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A B S T R A C T   

We investigate the existence and propagation properties of deformed solitary pulses in a non-Kerr 
medium described by the higher-order nonlinear Schrödinger equation with cubic-quintic 
nonlinear terms and third-order dispersion. Two different types of exact analytical q-deformed 
soliton solutions have been derived by means of the ansatz method. The results show that both 
width and amplitude of the soliton structures are influenced by the deformed factor. It is found 
that the introduced deformed factor lets the soliton solution deviates from the standard profile. 
The requirements on the parameters of the non-Kerr material for the existence of these localized 
structures are presented. By employing numerical simulations, we demonstrate the stability of 
these deformed soliton solutions under the finite perturbations. Finally, the collision between 
similar soliton pulses is also investigated.   

1. Introduction 

The propagation dynamics of an intense light pulse in a nonlinear fiber medium leads to many important phenomena displaying 
both fundamental and applied interests. Among the several nonlinear phenomena, the propagation of soliton pulses becomes a subject 
of significant interest in nonlinear science and particularly in nonlinear optics. Previous studies on soliton dynamics mostly 
concentrated on Kerr medium which is the manifestation of a non-resonant interaction and a trivial non-linear coefficient [1–5]. In this 
situation, the cubic nonlinear Schrödinger equation (NLS) has been successfully used to describe the short pulse propagation in Kerr 
media [6–10]. However, in a material possessing highly nonlinear susceptibilities, the higher order nonlinearities occur even at 
moderate pulse intensity [11–19]. One of the simplest cases are materials with quintic susceptibilities χ(5), such as semiconductors or 
certain transparent organic materials [17,20] which are often modelled by the NLS family of equations incorporating additional 
higher-order terms to the cubic model. A more accurate description of soliton pulse propagation in such highly nonlinear optical 
material is to consider cubic-quintic nonlinearities instead of the usual Kerr nonlinearity [13–16,21–24]. As a widely studied model, 
Radhakrishnan, Kundu, and Lakshmanan (RKL) proposed a class of cubic-quintic nonlinear Schrödinger (CQNLS) equation to describe 
ultrashort light pulse propagation in non-Kerr media [25]. We should note that some important results have been obtained with 
previous investigations focused on finding some analytical solutions for CQNLS equation in different forms [13,14,23–29]. It is worthy 
to mention that the first investigation of soliton solutions in the CQNLS equation, particularly in the RKL model, has been realized by 
Hong et al. [26]. In such study, the authors have found the analytical kink-type solitary wave solutions of the RKL model by means of 
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the coupled amplitude-phase formulation. Subsequently, Hong [27] has thoroughly used the ansatz method to obtain the combined 
bright-dark soliton solutions for the RKL model under certain parametric conditions. In Ref. [29], the Jacobi elliptic function method 
has been employed to derive the exact analytical solitary wave solutions for the RKL model. By suggesting the CQNLS equation 
extended to septic nonlinearity, an analytic expression for the MI gain have been obtained and shown to be sensitive of the septic 
nonlinearity in Ref. [30]. Recently, Liu et al. [31] used the ansatz method to find exact bright and dark quasi-soliton solutions governed 
by CQNLS equation with variable coefficients and investigated their interaction. Also, Triki et al. [32] presented three new types of 
nonlinearly chirped W-shaped soliton solutions which may exist in negative index materials exhibiting higher-order effects such as 
pseudo-quintic nonlinearity and self-steepening effect. However, for all investigations mentioned above, they are concerned with 
analytical soliton solutions expressed in terms of the standard secant hyperbolic function. 

