
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where the poles, zeros, and gain are computed from [18]: 
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where lhu    is the unity frequencies’ gain and 

the central frequency of a band of frequencies distributed 
geometrically; ωh and ωl are respectively the upper and 
lower frequencies, α is the order of derivative, and N is 
the filter order. 

Charef and al presented the singularity function 
approximation method [22], which is very similar to 
Oustaloup’s method basing on the function approximation 
of the type s by a quotient of polynomials in s in a 
factorized form as follows [24] 

                  

0

0

(1 )

  

(1 )

N

i
i

d N

i
i

s z

s K

s p

 












,

 

(12) 

computed on the frequency interval   [l, h], such 
that 

Kd = c
,                                  (13) 

where ωc is the cutting frequency computed as 
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and the coefficients are calculated to obtain a maximum 
deviation of  (dB) from the original magnitude response 
in the frequency domain defining 

      10110 10,10 ba ,           (15) 

The poles and zeros of the approximated rational 
function are obtained applying 

                          0 .cz b . (16) 
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The number of poles and zeros is related to the 
desired band-width and the error criteria formulated by 
the expression: 
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where  is the acceptable error chosen by the designer 
following the desired precision such that   3 dB. 

Fractional order filters. Fractional-order low-
pass filter. The generalized transfer function of a 
fractional order low pass filter was proposed in [11] as: 
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where d = K/ and a = 1/.  
To determine the characteristics of this filter, a 

frequencies analysis is deemed necessary. For this 
purpose, the operator s is set as s = jω to obtain 
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The magnitude response and phase of the filter is 
expressed as 
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Figure 2 shows the Bode representation of different 
approximations of the fractional filter and the original one 
with  
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From the frequency representation (Fig. 2), it can be 
seen that singularity function approximation method 
provided a better fit, hence this latter is the one to be 
opted for in this paper.  

 
a 

 
b 

Fig. 2. Bode representation of the filter transfer function: 
a – oustaloop recursive algorithm; 

b – singularity function approximation 
 

Induction machine model and control strategy. 
The dynamic model of the induction machine described in 
the arbitrary Park referential considering state variables 
stator current and the rotor flux [ids iqs Φdr Φqr]

T is given 
as follows [25]: 

 voltage equations: 
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 mechanical equations: 
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 auto drive equation: 

                              .s r p    .
 (26) 

The ed and eq terms are the consequence of 
electromechanical and electromagnetic coupling between 
the windings, which is analogous to the electromotive 
forces produced by a direct current machine, expressed as 
follows: 
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(27) 

Thus the induction machine model is illustrated by 
the causal informational graph (Fig. 3) [26]. All symbols 
from figures are described in Appendix. 
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Fig. 3. Causal informational graph representation of the 

induction motor 
 

Strategy of control. The flux and the current 
creating the torque must be decoupled in order to control 
the induction machine. To do this we use a control known 
as vector control or field oriented drive, which directs the 
flux along the Park referential’s axis. 

The rated flux is aligned along the d-axis for rotor 
field orientation, thus Φdr = Φref and Φqr = 0. Using the 
voltage equations of the rotor, we will come to 
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The q-axis current is used to adjust the torque as follows: 
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Two magnitudes, the flux and its position, are to be 
controlled using (28), (29). The current ids govern the flux, so 
Vds, while the torque is controlled by the current iqs, so Vqs. 
For an indirect control, we impose: Φdr = Φref = const.  

The scheme control is depicted in Fig. 4 with speed 
and currents controllers [26] using the principles of 
inversion of the causal informational graph. Thus the 
induction machine model with oriented control field 

proposed and the filters are illustrated by Simulink 
scheme block in Fig. 5. The parameters of the induction 
machine are shown in Table 1. 
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Fig. 4. Control scheme of the induction machine 

 

 

 
Fig. 5.Simulink model of the induction machine with field control and filters 

 

Design of controllers. One important feature of the 
proposed method is the use of standard and simple PI 
controllers, which are very easy to tune. 

For the speed control, we have considered the 
MATLAB tuner for PI controller; whereas, for the current 
control we have considered the pole assignment approach 
for the PI parameters’ adjustment. The resulting 
controllers gains are given in Table 2. 

 

Table 1 
Parameters of the induction machine 

Stator resistance Rs = 1.02 Ω 

Rotor resistance Rr = 0.495 Ω 

Stator inductance Ls = 0.035 H 

Rotor inductance Lr = 0.032 H 

Mutual inductance M = 0.032 H 

Friction coefficient f = 0.0000620 Ns/rad 

Moment of inertia J = 0.000494 kgm2 

Reference flux 0.2 Wb 

Reference speed 1200 rpm 

Table 2 
Parameters of the controllers 

 Kp Ki 
Current controller 3.3068 80.9024 
Speed controller 135.6340 445.692 

 

Design of filters. There are several performance 
indexes that can be used for this purpose. The most 
frequently used are the integral absolute error (IAE) 
index, the integral square error (ISE) index or the integral 
time absolute error (ITAE) index [27] respectively 
defined as follow. 

