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A B S T R A C T   

Strut and tie models are mainly used to predict the critical failure mode of RC pile caps. The bearing capacity is 
determined by taking the lowest between flexural strength corresponding to reinforcement yielding and 
punching shear load of the concrete struts. However, the concrete-reinforcement interaction presents a key 
parameter for predicting failure mode and load-bearing capacity of rectangular four pile caps. The objective of 
the present study is to evaluate the strength capacity of RC pile caps by developing a simplified approach given 
by a unique equation considering both contributions of concrete and reinforcement corresponding to the failure 
mode. The proposed analytical approach considers the weakest coefficient of variation of (P test/ P model) using 
the experimental database selected by the observed failure mechanism (flexion or shear) to evaluate the com-
bination of the contributions ratios; of steel and concrete. The results are on the safe side (min (P test/ P model) 
= 1) and improved with lower scatter when compared to design methods from the literature (COV = 8.8% for all 
failure modes) and CRSI Handbook code.   

1. Introduction 

Pile caps are connecting elements that transmit the load from a 
column or a wall to a group of concrete piles; they serve as an interface 
between the superstructure and the substructure. Pile caps are subjected 
to concentrated loads and have large dimensions in all three directions, 
resulting in highly nonlinear strain distributions. Because pile caps are 
mostly disturbed regions, the utility of using sectional approaches based 
on empirical formulas for flexural elements is called into question. 

The strut-and-tie model, based on the lower bound theorem of the 
theory of plasticity, has been developed in recent decades to provide a 
consistent alternative for the design of disturbed regions. The Concrete 
pile caps must be designed to resist the shear intensity load. The failure 
mode is governed by the potential diagonal crack between the column’s 
perimeter and the vicinity of piles or other types of deep foundations. 

Following the diagonal tension crack, the concrete footing equili-
brated the punching load by the shear across the compression zone, 
aggregate interlock, and the dowel action of the flexural reinforcement 
[1]. However, many researchers like Meléndez et al. [2], Boulifa et al. 
[3], and Honglei Guo [4] are proven the primordial effect of the strength 
of confined inclined concrete struts on the load-carrying capacity of 

reinforced concrete pile caps failing without yielding the re-
inforcements. On the other hand, the design of pile caps to fail in flexure 
mode is very common in published experimental campaigns [5–7,8–11]. 
This type of failure is identified by forming a conical plug underneath 
the column or punching around one or more piles. 

In the scientific literature devoted to the analysis and design of pile 
caps, most of the proposed analytical approaches are based on three- 
dimensional strut-and-tie models [2,7,12–16]; some of these models 
are reviewed in this paper. Most of these references focus on deter-
mining the bearing capacity of pile caps by considering only the char-
acteristics and geometry of concrete for the case of shear failure mode 
[13,15] or by considering the yielding reinforcement without the 
contribution of concrete for the case of flexural failure mode [17]. 
Nevertheless, the minimum coefficient of variation (COV) of the results 
of the set of these models proposed so far is higher than 10% for all the 
grouped failure modes [2–4,13–17]. 

This study thoroughly analyzed the geometrical key parameters 
corresponding to the concrete and reinforcements for accurately pre-
dicting the bearing capacity based on the background of the most used 
experimental tests in the literature [6,8–11]. The analysis of variation of 
the coefficient of variation of the results in terms of ratio (P test/ P model) 
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for each experimental failure mode allows us to separately determine 
the contributions of the reinforcements and the concrete corresponding 
to the failure mode (by bending or by shear). The analytical model 
proposed in this work, which offers development on the sectional model 
presented in previous research [3], considers the effect of reinforcement 
in the shear failure mode and highlights the contribution of the confined 
concrete in the bending failure mode. The proposed analytical model 
allows determining precisely the bearing capacity of the four pile caps, 
considering the minimum value between the prediction for flexural 
failure and shear failure (coefficient of variation (COV) = 8.6% for all 
modes failure with min (P test/ P model) = 1). 

Before presenting the model under consideration in this study, it is 
necessary to present the experimental four pile caps database (107 test 
results), primarily presented in the published literature [6,8–11], and a 
discussion of the recent approaches and models used for predicting the 
bearing capacity of four pile caps. 

2. Experimental data for pile caps 

There are some limitations in the experimental test data on the pile 
caps’ performance. Unfortunately, as the reinforcement patterns used in 
the test pile caps are incompatible with the design procedures, an 
essential portion of these results do not help assess these code pro-
visions. In the case of four-pile caps, the reinforcement arrangement 
directly influences the failure mechanism. The results of several tests [6] 
have shown that the reinforcement with bunched square configurations 
(Fig. 1-a) leads to a capacity (20%) more significant than that of the 
specimens with reinforcement distributed in Grid pattern layouts. 
However, in the cases of deep pile caps, the failure occurs by the 
punching shear mechanism, forming a diagonal splitting crack in the 
midpart of the strut. The bunched square reinforcement layout can 
ensure only the confinement in the bottom zone. This type of rein-
forcement is the best suited for determining Strength Predictions for a 3- 
Dimensional Concrete Strut. 

Clarke J. L. [6] tested 13 half-scale four-pile caps (Table 1) with 
reinforcement layouts in Fig. 1, where the specimens are designed to fail 
in flexure mode. He concluded that the approach based on analyzing the 
shear section for shear capacity calculations was unsafe. The flexural 
failure occurred only in four caps, whereas shear failure occurred in the 
remaining caps after the yielding of longitudinal reinforcement. Clarke 
J. L. [6] concluded that adequate depth must be considered for shear 
strength calculations. Suzuki et al. [8] tested 28 four-pile caps in which 
the layouts of the longitudinal bars and edge distances were varied. The 
different dimensions are given in Table 2. Most pile caps failed by shear 
after longitudinal reinforcement yielding, and only four specimens 
failed by shear without longitudinal reinforcement yielding. It was 
found that bunched square layouts (shown in Fig. 1) resulted in higher 
strengths and that the distance of the edge affected the load of failure. 
The edge distance was suggested to be about 1.5 times the diameter of 

the pile to increase deformation and load-bearing capacity even after 
yielding reinforcement. Later, Suzuki et al. [9] tested 18 four-pile caps 
with tapered footings (with top inclined slabs) (Table 2) and proved that 
cracking load tends to decrease as the ratio of reinforcement increases. 
In these experiments, most specimens failed in shear after longitudinal 
reinforcement yielding, and only two failed by shear before yielding 
reinforcement. Suzuki et al. [10] tested thirty pile caps where a grid 
layout assured the reinforcement; the dimensions of the specimens are 
given in Table 2. The main aim of the research was to evaluate the edge 
distance effect between the cap and the piles on behavior and strength. 
The results have shown that the load of the first crack and the flexural 
capacity decreases even if the slab reinforcement is the same when 
shortening the edge distance. Suzuki and Otsuki [11] tested eighteen 
four pile caps with grid reinforcement. The test parameters involved the 
type of anchorage and concrete strength (see Table 2). In most pile caps, 
the failure mode was due to the shear after the bottom reinforcement’s 
yielding. 