In recent years, much attention has been directed towards the study of deformed soliton solutions whose amplitudes may deviate 
from the standard form. Particularly, a set of exact nonautonomous deformed-soliton solutions and exact centre-of-mass positions of 
the solitons has been derived in Ref. [33], which describe some new soliton characteristics of an attractive Bose–Einstein condensate 
(BEC). In addition, Li et al. [34] have presented new nonautonomous deformed-soliton solutions for several different forms of the 
time-dependent atom–atom interaction and external parabolic potential governed by a one-dimensional nonautonomous 
Gross–Pitaevskii system (GP). Furthermore, Tao et al. [35] have constructed the deformed-soliton, breather, and rogue wave solutions 
of an inhomogeneous NLS equation by using the 1-fold Darboux transformation (DT). More recently, Cihan et al. [36] have derived the 
self-localized one- and two-soliton solutions of the NLS equation with a q-deformed Rosen–Morse potential by implementing a Pet-
viashvili method (PM), and investigated the temporal behavior and stabilities of these new solitons. To the best of our knowledge, 
exact analytic deformed soliton solutions to the RKL model have been absent. It is of interest to study the existence of this special type 
of localized pulses in a non-Kerr medium governed by such higher-order NLS-typed equation. In this work, we derive exact analytic 
deformed soliton solutions to the RKL model by using the ansatz method. The obtained results show that a diversity of deformed 
localized solutions can be formed in the system, including dark, bright and W-shaped deformed solitary pulses. 

The paper is organized as follows. In Sec. II, we present the RKL model describing the propagation of femtosecond light pulses in 
non-Kerr media, and we derive the evolution equation that governs the dynamics of pulse amplitude in the system. In Sec. III, we 
introduce two special amplitude ansatz which enables one to find families of novel deformed solitary wave solutions of the model. In 
Sec. IV, we analyse the dynamic behaviours and stability of the solutions by numerical simulation. Next, the Sec V is reserved to study 
the collision between similar pulses. Finally, we summarize our results in Sec. VI. 

2. Model and amplitude equation 

The RKL equation model with cubic-quintic nonlinear terms describing femtosecond light pulse propagation through non-Kerr 
media takes the form [25–29]. 

iAz +Att + 2|A|2A+ iα1Attt + iα2
(
|A|2A

)

t + iα3
(
|A|4A

)

t + α4|A|4A = 0 (1)  

where A(t, z) is a complex function representing a normalized complex amplitude of the pulse envelope, z is the normalised coordinate 
along the propagation direction of the carrier wave, and t is the retarded normalised time. The coefficients α1 and α2 are real pa-
rameters related to the third-order dispersion (TOD) and self-steepening, respectively. Also, the terms related to coefficients α3 and α4 
stand for the quintic non-Kerr nonlinearities. 

When the terms related to α3 and α4 of Eq. (1) are neglected, the resulting equation corresponds to the RKL model with Kerr law 
nonlinearity, which includes combined effect of shock and third-order of velocity dispersion. Quite recently, exact solitary wave so-
lutions of the bell, kink and algebraic types for Eq. (1) have been obtained by means of the sub-ODE method in [37]. Moreover, many 
different exact soliton and periodic solutions for Eq. (1) have been derived using the first integral and direct algebraic methods in [38]. 
But here we are concerned with exact deformed-type soliton solutions of Eq. (1) in the presence of all dispersion and nonlinear terms. 

To start with, we adopt the complex envelope traveling-wave solutions of the form [39]. 

A(z, t) = U(ξ)exp(iϕ(z, t) ) = U(t+ λz)exp(i(kz − ωt)) (2)  

where U(ξ) is an unknown envelope function (assumed to be real), and λ is a real constant. 
Substituting Eq. (2) Into Eq. (1) and separating the real and imaginary parts, we get 

Uξξ +
( − k − ω2 − α1ω3)

(1 + 3α1ω)
U +

(2 + α2ω)
(1 + 3α1ω)U

3 +
(α4 + α3ω)
(1 + 3α1ω)

U5 = 0 (3)  

Uξξξ +

[(
λ − 2ω − 3α1ω2

α1

)

+
3α2

α1
U2 +

5α3

α1
U4

]

Uξ = 0) (4) 