The integral absolute error (IAE): 
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The integral square error (ISE):  
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The integral time absolute error (ITAE): 
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where r(t) and y(t) are respectively the desired value and 
the output value of closed control loop. 

For the PI control, the filter time constant is a 
fraction of the system time constant. Thus, the considered 
integer filter is 
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with K = 1.01 for  = 6 ms. 
To configure the filters to be introduced in the 

control loop, the model is simulated with different 
positions of integer filters, then the three performance 
indexes are evaluated. It is, therefore, noticed that for a 
standard PI controller, the minimum value of JIAE 
performance index is obtained when the additional filter is 
placed after the controller, as shown in Fig. 1. 

Simulation results are carried out using the 
MATLAB/Simulink environment. To evaluate the added 
filters, the test of the process in a noisy environment is 
proposed with PI controllers tuned as in Table 2. For this, 
the process is simulated in the feedback control closed 
loop injecting random noise with mean value magnitude 
of 5 % added to the system output. Considering a 
fractional 1storder-like low pass filter of transfer function: 
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with K = 1.01 and τ = 6 ms and the order α varies from 
0.05 to 1 with a step of 0.05 as shown in Fig. 6. 

 
Fig. 6. Performance Index representation vs the fractional order α 

 
From the simulation results represented in Fig. 6, 

minimum values of JIAE, JISE and JITAE performance 
indexes are obtained for the order α values 0.85, 0.8 and 1 
respectively. 

Simulation results for the machine speed control 
without additional filters are represented in Fig. 7, 8 for the 
safe and noisy cases, respectively, while Fig. 9 illustrates 
the system response with an integer order filter.  

Table 3 shows that the optimal index performance 
values for JIAE or JISE are obtained with a fractional filter 
order α = 0.85 (filter 1), α = 0.8 (filter 2), respectively, 
and the third criterion JITAE is minimized in case of integer 
value α = 1.  

According to these values, the response of the 
machine is depicted in Fig. 10, 11. The dynamic 
characteristics are shown in Table 4. 

A comparative output response for these different 
cases is given in Fig. 12. It indicates an improvement of 
the dynamic characteristics (overshoot and oscillations) 
when using the second fractional order filter minimizing 
the JISE criterion.  

 
Fig. 7. Response of the machine safe case 

 
Fig. 8. Response of the machine: noisy case without filter 

 
Fig. 9. Response of the machine noisy case with integer filter 

 
Fig. 10. Response of the machine: noisy case with fractional 

filter 1 

 
Fig. 11. Response of the machine noisy case with fractional 

filter 2 
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                                                                                      Table 3                                                                                                      Table 4 
                          Performance indexes evaluation                                                     Dynamic characteristics evaluation 

 JIAE JISE JITAE  Rise time, s Settling time, s Overshoot, %
Safe case 7.8722 388.6414 1.2588 Safe case 0.0445 0.4811 12.0944 
Noisy case 7.6084 354.8585 1.2262 Noisy case 0.0454 0.5800 11.8373 
Noisy case with integer filter 5.0743 292.8749 0.4876 Noisy case with integer filter 0.0149 0.3111 23.2262 
Noisy case with fractional filter 1 4.7587 245.1812 0.6070 Noisy case with fractional filter 1 0.0194 0.3559 11.4581 
Noisy case with fractional filter 2 4.8903 244.6224 0.6589 Noisy case with fractional filter 2 0.0221 0.3913 10.0467 
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Fig. 12. Machine speed response for different filter fractional orders 

 
Conclusions. The main contribution of this paper is 

the application of fractional filtering to standard PI 
control loop for an induction motor speed drive. To 
evaluate its impact and benefit, intensive simulations have  

been realized with a control configuration using an integer 
and fractional order filters. 

As a result of the conducted simulation, it is 
concluded that the fractional filters give better index 
performances (JIAE = 4.7587 and JISE = 245.1812 for the 
fractional filter 1 and JIAE = 4.8903 and JISE = 244.6224 
for the fractional filter 2), as compared to integer one 
(JIAE = 5.0743 and JISE = 292.8749), which improves the 
system robustness against noises and disturbance. 

As regards the dynamic characteristics and though a 
slight degradation of the rise and the settling times, a 
significant amelioration of the overshoot is obtained, 
namely a lesser overshoot of 10.04 %, compared to a 
result of 23.22 % and 11.83 % with integer filter and 
without filtering, respectively.  

This study may provide an opportunity for further 
research on considering other sources of disturbance. 
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APPENDIX 
Rs Stator resistance Xdr Rotor variable on the d axis 
Rr Rotor resistance Xqr Rotor variable on the q axis 
Ls Stator inductance X_mes Measured variable 
Lr Rotor inductance X_est Estimated variable 
M Mutual inductance X_ref Reference value 
p Number of pole pairs Փ Flux 
f Friction coefficient Փref Flux reference 
J Moment of inertia Tem Electromagnetic torque 

rs LL

M




2
1  Blondel’s dispersion coefficient Cr Load torque 

V Voltage s Stator pulse 
i Current r Rotor pulse 
(d,q) Park axis  Speed 
Xds Stator variable on the d axis ref Speed reference 
Xqs Stator variable on the q axis  Time constant 
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