In contrast, all specimens were designed to fail by flexure. Ten of 
them did not fail by flexure. They concluded that this was due to the 
effect of shortened edge distances on the failure by shear. Short edge 
distances directly influence longitudinal reinforcement development. It 
can be concluded that the pile caps’ failure occurs when there is yielding 
for either the tensioned tie or the compressed struts. So in the presence 
of suitable containment, the compressed struts play a primordial role in 
the behavior and determination of the bearing capacity of the pile caps. 

3. Deep pile caps strength evaluation 

The sectional approach and the STM are Mostly proposed to evaluate 
the bearing capacity of four pile caps piles. The first method, known as 
sectional design, assumes that a pile cap acts like a reinforced concrete 
beam spanning two or more piles. The conventional beam theory is used 
to determine the sectional depth and amount of tension reinforcement, 
assuming that the plane section remains plane. The ACI code, for 
example, recommends designing pile caps using the same sectional 
approach used for footings supported on soil and two-way slabs directly. 

The second approach uses a strut-and-tie model (STM). According to 
this approach, the complex flow of stresses in a pile cap can be idealized 
by the 3D- STM as space truss-like members of diagonal concrete struts 
and steel reinforcement ties connected at each node (Fig. 2). Further-
more, previous researchers (Adebar et al. [7], Adebar and Zhou [18], 
and Cavers and Fenton [19]) have confirmed that STM-based pile cap 
design is superior to the former approach. However, the most proposed 
strut-and-tie- models based on the geometric shape of the truss in pile 
cap design are fundamentally similar; the node location, and thus the 
resulting strut inclination θs3d, do not always coincide (Fig. 2). 

This section investigates the recent and most efficient STMs for 
calculating nominal strength. 

Souza et al. [15] assumed that the four-pile cap could fail by shear 

Fig. 1. Various layouts of main reinforcing Bars (four pile caps).  
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(strut splitting) or flexure, where a single criterion for predicting the 
failure load was determined. This simplification suggested a significant 
change in the inclination struts and, as a result, the forces generated by 
the truss system. 

The bearing capacity was determined by: 

Pn = Min
{

Pn(shear)
Pn(flexure)

;Pn(shear) = 2.08cd
(
f ′
c

)2
3
;Pn(flexure) = 2.05

4.Asfy.d
le

(1)  

where: As is the total reinforcement in one direction; f′
c the compressive 

strength of the concrete cylinder; fy the yield stress of reinforcement; c 
the width of Colum; d depth of reinforcement; le pile spacing; Pn the 
nominal strength at failure proposed by the authors. 

Meléndez et al. [2] proposed a lower-bound strength function, which 
varies with θs

3d, defined by the three limit functions [Pnt,u, Pns,1, Pns,2] 
corresponding respectively to the three local failure Modes: yielding 
reinforcements, Crushing of the diagonal strut, and Splitting of the di-
agonal strut. 

Pnt,u = 2
̅̅̅
2

√
tanθ3d

s Asfu (2)  

Pns,1 = 18fcp

(
d

̅̅̅
2

√
tanθ3d

s

− a

)2

sin2θ3d
s (3)  

Pns,2 =
4βpsinθ3d

s (dpsinθ3d
s + 2Cbcosθ3d

s )dpfcp

0.8 + 170(εtx + εty + εz − εs)
(4)  

where: θ3d
s present the 3-D strut angle; fu steel ultimate; fcp the equivalent 

plastic strength of concrete;βp area factor of projection of pile perpen-
dicular to strut direction; εtx and εty reinforcement strain in x- and y- 
direction; εz the average concrete strain in the z-direction;εs an average 
compressive strain of concrete strut. 

As a result, the maximum (peak) value of the lower-bound strength 
function Pn defined by equation (5) will be the best estimate of the pile 
cap strength, whichever gives the lowest load. 

Pn = Min(Pnt,u,Pns,1,Pnt,u) (5) 

The shear strength Ps is represented by the intersection of the func-
tions of Pns,1 and Pns,2, whereas the flexural strength Pf is represented by 
the intersection of functions Pns,1 and Pnt,u. 

However, uncertainty in strength predictions of pile caps is observed 
following the results (COV = 13.8% with minimum (Ptest/P model) = 0.73 
for Souza et al. [15] and COV = 11.1% with minimum (Ptest/Pmodel) =
0.83 for Meléndez et al. [2]). Moreover, the method proposed by 
Meléndez et al. [2] is considered too complex for practical design 
purposes. 

The ACI 318–14 [20] uses the sectional approach and STM to design 
a pile cap. For the sectional method, the critical flexural section is 
located on the column’s face, which is the longitudinal reinforcement 
determining the flexural strength. The shear strength is determined by 
the most restrictive condition considering one-way and two-way shear 
and governing by the cap depth and concrete strength. 

The CRSI Handbook code [21] proposes to consider the upper limit 
of the shear strength corresponding to the case of two-way shear without 
any contribution of the reinforcements: 

VC =
d
a

(

1+
d
c

)
1
6

̅̅̅̅

f ′
c

√

b0d ≤ 2.67
̅̅̅̅

f ′
c

√

b0d (6)  

where b0 is the column perimeter; and f′
c is in MPa. 

BOULIFA et al. [3] propose a sectional approach to predict the 
bearing capacity of four pile caps, considering the contributions of the 
concrete and the longitudinal reinforcements. 

The bearing capacity of four pile caps, Pn, is twice that of the 
resulting shear in the vertical plane of symmetry (plan Y-Y′), F3. (Fig. 3). 

The vertical equilibrium of the vertical plane of symmetry of the pile Ta
bl
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Table 2 
Comparison of the ratios (experimental load on predicted load) of the proposed model with the predictions proposed by the three theoretical methods.  

Specimens Ptest 

(kN) 
f′
c(MPa) a /d d (mm) cap 

size b 
(mm) 

AS 

(mm2) 
Steel 
grade 
(MPa) 

Souza et al. [15] CRSI 
Handbook 
code [21] 

Meléndez 
et al. [2] 

Proposed model Ptest/PModel Observed 
failure 
modes 

Predicted 
failure 
modes 

Pn(KN) 
(shear) 

Pn(KN) 
(flexion) 

Pn(KN) 
two-way 
shear 

Pn, S(KN) 
(shear) 

Pn, fP(KN) 
(flexion) 

(a) (b) (c) (d) 