If we derive Eq. (3) with respect to ξ, the resulting equation becomes 

Uξξξ +

[
( − k − ω2 − α1ω3)

(1 + 3α1ω)
+

3(2 + α2ω)
(1 + 3α1ω)U

2 +
5(α4 + α3ω)
(1 + 3α1ω) U4

]

Uξ = 0 (5) 

Eqs. (4) and (5) are identical if we equate the coefficients of U0,U2 and U4. By solving the resulting equations, one gets the following 

N. Hambli et al.                                                                                                                                                                                                        



Optik 268 (2022) 169724

3

wave parameters: 

ω =
2α1 − α2

2α1α2
(6)  

k = 8ω2 + 8α1ω3 +
1
α1

(( − 3λα1 + 2)ω − λ ) (7)  

together with 

α3

α2
=

1
2
α4 (8)  

which shows that the parameters α2, α3 and α4 are not independent and the corresponding deformed soliton solutions are obtained in 
the framework of this relationship. 

Further substitution of the relation (6) into (3) yields the following evolution equation 

Uξξ = a1U + a2U3 + a3U5 (9)  

with 

a1 = −

(
1

4α1
2 −

3
α2

2

)

−

(
λ
α1

+
1

α1α2

)

, a2 = −
α2

α1
, a3 = −

α4α2

2α1
, (10) 

Eq. (9) describes the dynamics of the field amplitude in the non-Kerr medium. Multiplying Eq. (9) by Uξ and integrating once with 
respect to the variable ξ, we obtain 

Fig. 1. : The q-deformed soliton solutions (23) and (31) of RKL model (1) for several values of deformation factor q. (a); (b): The soliton solutions 
(23) with E = −

̅̅̅q√ and q ≤ 1; q > 1, respectively. (c): the soliton solutions (23) with E = +
̅̅̅q√ and q > 0. (d): the soliton solutions (31) 

with q > 0.. 
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(
Uξ

)2
= a1U2 +

a2

2
U4 +

a3

3
U6 + 2E (11)  

where E is an integration constant to be determined which coincides with the energy of anharmonic oscillator [39]. 
Eq. (11) is known to admit a diversity of closed form solutions such as kink, solitary and periodic wave solutions in the case when 

the integration constant E has a zero (E = 0) [40] and nonzero values(E ∕= 0) [41]. In the following, we report the first analytical 
demonstration of existence of q-deformed soliton solutions on a continuous-wave (cw) background for Eq. (11) in the general case 
when E ∕= 0. 

3. q-Deformed solitary wave solutions 

First, we start our analysis by setting the amplitude function as U = u1/2. This change of variable transforms Eq. (11) into an elliptic 
equation having a fourth-degree nonlinear term as 

1
4
(
uξ
)2

= a1u2 +
a2

2
u3 +

a3

3
u4 + 2Eu (12) 

Localized pulse solutions are achieved by solving Eq. (12) for different values of E. Below, we will show that this equation admits a 
novel class of deformed solitonic solutions in the most general case, when the energy E and the coefficients ai(i = 1 − 3) have nonzero 
values. To this end, we will introduce a specific ansatz with a deformation factor, whose asymptotic value is nonzero when the 
traveling wave variable tends to infinity. 

3.1. W-shaped, dark and bright q-Deformed soliton on a cw background 

To obtain exact deformed soliton solutions for the RKL model (1), we introduce a special ansatz of the form 

u(ξ) = β+ ρsechq(ηξ) = β+
2ρ

eηξ + qe− ηξ (13)  

where β, ρ and η are unknown parameters to be determined, while q represents the deformed factor. Here the parameter β decides the 
strength of the background, in which this structure propagates in the non-Kerr medium. 

Expression (13) indicates that the amplitude of solitary wave solutions obtained based on this ansatz do not approach zero when the 
traveling coordinate approaches infinity (|ξ| → ∞). Here, the deformation factor q ∕= 0 allows the soliton solution to deviate from the 
standard shape, so that it is not confined to a single form, even the amplitude settings are not changed, as shown in Fig. 1(a-c). Thus, we 
can obtain different shapes of deformed soliton solutions depending on the value of the factor q, which influences the dynamical 
behavior of the obtained deformed localized waves. 

Now, substituting Eq. (13) into Eq. (12) and then setting the coefficients of sechm
q(ηξ) (where m = 0, …4) to zero, we get the 

following set of algebraic equations: 

ρ2
[q
4
η2 +

a3

3
ρ2
]
= 0 (14)  

β
[
a1β+

a2

2
β2 +

a3

3
β3 + 2E

]
= 0 (15)  

ρ
[

2a1β+
3a2

2
β2 +

4a3

3
β3 + 2E

]

= 0 (16)  

ρ2
[

a1 +
3a2

2
β+ 2a3β2 −

1
4
η2
]

= 0 (17)  

ρ3
[

a2

2
+

4a3

3
β
]

= 0 (18) 

Obviously, Eqs. (16), (17) and (18) can be solved self-consistently for the unknown parameter β, ρ and η to give 

η2 = −
3a2

2

16a3
(19)  

β = −
3a2

8a3
(20)  

ρ = ±β
̅̅̅
q

√ (21) 

Along with the parametric conditions 
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a1 =
15a2

2

64a3
, 2E =

9a2
3

256a3
2 (22) 

If we insert the solution (13) into Eq. (2), we obtain an exact deformed solitary pulse solution for the RKL model (1) as 

U(z, t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

β

⎡

⎣1 + E sechq

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅

−
3a2

2

16a3

√

ξ

⎞

⎠

⎤

⎦

√
√
√
√
√ ei(kz− ωt) (23)  

With 

E = ±
̅̅̅
q

√
.

From the relation (19), one must require a3 < 0 for the pulse width η to be real. In addition, we should have a1 < 0 and a2 > 0 as 
follows from Eq. (22). This implies that the deformed soliton solution on a cw background (23) exists provides that the material 
parameters satisfy the conditions α1α2 < 0 and α4 < 0. Physically, Eq. (23) describes the propagation of three different types of 
deformed solitary pulse solutions for the RKL model (1). When the deformation factor q ≤ 1, the solution (23) represents a deformed 
dark pulse if the lower sign is considered (i.e,E = −

̅̅̅q√
). Moreover, the solution takes the form of a bright pulse on a cw background 

when we consider the upper sign in (23) expression (i.e,E = +
̅̅̅q√
). In the case of q > 1, the solution (23) with the lower sign becomes 

a W-shaped deformed soliton. Thus, one can conclude that the pulse shape obtained based on the ansatz (13) is completely determined 
by the deformation factor q and can takes the bright, dark and W-shaped deformed solitary waves, as clearly seen in Fig. 1(a-c). 

3.2. Bright q-Deformed soliton on a zero background 

Now let us adopt another ansatz solution which describe a deformed-soliton on a zero background as 

u(ξ) =
A

B + coshq(ηξ)
=

2A
2B + (eηξ + qe− ηξ)

(24) 

In the case of a zero energy (E = 0). Here A and η are unknown parameters related to the amplitude and width of the solitary wave. 
Substituting the ansatz (24) into Eq. (12) and setting the coefficients of the coshm

q(ηξ) equal to zero, we obtain 

A2
[

η2

4
− a1

]

= 0 (25)  

A2[Bη2 + a2A
]
= 0 (26)  

A2
[

η2

4
(B2 − q) −

a3A2

3

]

= 0 (27) 

Obviously, Eqs. (25), (26) and (27) yields the following solitary wave parameters: 

η2 = 4a1 (28)  

A = −
4a1

a2
B (29)  

with 

B = ±
̅̅̅
q

√
[

1 −
16a1a3

3a2
2

]− 1/2

(30) 

Making use of the above results, we find that the exact deformed solitary wave solution of Eq. (1) of the form 

U(z, t) =

[
A

B + coshq
(
2 ̅̅̅̅̅a1
√ ξ

)

]1/2

ei(kz− ωt) (31)  

provided that a1 > 0 and a3 <

⃒
⃒
⃒
3a2

2

16a1

⃒
⃒
⃒. 