Suzuki et al. [8] 
BP-20–1 519 21.3  0.8 150 900 567 413 719.22  533.39 203.89 436.13 412.29 468.26 0.97 2.55 1.19  1.26 f + s s 
BP-20–2 480 20.4  0.8 150 900 567 413 698.82  533.39 199.54 428.57 408.18 467.51 0.9 2.41 1.12  1.18 f + s s 
BPC-20–1 519 21.9  0.8 150 900 567 413 732.66  533.39 206.74 513.86 414.99 468.75 0.97 2.51 1.01  1.25 f + p s 
BPC-20–2 529 19.9  0.8 150 900 567 413 687.35  533.39 197.08 494.39 405.85 467.09 0.99 2.68 1.07  1.3 f + p s 
BP-25–1 735 22.6  0.6 200 900 709 413 997.59  889.3 414.86 644.74 630.76 770.42 0.83 1.77 1.14  1.17 s s 
BP-25–2 755 21.5  0.6 200 900 709 413 964.95  889.3 404.64 634.45 624.23 769.23 0.85 1.87 1.19  1.21 s s 
BPC-25–1 818 18.9  0.6 200 900 709 413 885.5  889.3 379.38 687.39 608.12 766.3 0.92 2.16 1.19  1.35 f + s s 
BPC-25–2 813 22  0.6 200 900 709 413 979.86  889.3 409.32 745.87 627.22 769.77 0.91 1.99 1.09  1.3 f + p s 
BP-20–30- 

1 
485 29.1  0.67 150 800 425 405 885.53  423.43 285.98 480.2 393.91 418.53 1.15 1.7 1.01  1.23 f + s s 

BP-20–30- 
2 

480 29.8  0.67 150 800 425 405 899.68  423.43 289.4 480 396.3 418.97 1.13 1.66 1  1.21 f + s s 

BPC- 
20–30-1 

500 29.8  0.67 150 800 425 405 899.68  423.43 289.4 480.77 396.3 418.97 1.18 1.73 1.04  1.26 f s 

BPC- 
20–30-2 

495 29.8  0.67 150 800 425 405 899.68  423.43 289.4 480.58 396.3 418.97 1.17 1.71 1.03  1.25 f s 

BP-30–30- 
1 

916 27.3  0.4 250 800 567 405 1414.4  941.5 940.42 776.27 753.86 908.43 0.97 0.97 1.18  1.22 s s 

BP-30–30- 
2 

907 28.5  0.4 250 800 567 405 1455.5  941.5 960.87 788.7 760.89 909.71 0.96 0.94 1.15  1.19 f + s s 

BPC- 
30–30-1 

1039 28.9  0.4 250 800 567 405 1469.1  941.5 967.59 927.68 763.2 910.13 1.1 1.07 1.12  1.36 f + s s 

BPC- 
30–30-2 

1029 30.9  0.4 250 800 567 405 1536.1  941.5 1000.5 952.78 774.51 912.19 1.09 1.03 1.08  1.33 f + s s 

BP-30–25- 
1 

794 30.9  0.5 250 800 567 405 1280.1  941.5 727.64 728.44 688.4 742.26 0.84 1.09 1.09  1.15 f + s s 

BP-30–25- 
2 

725 26.3  0.5 250 800 567 405 1149.7  941.5 671.3 677.57 661.77 737.41 0.77 1.08 1.07  1.1 s s 

BPC- 
30–25-1 

853 29.1  0.5 250 800 567 405 1229.9  941.5 706.13 836.27 678.23 740.41 0.91 1.21 1.02  1.26 f + s s 

BPC- 
30–25-2 

872 29.2  0.5 250 800 628.3 405 1232.7  1043.3 707.34 838.46 716.06 814.02 0.84 1.23 1.04  1.22 f s 

BDA- 
70–90-1 

784 29.1  0.5 250 800 628.3 345 1229.9  888.76 706.13 768.63 658.94 702.33 0.88 1.11 1.02  1.19 f s 

BDA- 
70–90-2 

755 30.2  0.5 250 800 628.3 345 1260.7  888.76 719.35 778.35 665.19 703.46 0.85 1.05 0.97  1.14 f s 

BDA- 
80–90-1 

858 29.1  0.5 250 950 628.3 345 1229.9  888.76 706.13 772.97 721.52 713.71 0.97 1.22 1.11  1.2 f f 

BDA- 
80–90-2 

853 29.3  0.5 250 950 628.3 345 1235.5  888.76 708.55 775.45 722.88 713.95 0.96 1.2 1.1  1.19 f f 

BDA- 
90–90-1 

853 29.5  0.5 250 900 628.3 345 1241.2  888.76 710.97 775.45 703.23 710.38 0.96 1.2 1.1  1.21 f s 

BDA- 
90–90-2 

921 31.5  0.5 250 900 628.3 345 1296.6  888.76 734.67 780.51 715.84 712.67 1.04 1.25 1.18  1.29 f f 

BDA- 
100–90- 
1 

911 29.7  0.5 250 950 628.3 345 1246.8  888.76 713.37 778.63 725.59 714.44 1.03 1.28 1.17  1.28 f f 

(continued on next page) 
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Table 2 (continued ) 

Specimens Ptest 

(kN) 
f′
c(MPa) a /d d (mm) cap 

size b 
(mm) 

AS 

(mm2) 
Steel 
grade 
(MPa) 

Souza et al. [15] CRSI 
Handbook 
code [21] 

Meléndez 
et al. [2] 

Proposed model Ptest/PModel Observed 
failure 
modes 

Predicted 
failure 
modes 

Pn(KN) 
(shear) 

Pn(KN) 
(flexion) 

Pn(KN) 
two-way 
shear 

Pn, S(KN) 
(shear) 

Pn, fP(KN) 
(flexion) 

(a) (b) (c) (d) 

BDA- 
100–90- 
2 

931 31.3  0.5 250 950 628.3 345 1291.1  888.76 732.34 782.35 736.23 716.38 1.05 1.27 1.19  1.3 f f 

Clarke [6] 
A1 1110 26.6  0.49 405 950 785 410 1501.3  1781.4 1339.9 1000 1102.7 1076.2 0.74 0.83 1.11  1.03 s f 
A2 1420 34  0.49 405 950 785 410 1768.2  1781.4 1514.9 1314.8 1182.9 1090.8 0.8 0.94 1.08  1.3 s f 
A4 1230 26.7  0.49 405 950 785 410 1505.1  1781.4 1342.4 1000 1103.9 1076.4 0.82 0.92 1.23  1.14 s f 
A5 1400 33.2  0.49 405 950 785 410 1740.4  1781.4 1496.9 1320.8 1174.7 1089.3 0.8 0.94 1.06  1.29 s f 
A7 1640 30.2  0.49 405 950 785 410 1633.9  1781.4 1427.7 1261.5 1142.9 1083.5 1 1.15 1.3  1.51 s f 
A8 1510 34  0.49 405 950 785 410 1768.2  1781.4 1514.9 1313 1182.9 1090.8 0.85 1 1.15  1.38 s f 
A9 1450 33.2  0.49 405 950 785 410 1740.4  1781.4 1496.9 1124 1174.7 1089.3 0.83 0.97 1.29  1.33 s f 
A10 1520 23.5  0.49 405 950 785 410 1382.3  1781.4 1259.4 1085.7 1065.8 1069.5 1.1 1.21 1.4  1.43 s s 
A11 1640 22.5  0.49 405 950 785 410 1342.8  1781.4 1232.3 1058.1 1053.4 1067.2 1.22 1.33 1.55  1.56 f s 
A12 1640 31.6  0.49 405 950 785 410 1684  1781.4 1460.4 1281.3 1157.9 1086.2 0.97 1.12 1.28  1.51 f f 
B1 2080 33.4  0.25 405 750 628 410 1747.3  2137.7 3002.9 1664 1325.2 1642.1 1.19 0.69 1.25  1.57 s s 
B2 1900 30.8  0.25 405 750 785 410 1655.4  2672.2 2883.6 * 1499.1 2024 1.15 0.66 *  1.27 s s 
B3 1770 43.7  0.25 405 750 471 410 2090.3  1603.3 3434.8 1393.7 1207.8 1270.4 1.1 0.52 1.27  1.47 f s 
Suzuki and Otsuki [11] 
BPL- 