From Eqs. (28), (29) and (30), we clearly see that the pulse width η does not depend upon the deformation factor q, while the q 
dependence arises through the parameters A and B. Physically, Eq. (31) describes a bright deformed solitary wave on zero background 
for RKL model (1), which differs from that reported in Refs. [46–48] by exhibiting a shift shape from its original profile due to the q 
factor. 

It is interesting to compare the bright deformed solitary wave solution (31) with the solitary waves (12) and (13) obtained for the 
higher-order NLSE models governing ultrashort pulse propagation in dual-power law media [44] and cubic-quintic-septic media with 
weak nonlocality [45], respectively. One can see that when the deformation factor takes the value q = 1, the intensity of the deformed 
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solitary wave solution (31) takes the same functional form as those obtained in Refs. [44,45]. The presence of the deformation factor q 
in the solitary wave solution (31) allows the nonlinear wave to deviate from the standard shape and leads to a variety of pulse profiles. 
A noteworthy characteristic is that the present solitary wave (31) has a free parameter λ similarly to those reported in Refs. [44,45]. We 
should note here that the parameters of this solitary waves such as amplitude, inverse temporal width, and wave number are all 
determined with both the free parameter λ and the system parameters such as the nonlinear coefficients α2, α3 and α4 and the 
dispersion parameter α1. It should be noticed that the formation of this deformed solitary wave is due to the interplay between second- 
and third-order dispersions, cubic nonlinearity, quintic non-Kerr nonlinearities, and self-steepening effect, which have a significant 
influence on its characteristics and propagation dynamics. 

4. Dynamic behavior and stability analysis 

In the above section, we obtained two types of q-deformed solitary waves that can be formed in a non-Kerr nonlinear medium 
governed by the the RKL model (1), which are the structures (23) and (31). Now, we will discuss the dynamic behavior of these 
deformed localized waves for different values of the deformation factor q. 

Fig. 2(a-c) display the dynamic behaviors of the deformed solitary waves given by Eq. (23) for E = ±
̅̅̅q√
. Firstly, we take E = −

̅̅̅q√
,

for both cases of q ≤ 1 and q > 1. In the first case a deformed dark soliton occurs [Fig. 2(a)], whereas a W-shaped deformed soliton 
arises in the second case [Fig. 2(b)]. However, as the q-factor approaches ∼ 1, the solitonic width broadness continuously so that the 
depth of the solitonic background simultaneously growths, as shown in Fig. 1(a). Hence, if the factor q continues to deviate absolutely 
from the value 1, the solitonic width expands continually, while its depth quickly converts to peaks, in which the W-shape soliton 
pulses begin to arise, as plotted in Fig. 1(b). Likewise, we observe that, this last type of soliton pulses is all the more stable despite the 
impact of the deformation factor q on its evolution, as displayed in Fig. 2(b). Unlike the case (i), if we takeE = +

̅̅̅q√
, the solution (23) 

represents a q-deformed bright soliton on cw background, as shown in Fig. 2(c). We note that, for different values of the factor q, only 
the peak and the platform of the solitons increase when the factor q varies more than zero, which we have presented in Fig. 1(c). It is 
interesting to note that, the profile of the pulses remains unchanged during the evolution, except for some time-shifts which appear due 
to the group velocity adjustment related to the parameter λ, as clearly shown in the Fig. 2(c) with λ = − 5. 