35–30-1 
960 24.1  0.34 290 800 642 353 1509.8  1077.8 1275.4 864.86 845.27 1036.7 0.89 0.75 1.11  1.14 s s 

BPL- 
35–30-2 

941 25.6  0.34 290 800 642 353 1571.8  1077.8 1314.5 887.74 856.07 1038.7 0.87 0.72 1.06  1.1 s s 

BPB- 
35–30-1 

1029 23.7  0.34 290 800 642 353 1493.1  1077.8 1264.8 989.42 842.33 1036.2 0.95 0.81 1.04  1.22 f + s s 

BPB- 
35–30-2 

1103 23.5  0.34 290 800 642 353 1484.7  1077.8 1259.4 984.82 840.85 1035.9 1.02 0.88 1.12  1.31 f + s s 

BPH- 
35–30-1 

980 31.5  0.34 290 800 642 353 1804.9  1077.8 1458.1 980 895.75 1045.9 0.91 0.67 1  1.09 s s 

BPH- 
35–30-2 

1088 32.7  0.34 290 800 642 353 1850.5  1077.8 1485.7 998.17 903.35 1047.3 1.01 0.73 1.09  1.2 f + s s 

BPL- 
35–25-1 

902 27.1  0.43 290 800 642 353 1360.5  1077.8 990.29 827.52 767.97 846.08 0.84 0.91 1.09  1.17 f + s s 

BPL- 
35–25-2 

872 25.6  0.43 290 800 642 353 1309.9  1077.8 962.49 807.41 757.49 844.17 0.81 0.91 1.08  1.15 s s 

BPB- 
35–25-1 

911 23.2  0.43 290 800 642 353 1226.7  1077.8 916.27 893.14 740.04 841 0.85 0.99 1.02  1.23 f + s s 

BPB- 
35–25-2 

921 23.7  0.43 290 800 642 353 1244.2  1077.8 926.09 902.94 743.75 841.67 0.85 0.99 1.02  1.24 f + s s 

BPH- 
35–25-1 

882 36.6  0.43 290 800 642 353 1662.3  1077.8 1150.9 938.3 828.55 857.09 0.82 0.77 0.94  1.06 s s 

BPH- 
35–25-2 

951 37.9  0.43 290 800 642 353 1701.5  1077.8 1171.1 960.61 836.2 858.48 0.88 0.81 0.99  1.14 s s 

BPL- 
35–20-1 

755 22.5  0.52 290 800 642 353 961.49  1077.8 682.32 692.66 669.07 710.35 0.79 1.11 1.09  1.13 s s 

BPL- 
35–20-2 

735 21.5  0.52 290 800 642 353 932.79  1077.8 666.99 680.56 661.41 708.96 0.79 1.1 1.08  1.11 s s 

BPB- 
35–20-1 

755 20.4  0.52 290 800 642 353 900.7  1077.8 649.7 762.63 652.79 707.39 0.84 1.16 0.99  1.16 f + p s 

BPB- 
35–20-2 

804 20.2  0.52 290 800 642 353 894.8  1077.8 646.51 758.49 651.2 707.1 0.9 1.24 1.06  1.23 f + s s 

(continued on next page) 
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Table 2 (continued ) 

Specimens Ptest 

(kN) 
f′
c(MPa) a /d d (mm) cap 

size b 
(mm) 

AS 

(mm2) 
Steel 
grade 
(MPa) 

Souza et al. [15] CRSI 
Handbook 
code [21] 

Meléndez 
et al. [2] 

Proposed model Ptest/PModel Observed 
failure 
modes 

Predicted 
failure 
modes 

Pn(KN) 
(shear) 

Pn(KN) 
(flexion) 

Pn(KN) 
two-way 
shear 

Pn, S(KN) 
(shear) 

Pn, fP(KN) 
(flexion) 

(a) (b) (c) (d) 

BPH- 
35–20-1 

813 31.4  0.52 290 800 642 353 1200.7  1077.8 806.05 797.06 730.8 721.58 0.75 1.01 1.02  1.13 s f 

BPH- 
35–20-2 

794 30.8  0.52 290 800 642 353 1185.4  1077.8 798.32 794 726.94 720.88 0.74 0.99 1  1.1 s f 

Suzuki et al. [10] 
BDA- 

20–25- 
70–1 

294 26.1  0.67 150 700 284 358 686.31  277.9 240.75 294 280.34 255.89 1.06 1.22 1  1.15 f f 

BDA- 
20–25- 
70–2 

304 26.1  0.67 150 700 284 358 686.31  277.9 240.75 295.15 280.34 255.89 1.09 1.26 1.03  1.19 f f 

BDA- 
20–25- 
80–1 

304 25.4  0.67 150 800 284 358 673.99  277.9 237.5 292.31 301.49 259.73 1.09 1.28 1.04  1.17 f f 

BDA- 
20–25- 
80–2 

304 25.4  0.67 150 800 284 358 673.99  277.9 237.5 292.31 301.49 259.73 1.09 1.28 1.04  1.17 f f 

BDA- 
20–25- 
90–1 

333 25.8  0.67 150 900 284 358 681.04  277.9 239.36 294.69 326.52 264.28 1.2 1.39 1.13  1.26 f f 

BDA- 
20–25- 
90–2 

333 25.8  0.67 150 900 284 358 681.04  277.9 239.36 294.69 326.52 264.28 1.2 1.39 1.13  1.26 f f 

BDA- 
30–20- 
70–1 

534 25.2  0.5 250 700 425 358 893.92  693.13 591.4 593.33 500.01 499.78 0.77 0.9 0.9  1.07 f f 

BDA- 
30–20- 
70–2 

549 24.6  0.5 250 700 425 358 879.68  693.13 584.32 590.32 496.75 499.19 0.79 0.94 0.93  1.11 f + s s 

BDA- 
30–20- 
80–1 

568 25.2  0.5 250 800 425 358 893.92  693.13 591.4 591.67 538.84 506.84 0.82 0.96 0.96  1.12 f f 

BDA- 
30–20- 
80–2 

564 26.6  0.5 250 800 425 358 926.73  693.13 607.61 600 547.35 508.39 0.81 0.93 0.94  1.11 f f 

BDA- 
30–20- 
90–1 

583 26  0.5 250 900 425 358 912.74  693.13 600.71 594.9 583.16 514.9 0.84 0.97 0.98  1.13 f f 

BDA- 
30–20- 
90–2 

588 26.1  0.5 250 900 425 358 915.08  693.13 601.87 593.94 583.85 515.02 0.85 0.98 0.99  1.14 f f 

BDA- 
30–25- 
70–1 

662 28.8  0.4 250 700 425 383 1221.4  741.53 878.1 727.47 595.75 655.09 0.89 0.75 0.91  1.11 f + s s 

BDA- 
30–25- 
70–2 

676 26.5  0.4 250 700 425 383 1155.5  741.53 842.31 711.58 583.91 652.94 0.91 0.8 0.95  1.16 f + s s 

BDA- 
30–25- 
80–1 

696 29.4  0.4 250 800 425 383 1238.3  741.53 887.2 732.63 640.7 663.27 0.94 0.78 0.95  1.09 f + s s 

(continued on next page) 
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Table 2 (continued ) 

Specimens Ptest 

(kN) 
f′
c(MPa) a /d d (mm) cap 

size b 
(mm) 

AS 

(mm2) 
Steel 
grade 
(MPa) 

Souza et al. [15] CRSI 
Handbook 
code [21] 

Meléndez 
et al. [2] 

Proposed model Ptest/PModel Observed 
failure 
modes 

Predicted 
failure 
modes 

Pn(KN) 
(shear) 

Pn(KN) 
(flexion) 

Pn(KN) 
two-way 
shear 

Pn, S(KN) 
(shear) 

Pn, fP(KN) 
(flexion) 

(a) (b) (c) (d) 

BDA- 
30–25- 
80–2 

725 27.8  0.4 250 800 425 383 1193  741.53 862.72 725 631.44 661.58 0.98 0.84 1  1.15 f + s s 

BDA- 
30–25- 
90–1 

764 29  0.4 250 900 425 383 1227.1  741.53 881.15 727.62 680.06 670.42 1.03 0.87 1.05  1.14 f + s f 

BDA- 
30–25- 
90–2 

764 26.8  0.4 250 900 425 383 1164.2  741.53 847.06 720.75 665.56 667.79 1.03 0.9 1.06  1.15 f s 

BDA- 
30–30- 
70–1 

769 26.8  0.3 250 700 425 358 1397.1  693.13 1242.4 818.09 660.65 801.57 1.11 0.62 0.94  1.16 f + s s 

BDA- 
30–30- 
70–2 

730 25.9  0.3 250 700 425 358 1365.6  693.13 1221.3 802.2 655.91 800.7 1.05 0.6 0.91  1.11 f + s s 

BDA- 
30–30- 
80–1 

828 27.4  0.3 250 800 425 358 1417.8  693.13 1256.2 819.8 704.26 809.49 1.19 0.66 1.01  1.18 f + s s 

BDA- 
30–30- 
80–2 

809 27.4  0.3 250 800 425 358 1417.8  693.13 1256.2 825.51 704.26 809.49 1.17 0.64 0.98  1.15 f + s s 

BDA- 
30–30- 
90–1 

843 27.2  0.3 250 900 425 358 1410.9  693.13 1251.6 818.45 743.41 816.61 1.22 0.67 1.03  1.13 f + s s 

BDA- 
30–30- 
90–2 

813 24.5  0.3 250 900 425 358 1315.9  693.13 1187.9 774.29 724.92 813.25 1.17 0.68 1.05  1.12 f + s s 

BDA- 
40–25- 
70–1 

1019 25.9  0.29 350 700 567 358 1593.2  1294.6 1958.6 961.32 918.58 1121.6 0.79 0.52 1.06  1.11 s s 

BDA- 
40–25- 
70–2 

1068 24.8  0.29 350 700 567 358 1547.8  1294.6 1916.5 945.13 910.3 1120.1 0.82 0.56 1.13  1.17 f + s s 

BDA- 
40–25- 
80–1 

1117 26.5  0.29 350 800 567 358 1617.7  1294.6 1981.1 971.3 978.77 1132.5 0.86 0.56 1.15  1.14 f s 

BDA- 
40–25- 
80–2 

1117 25.5  0.29 350 800 567 358 1576.8  1294.6 1943.4 954.7 970.27 1131 0.86 0.57 1.17  1.15 f + s s 

BDA- 
40–25- 
90–1 

1176 25.7  0.29 350 900 567 358 1585  1294.6 1951 956.1 1026.9 1141.3 0.91 0.6 1.23  1.15 f s 

BDA- 
40–25- 
90–2 

1181 26  0.29 350 900 567 358 1597.3  1294.6 1962.3 960.16 1029.8 1141.8 0.91 0.6 1.23  1.15 f s 

Suzuki et al. [9] 
TDL1-1 392 30.9  0.58 300 900 285.2 356 1536.1  416.28 823.28 395.96 594.87 342.02 0.94 0.48 0.99  1.15 f f 
TDL1-2 392 28.2  0.58 300 900 285.2 356 1445.3  416.28 786.48 395.96 574.12 338.25 0.94 0.5 0.99  1.16 f f 
TDL2-1 519 28.6  0.58 300 900 428 356 1458.9  624.71 792.04 570.33 642.62 467.8 0.83 0.66 0.91  1.11 f f 
TDL2-2 472 28.8  0.58 300 900 428 356 1465.7  624.71 794.81 568.67 644.18 468.08 0.76 0.59 0.83  1.01 f f 

(continued on next page) 
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Table 2 (continued ) 

Specimens Ptest 

(kN) 
f′
c(MPa) a /d d (mm) cap 

size b 
(mm) 

AS 

(mm2) 
Steel 
grade 
(MPa) 

Souza et al. [15] CRSI 
Handbook 
code [21] 

Meléndez 
et al. [2] 

Proposed model Ptest/PModel Observed 
failure 
modes 

Predicted 
failure 
modes 

Pn(KN) 
(shear) 

Pn(KN) 
(flexion) 

Pn(KN) 
two-way 
shear 

Pn, S(KN) 
(shear) 

Pn, fP(KN) 
(flexion) 

(a) (b) (c) (d) 