Let us now consider the second type of deformed solitary wave obtained above [Eq. (33)], which is depicted in Fig. 2(d). From this 
figure, we see that the solution (31) represents a bright deformed soliton on zero background. Obviously, the strain factor causes the 
solutions to deviate longitudinally from their standard shape, while their amplitude increases, as shown in Fig. 1(d). Unlike the 
previous cases, it can be seen that during the propagation distance, receded waves occur due to the positive sign of the constant λ what 
produces an immutable time shift in propagation, while the solitary velocity remains unchanged, as shown in Fig. 2(d). 

Fig. 2. Evolution plot of the q-deformed solitons as computed from Eq. (23) for the values: α1 = − 0.3,α2 = 1.5,α3 = − 0.6,α4 = − 0.8,λ = − 5. 
(a): E = −

̅̅̅q√ & q = 0.5.(b) : E = −
̅̅̅q√ & q = 3. (c): E = +

̅̅̅q√ & q = 1.5. (d): Evolution plot of the q-deformed soliton as computed from Eq. (31) 
for the values: α1 = − 0.5, α2 = − 1, α3 = − 0.4, α4 = 0.8, λ = 2 with q = 1.5.. 
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In the following, we will study the robustness of the obtained structures to verify their ability to propagate in a disturbed envi-
ronment over an appreciable distance. To demonstrate the stability of the deformed solitary wave structures presented above, we 
numerically simulate Eq. (1) under the impact of white noise. To this end, we produced a photonic noise, which corresponds to 0.02% 
of the average power of the input profile. Then, we used the split-step Fourier method (SSFM) using the same parameter’s values of 
Fig. 2. The results of the simulation are presented in Fig. 3. We can clearly see that, for the two types of q-deformed solitary waves 
presented above, the initial profile quickly goes to the profile of the exact solution (23) and (31), despite some small periodic oscil-
lations attached to the soliton. So, it can be avowed that no principal difference to Fig. 2 occurs. We can conclude that, even the system 
is strongly disturbed by the white noise in existence of the deformation factor, this provides solitons displaying very high stability. 

5. Soliton collisions 

Practically, there are many effects which can contribute to the instability of soliton robustness. It is important to involve the soliton 
in a more powerful test than the noise perturbation, such as the collision with equivalent pulses. We note that the collision of adjacent 
solitons presents the most beautiful process of soliton phenomena. Based on their relative phases, there are two categories: coherent 
and incoherent collisions [42]. Noting that, the coherent collisions exist when the pulses overlap in the presence of a nonlinear medium 
response to interference effects. Unlike, the incoherent collisions occur when the time varies much slower than the relative phase 
between pulses [43]. In general, soliton collisions process is very complicated, which necessitates the use of numerical simulations [49, 
50]. 

To overcome mutual interference in the soliton transmissions, we need to use the elastic interaction between optical solitons. Often, 
for an optical fiber in the real environment, the transmission of the solitons is described by the nonlinear Schrodinger equation (NLS) 
with variable coefficients which lets us to study the interaction between the adjacent solitons under the influence of fiber parameters 
[51]. For studying the collision dynamics of deformed solitons pulses governed by the RKL equation model, we use the following 
superposition of two soliton solutions profiles (23) with equal amplitudes 

U(0, t) = U(0, t − q0)+U(0, t+ q0)exp(iθ) (32)  

Where θ represents an initial relative phase among the two temporally soliton pulses initially separated by a distance q0.. 
Firstly, we study the case when the relative phase has a zero value (θ = 0), which corresponds to the simple collision between two 

similar solitons initially launched in parallel. We perform the collision among soliton pulses (31) and (23) using the same parameter 
values as in Fig.2 and a separation distance q0 = 3. The results are presented in Fig. 4. From this figure, we see that when the soliton 
pulses collide coherently, the intensity in the central collision zone growths, which leads to an attraction of more light towards the 