TDL3-1 608 29.6  0.58 300 900 570 356 1492.7  831.97 805.77 653.76 715.36 597.47 0.73 0.75 0.93  1.02 f f 
TDL3-2 627 29.3  0.58 300 900 570 356 1482.6  831.97 801.68 653.13 713.05 597.05 0.75 0.78 0.96  1.05 f f 
TDS1-1 921 25.6  0.33 300 900 428 356 1355  832.95 1311.4 800.87 765.47 753.36 1.11 0.7 1.15  1.22 f f 
TDS1-2 833 27  0.33 300 900 428 356 1404  832.95 1346.7 816.67 776.87 755.43 1 0.62 1.02  1.1 f f 
TDS2-1 1005 27.2  0.33 300 900 570 356 1410.9  1109.3 1351.7 897.32 892.22 980.17 0.91 0.74 1.12  1.13 f s 
TDS2-2 1054 27.3  0.33 300 900 570 356 1414.4  1109.3 1354.2 900.85 893.02 980.32 0.95 0.78 1.17  1.18 f s 
TDS3-1 1299 28  0.33 300 900 784 356 1438.5  1525.8 1371.5 1007 1070 1319.6 0.9 0.95 1.29  1.21 f + s s 
TDS3-2 1303 28.1  0.33 300 900 784 356 1441.9  1525.8 1373.9 1010.1 1070.8 1319.7 0.9 0.95 1.29  1.22 f + s s 
TDM1-1 490 27.5  0.5 250 900 285 383 1184.4  447.54 686.44 441.44 528.77 389.47 1.09 0.71 1.11  1.26 f f 
TDM1-2 461 26.3  0.5 250 900 285 383 1149.7  447.54 671.3 439.05 520.71 388 1.03 0.69 1.05  1.19 f f 
TDM2-1 657 29.6  0.5 250 900 428 383 1244  672.09 712.17 631.73 624.6 554.07 0.98 0.92 1.04  1.19 f f 
TDM2-2 657 27.6  0.5 250 900 428 383 1187.3  672.09 687.69 625.71 611.58 551.71 0.98 0.96 1.05  1.19 f f 
TDM3-1 1245 27  0.5 250 900 1270 370 1170  1926.6 680.17 876.76 1066.6 1456.7 1.06 1.83 1.42  1.17 s s 
TDM3-2 1210 28  0.5 250 900 1270 370 1198.7  1926.6 692.66 889.71 1073.2 1457.9 1.01 1.75 1.36  1.13 s s 
AVERAGE 0.95 1.05  1.08 1.20  
COEFFİCİENT OF VARİATİON 13.8% 43.1%  11.1% 8.8% 
MAXİMUM 1.22 2.68  1.55 1.57 
MİNİMUM 0.73 0.48  0.83 1.01 

Note: (a) STM Model proposed by Souza et al. [15]; (b) Sectional approach corresponding to the two-way shear by the CRSI Handbook code [21]; (c) STM Model proposed by Meléndez et al. [2]; (d) Proposed approach; * 
Test not presented by the authors [2]; s = Shear failure; f = Flexural failure; f + s = Flexure and shear failure; f + p = Flexure and punching shear failure. 
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cap is given as. 
Pn = 2F3; F3 = F2tan∅ with.F2 = F2A + F2B 

F2A = AS

(
fy

2

)

; F2B = b
(a

4

)(
0.375

̅̅̅̅

f ′
c

√
)

The predicted bearing capacity of four pile caps Pn is given by 
equation (7) below: 

Pn = 2
(

AS

(
fy

2

)

+ b
(a

4

)(
0.375

̅̅̅̅

f ′
c

√
)
)

d
a

(7)  

where: 
F2A the contribution of the reinforcements; F2B the contribution of 

the concrete; 
AS Represents the total reinforcement crossing the vertical plane of 

symmetry (regarding the considered direction).b
( a

4
)

represents the 
effective area of the concrete tie on the rectangular plane of symmetry 
(section surrounding the reinforcements); 

Pn: Predicted bearing capacity of four pile caps; d Depth of rein-
forcement; 

b Width of the vertical plane of symmetry; a: The distance from pile 
center-line to column edge measured parallel to pile cap side a = 0.5(le- 
c);ad: Shear span-to-depth ratio; f′

c: Compressive strength of concrete 

cylinder;
(
0.375

̅̅̅̅

f′
c

√
)
: The tensile strength of concrete; fy Yield stress of 

reinforcement. 
Compared to the experimental data, equation (7) obtains exciting 

results for the punching failure mode (COV = 5% with minimum Ptest/Pn 
of 1.21). However, for all the failure modes, the model’s efficiency de-
creases significantly (COV = 10.8% with minimum Ptest/Pn equal to 

0,861). 
The section below aims to calibrate both predictions proposed by 

equation (7), concrete and reinforcements, where the new model’s 
performance is more efficient in precision and safety for all experimental 
failure modes. 

4. Proposed model 

The current study, which is interested in developing a model, focuses 
on evaluating accurately the contribution of concrete and re-
inforcements corresponding to the mode of failure by shear or bending 
and taking into consideration the main parameter, which is the shear- 
span depth ratio. Based on the prediction of four pile caps proposed 
by BOULIFA et al. [3], equation (7) can be presented in the form below: 

Pn = 2.[α.AS.fy + β.b.a(0.375
̅̅̅̅

f ′
c

√

)].
d
a

(8) 

The contribution of the longitudinal reinforcements is.F2A = α.AS.fy 

The contribution of the concrete (effective area of the concrete tie) 

is.F2B = β.b.a(0.375
̅̅̅̅

f′
c

√

)

α: The yielding reinforcements ratio varying to from 0 at 1. 
β: The contribution of the concrete ratio varying from 0 at 1. 
By analyzing the variability of the coefficient of variation (COV) of 

the (P test /P model) with α “or” β, the most effective ratios corresponding 
to the failure mode can be assessed. 

The experimental data used for calibration of α and β correspond to 
the four-pile caps experimental results obtained by Clarke [6] Suzuki 
et al.[8–10,12] and Suzuki and Otsuki [11] for members with a shear 
span-depth ratio (a/d) ranging from 0.25 to 0.8 and uniform grid 

Fig. 2. Strut –and –tie model and Key dimensions for four pile caps.  

Fig. 3. Equivalent load at the vertical plane of symmetry [3].  
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(bunched or rectangular mesh) reinforcement layout. The classification 
of the experimental data according to the failure mode corresponds to 27 
pile caps failing by shear, 43 pile caps failing by flexion, and 37 pile caps 
failing by the combined failed mode; flexion and shear or flexion and 
punching. For each experimental failure mode, the variability of the 
coefficient of variation ratio of the (P test /P model) (COV) is investigated 
as follows:  

- -The value of β must be fixed, and the variation of (COV) as a function 
of α should be studied.  

- In the same way, the value of α should be fixed, and the variation of 
(COV) as a function of β should be investigated. 

Fig. 4 (a) and 4 (b) show that the reinforcement contribution to 
overall bearing capacities is most dominant for the cases of flexural 
failure pile caps. Still, the contribution of concrete is required to be 
considered. The lowest coefficients of variation correspond to α ≥ 0.6 
and β ≤ 0.1, and the variability of the coefficient of variation as a 
function of β displays a concavity between β = 0 and β = 0.2. 

The interaction between the concrete and the reinforcements is 
crucial in determining the load-bearing capacity of four pile caps failing 
by shear or combined shear and flexure mode. For the case of pile caps 
failing by shear mode, the weakest (COV) corresponds to the almost 
equal contribution of concrete and reinforcements between 35% and 
45% (Fig. 5). However, in the case of flexural-shear and flexural- 
punching failures, the yielding reinforcements increase while the 
contribution of the concrete decreases (the weakest value of (COV) 
corresponds to α = 0.5 and β = 0.25; Fig. 6). 

Fig. 7 shows the variability of the coefficient of variation for all the 
pile caps failed by shear or combined shear-bending. The minimum 
(COV) value equals 0.08, corresponding to a yielding ratio of 0.375 
(37.5%) and a rapport contribution of the concrete equal to 0.4125 
(41.25%). 

Consequently, the prediction of the bearing capacity of pile caps that 
failed in the flexure mode is determined by the following equation: 

Pn,f = 2.[(0.74).AS.fy + (0.075).b.a(0.375
̅̅̅̅

f ′
c

√

)].
d
a

(9) 

α = 0.74 and β = 0.075. 
Moreover, the proposed prediction for the cases of pile cap failed due 

to the shear and shear-flexion modes presented by the equation: 

Pn,S = 2.[(0.375).AS.fy + (0.4125).b.a(0.375
̅̅̅̅

f ′
c

√

)].
d
a

(10) 

α = 0.375 and β = 0.4125. 

The proposed model considers that the bearing capacity of four pile 
caps equal to the lower-bound strength between the prediction of pile 
caps that fail due to flexion mode and pile caps that fail in the presence 
of shear mode as 

Pn = Min
{

Pn,f
Pn,S

(11) 

The proposed model agrees with the experimental results and dem-
onstrates the effectiveness of the proposed α and β values corresponding 
to flexion or shear modes (pile caps failing with or without yielding 
steel). 

However, it should be necessary to explain the physical significance 
of the different contributions of the two materials (concrete and steel) 
for each failure mode, as this is essential to justify this proposal. 

5. Validation of the proposed approach using 2D -STM model 

Strut-and-tie models are suitable for representing the stress field in 
pile cap foundations. Several analytical models for predicting the 
bearing capacity of pile caps based on 3D truss models have been pro-
posed in scientific literature [4,7,14,15,18]. Most of these references 
focused on the proposal of different formulae to limit the concrete 
strength of the diagonal strut to evaluate the failure load accurately. The 
truss geometry received little consideration despite having an impact on 
the resulting strut forces, and these authors assumed a predefined truss 
geometry. 

The present section concerned the verification of the proposed 
approach for determining the bearing capacity of four pile caps through 
the analogy of a 2D strut and tie model (triangular-shaped truss mech-
anism); the vertical load is evaluated based on the estimation of the 
tension in the tie element relative to the predicted failure load of pile cap 
(Pn) where the forces on the struts and tie elements are calculated by 
using the proposed analytical formulas (Pn, S and Pn, f). 

The Fig. 8 presents the 2D -STM geometry: 
The sizing of struts and tie are givens using equations (9) and (10). 
The compression force in the simplified equivalent concrete struts at 

failure is: 

F1 =
Pn,S

2sin∅
=

Pn,S.
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + d2

√

2d
(12) 

Which allowed the determination of the section of the simplified 
concrete struts element:.AStut = F1/f′

cwhere: Pn, S is the predicted load for 
the case of shear failure. 

The tension force in the equivalent concrete-steel tie at failure is: 

Fig. 4. Variability of (COV) as a function of α and β for the case of 43 pile caps failing in flexion mode.  
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F2 =
Pn,f

2tan∅
=

Pn,f .a
2d

(13) 

The section of the tie element is: ATie = F2/fywhere: Pn, f is the 

predicted load for the case of the flexure failure. 
The assumptions in the proposed 2D-STM are further verified 

through FE analysis obtained with the “ABAQUS CAE” Software. For 

Fig. 5. Variability of (COV) as a function of α and β for the case of 27 pile caps failing in shear mode.  

Fig. 6. Variability of (COV) as a function of α and β for the case of 37 pile caps failing in combined flexion–shear modes.  

Fig. 7. Variability of (COV) as a function of α and β for the case of 64 pile caps failed by shear alone (27) and combined shear-flexion modes (37).  
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modeling detail of pile cap BP-30–30-2 [8], the elastic moduli adopted 

for steel tie and concrete strut were 200000 MPa and 4750
̅̅̅̅

f′
c

√

(MPa) 
[20]. 

The compressive concrete strut element was modeled using the 
concrete damaged plasticity model [22]; the behavior of the concrete in 
the compression is parabolic, with the compressive strength of the 
concrete cylinder being f′

c occurs at strains between 0.002 and 0.0025, as 
defined in the fib Model Code 2010 [23]. The reinforcement steel’s 
behavior was considered an elastic–plastic model with a yield plateau 
varying from strains 0.002 to 0.01 [17]. To validate the proposed 
approach, the finite element simulations of 2D -STM was used to predict 
the behavior and bearing capacity of the specimen BP-30–30-2 [8] as an 
example case for comparison with 3D-STM proposed by Meléndez et al. 
[2] and the measured load–deflection curve. The table below presents 
the sizing of the equivalent concrete-steel tie and the simplified struts for 
the selected pile cap. 

Fig. 9 shows the behavior obtained using the simulation of the 
equivalent truss (2D-STM) of the pile caps BP-30–30-2 [8] in terms of the 

load-vertical displacement curves of the top node. 
The comparison of the load–displacement curve obtained from FE 

simulation of the equivalent truss, where the loads’ values are multi-
plied by the ratio (PTest /Pn = 1.19), with the measured load–deflection 
curve for the pile cap BP-30–30-2 [8,2] and the 3D- STM proposed by 
Meléndez et al. [2] prove that:  

- The load–displacement curve obtained by the simplified 2D-STM’s 
FE simulation, based on the proposed analytical formula, very 
acceptably converged with the four-pile cap behavior of the experi-
mental specimen BP 30–30-2[8]. 

- The 3D-STM proposed by Meléndez et al. [2] more accurately an-
ticipates the behavior of the specimen in comparison to the proposed 
2D-STM, which did not accurately predict the nonlinearity of the 
load–deflection response.  

- Regarding the experimental failure mode, the proposed model 
agreed with the experimental observations and the 3D-STM pre-
sented by Meléndez et al. [2] (shear failure mode). 

However, to demonstrate that the proposed model can accurately 
depict the impact of various circumstances on the element response, a 
significant number of specimens must often be considered. 

The section of the following study concerns the application of the 
proposed model’s equation (Eq. (11)) to all experimental failure modes. 
The four-pile cap results obtained by Clarke[6], Suzuki et al.[8–10,12] 
and Suzuki and Otsuki [11]; were used for a comparative analysis based 
on STM proposed by Souza et al. [15], Meléndez et al. [2], and CRSI 
Handbook code [21]. The only pile caps studied were those with rein-
forcement bunched over the piles, distributed in a uniform grid, or both 
layouts. 

6. Comparisons with test results and discussion 

One hundred seven pile cap tests reported in the literature [8–12] 
(Table 2) were used to validate the relations given by the proposed 
model. In the plan, no shear reinforcement, and all specimens had been 
loaded at a centered square column. The proposed approach assumes 

Fig. 8. 2D-STM and truss geometry.  

Fig. 9. Comparison of the load–displacement curve obtained from FE simulation of the simplified 2D-STM based on the proposed analytical formula (Pn), the loads’ 
values are multiplied by the ratio (Ptest /Pn = 1.19), with the 3D- STM proposed by Meléndez et al. [2] and the measured load–deflection curve for the pile cap BP- 
30–30-2 [8]. 
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that the steel reinforcement is identical in both orthogonal cap di-
rections. The comparison concerns the STM Model proposed by Souza 
et al. [15], Meléndez et al. [2], and the sectional approach corre-
sponding to the case of the two-way shear proposed by the CRSI 
Handbook code [21]. 