Fig. 3. The exact solutions under the perturbation of white noise with the same parameters as in Fig. 2. (a): The q-deformed W-shape soliton. (b): 
The q-deformed bright soliton on cw- background. (c): The q-deformed soliton solution of Fig. 2 (d) evolved with added noise. 
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centre. Therefore, the soliton evolution shows that the force is certainly attractive but there is no exchange during the collision, as 
shown in Fig. 4(a), 4(b) and 4 (c). The same behavior is observed when we perform the collision process for the second case of soliton 
solutions (31), where only the intensity of the resulting collided pulses increases when the amplitude function changes, relative to that 
of aexpression (23) [see Fig. 4(d)]. Also, these localized structures keep their velocity and shape throughout the propagation media. 
The scenario is different if we choose the relative phase θ = π, where the solitonic pulses approach each other and just at the central 
region of collision they interfere destructively. Afterward, the two solitons regenerate and the centroid of each pulse moves external in 
which the solitons seem to repel, as clearly observed in Fig.5(a), with the case of solution (31). Under this condition, the pulses present 
an unstable character differently to the previous situations. 

By using the Hirota’s bilinear method, Zhou et al. in Ref. [52], presented the optical soliton amplification effect in high power 
transmission systems for the variable-coefficients NLS equation. Based on three soliton interactions in a nonlinear fiber with decreasing 
dispersion and periodically lumped amplification, the influence of parallel and nonparallel propagation of optical solitons on optical 
soliton amplification is carefully addressed. Besides to this study, we have a more complicated situation when the three-pulses collision 
occurs with other relative phases based on a numerical method. In Fig. 5(b) and Fig.5(c) we exhibit the scattering behaviour of three 
deformed solitary pulses (23) withE = +

̅̅̅q√
, in both relative phases of middle pulse θ = π and θ = π/2, repectively. It can be seen 

that, the collision between the second (middle) pulse and the last (right side) also occurs destructively. Then, the last pulse survives and 
produces a non-trivial exchange energy with the first (left side) pulse which eventually results in a repulsive force that causes the pulses 
to diverge, as shown in Fig.5(b). By taking the relative phase π/2, an interesting collision dynamic is identified, where the last soliton 
pulse (right side) crosses the two trajectories of other pulses which propagate in parallel. This results in an exchange of energy during 
the collision process, but with different peaks of intensity, as shown in Fig.5(c). In summary, the collision process can provide a 
sufficient complementary study on the robustness of this type of solitons or their ability to perform very stable propagation in highly 
perturbed environments. 

6. Conclusion 

To summarize, we have presented two types of q-deformed soliton solutions for the higher-order nonlinear Schrödinger equation 
with cubic–quintic nonlinear terms, describing femtosecond pulse propagation in non-Kerr media. The solutions include dark, W- 
shaped and bright deformed soliton solutions on both zero and nonzero background. These classes of localized pulses have been 
obtained by means of two special ansatzes involving a deformation factor, which allows the resulting soliton solution to deviate from 
the standard shape and leads to a variety of pulse profiles. It is found that the contribution of all dispersive and nonlinear effects is an 
important feature to form these structures. The conditions on the parameters of non-Kerr media for the existence of these solitary 
waves are also reported. These constraints show a subtle balance among second and third-order dispersions, self-steepening, and cubic- 
quintic nonlinear terms, which have a deep implication in controlling the soliton pulse dynamics. Also, we demonstrated stable 

Fig. 4. : The dynamical evolution of two colliding solitons pulses (23) and (31) when the initial separation q0 = 3 and a relative phase θ = 0. The 
adopted parameters are the same as in Fig. 2. 
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propagation over long distance even in the presence of external perturbation, which is seeded in the form of both white noise and 
coherent collision between similar pulses. Very robust solitons are then obtained, exhibiting great stability under the power of a strong 
noise, and capable to subsist after a collision process. We hope that the results presented here may help in stimulating more research in 
understanding the deformed localized wave in systems with cubic-quintic nonlinearities and may be useful to study the evolution 
dynamics of nonlinear waves in fibers, waveguides and Bose–Einstein condensates. 
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