Table 2 shows the calculation results regarding the ratio of experi-
mental load to predicted load for the proposed model and the results 
from the sectional approach and the STM Models [15, 2, and 21]. 

The provisions for a shear design using stress limits from the two-way 
shear of the CRSI Handbook [21] overestimated the measured strength 
predictions for many pile caps (Fig. 10 (b)). 

The results of predictions using the approach developed by Melendez 
et al. [2] (Fig. 10(c)) have a relatively present low scatter (COV = 11%). 
Still, the proposed model underestimated 24 pile caps out of 107 spec-
imens (P test /P model < 0) with a minimum value of (P test /P model) equal 
to 0.83. 

Predictions by Souza et al. [15] (Fig. 10(a)) have a higher scatter 
(COV = 13.8%) compared to the STM model proposed by Meléndez 
et al. [2]. with an average (P test /P model) ratio of 0.95. the formulas 
proposed by Souza et al. [15] and the sectional approach of CRSI 
Handbook code [21] to predict shear design do not accurately capture 
the influence of pile cap depth on shear strength; both methods over-
estimate the shear strength considering depth altogether in the con-
tributes to resisting transverse tensile stresses. Meléndez et al. [2]. on 
the other hand, demonstrated that the internal flow of forces in the pile 
cap exhibits stress concentration at specific areas of the section, as 
clarified by FE analysis. 

The proposed model considers the correct depth of concrete (section 
surrounding the reinforcements). The proposed approach corresponds to 
the lowest COV (8.8 %) with an average value slightly above 1.2 (Fig. 10 
(d)). The consideration of the concrete contribution in the flexure failure 
mode and the yielding of the reinforcement in the shear failure mode 
permit to decrease of the gap between the maximum and minimum 

value of (P test /P n) in a significant way with a minimum value equal to 
one. 

A specific analysis of each failure mode has been qualified as initial 
observations can highlight the strengths and weaknesses of the proposed 
model corresponding to each failure mode. 

Regarding Fig. 11. it is observed that the proposed model provides 
conservative values for the three failure modes (all the experimental 
data tests) (Fig. 11 a), followed by the model proposed by Meléndez 
et al. [2]. The CRSI Handbook code [21] shows the least secure results. 
Considering the accuracy of the predictions in terms of coefficient of 
variation (Fig. 11 b), the proposed model shows more accurate results 
for the two failure modes; bending alone and combined bending-shear. 
In comparison, it shows very close results to the model proposed by 
Meléndez et al. [2] for the case of shear-alone failure (COV = 11.4 for 
the prediction proposed by Meléndez et al. [2] and COV = 11.5 for the 
proposed model). 

The model proposed in this work predicts the failure mode according 
to two evaluations of the load-bearing capacity: flexure failure Pn, f or 
shear failure Pn, S. The results correspond to 68 specimens that failed by 
shear or combined shear-flexion and 39 by flexion, where 83 pile caps 
are correctly predicted (77.75%). 

To conclude, the proposed model obtained a coefficient of variation 
concerning all the observations of (P test /P model) was found equal to 
8.8%; This is a very appreciable and acceptable value compared to those 
found by the prediction of diagonal strut proposed by STM of ACI 
318–14[20] (31%); Miguel-Tortola et al.[13] (13%). 

7. Conclusion 

The proposed approach for predicting the bearing capacity of four 
pile caps is based on evaluating the analytical failure loads by flexure or 
shear, considering both materials concrete and steel. The simple bilinear 
form of the analytical prediction equation allows for the determination 

Fig. 10. Ratio (P test /P model) for 107 pile caps [8–12] based on results obtained by:: (a) STM Model proposed by Souza et al. [15]; (b) Sectional approach cor-
responding to the two-way shear by the CRSI Handbook code [21]; (c) STM Model proposed by Meléndez et al. [2]; (d) Proposed approach. 
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of the combinations (α and β) corresponding to the lowest coefficient of 
variation. 

The forces distribution between the concrete and the reinforcement 
is a critical parameter for predicting the bearing capacity of such 
structures. For flexure failure, the tension in the reinforcement is 
equivalent to the yielding of 0.74⋅As of reinforcement, and for shear 
failure is 0.375⋅As. The cross-section area of concrete in tension is 
0.075⋅a⋅b for flexure failure and 0.4125⋅a⋅b for shear failure. 

The comparison of the observed behavior of the BP-30–30-2 spec-
imen [8] with the load–deflection curve obtained by the numerical 
simulation of the equivalent 2D-STM based on the analytical approach 
and the 3D-STM curve proposed by Melendez et al. [2], proves un-
certainties about the behavior of these elements for the case of the 
proposed 2D simulation. 

The proposed equation was the most accurate in predicting the 
bearing capacity of four pile caps; comparing the expected load by the 
current approach and those obtained from the literature with the 
experimental results database looks encouraging, and the results were in 
good agreement with the predicted ones. They were on the side of safety 
for all experimental results presented in this paper ((P test /Pn) ≥ 1, with 
an average ratio of 1,2. 
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Appendix A. . List of symbols  

As the total reinforcement in the considered direction (regarding one direction). 

AStut the section of the simplified concrete struts element 
ATie The section of the tie element 
a the distance from the pile center-line to the column edge measured parallel to the pile cap side; 
b0 is the column perimeter 
C width of Colum 
d depth of reinforcement 
dp pile diameter/side 
F1 The compression force in the simplified equivalent concrete struts at failure 
F2 The tension force in the equivalent concrete and steel tie at failure 
F3 half of the shear force at the vertical plane of symmetry 

(continued on next page) 

Fig. 11. Comparative presentation of statistical results of the proposed model with predictions proposed by three theoretical methods according to the different 
modes of failure observed; s is a shear failure; F is a flexural failure; F þ s is flexure and shear failure. 
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(continued ) 

As the total reinforcement in the considered direction (regarding one direction). 

f’
c compressive strength of the concrete cylinder 

fy yield stress of reinforcement 
fcp equivalent plastic strength of concrete 
fu steel ultimate 
h pile cap depth 
le pile spacing 
PModel the nominal strength at failure proposed by different theoretical models 
Pn the nominal strength at failure proposed by the authors 
Ptest measured capacity of test structure at failure 
Pn (2D-STM) vertical load obtained by the FE simulation of the simplified 2D-STM 
Pnt.u .Pns.1.Pns.2 present the limit functions corresponding respectively to the local failure Modes (yielding reinforcements), (Crushing of the diagonal strut), and (Splitting of the 

diagonal strut). 
COV coefficients of variation 
STM Strut-and-Tie Model 
Ø present the 2-D strut angle 
α The yielding reinforcements ratio varying to from 0 at 1 
β The contribution of the concrete ratio varies from 0 at 1 
βp area factor of projection of pile perpendicular to strut direction 
θ3d

s 3-D strut angle 
εs the average compressive strain of concrete strut 
εtx εty reinforcement strain in x- and y-direction 
εz average concrete strain in the z-direction  
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